
Computer Networks 168 (2020) 107035 

Contents lists available at ScienceDirect 

Computer Networks 

journal homepage: www.elsevier.com/locate/comnet 

CYBELE – Fostering precision agriculture & livestock farming through 

secure access to large-scale HPC enabled virtual industrial 

experimentation environments fostering scalable big data analytics 

Konstantinos Perakis a , ∗, Fenareti Lampathaki b , Konstantinos Nikas c , Yiannis Georgiou 

d , 
Oskar Marko 

e , Jarissa Maselyne 

f 

a UBITECH, Thessalias 8 & Etolias, Chalandri 15231, Greece 
b SUITE5, Archiepiskopou Makariou III 95B, Limassol 3020, Cyprus 
c Institute of Communication & Computer Systems, 42 Patission Str., Athens 10682, Greece 
d Ryax Technologies, 7 rue robert et Reynier, Saint-Fons 69190, France 
e BIOSENSE Institute, Dr Zorana Dindica str. 1, Novi Sad 210 0 0, Serbia 
f EV ILVO, Burgemeester van Gansberghelaan 96, Merelbeke 9820, Belgium 

a r t i c l e i n f o 

Article history: 

Received 30 April 2019 

Revised 27 September 2019 

Accepted 26 November 2019 

Available online 30 November 2019 

Keywords: 

Precision agriculture 

Precision livestock farming 

High performance computing 

Big data analytics 

a b s t r a c t 

According to McKinsey & Company, about a third of food produced is lost or wasted every year, amount- 

ing to a $940 billion economic hit. Inefficiencies in planting, harvesting, water use, reduced animal contri- 

butions, as well as uncertainty about weather, pests, consumer demand and other intangibles contribute 

to the loss. Precision Agriculture (PA) and Precision Livestock Farming (PLF) come to assist in optimiz- 

ing agricultural and livestock production and minimizing the wastes and costs aforementioned. PA is a 

technology-enabled, data-driven approach to farming management that observes, measures, and analyzes 

the needs of individual fields and crops. PLF is also a technology-enabled, data-driven approach to live- 

stock production management, which exploits technology to quantitatively measure the behavior, health 

and performance of animals. Big data delivered by a plethora of data sources related to these domains, 

has a multitude of payoffs including precision monitoring of fertilizer and fungicide levels to optimize 

crop yields, risk mitigation that results from monitoring when temperature and humidity levels reach 

dangerous levels for crops, increasing livestock production while minimizing the environmental footprint 

of livestock farming, ensuring high levels of welfare and health for animals, and more. By adding ana- 

lytics to these sensor and image data, opportunities also exist to further optimize PA and PLF by having 

continuous data on how a field or the livestock is responding to a protocol. For these domains, two main 

challenges exist: 1) to exploit this multitude of data facilitating dedicated improvements in performance, 

and 2) to make available advanced infrastructure so as to harness the power of this information in order 

to benefit from the new insights, practices and products, efficiently time-wise, lowering responsiveness 

down to seconds so as to cater for time-critical decisions. The current paper aims to introduce CYBELE, 

a platform aspiring to safeguard that the stakeholders involved in the agri-food value chain (research 

community, SMEs, entrepreneurs, etc.) have integrated, unmediated access to a vast amount of very large 

scale datasets of diverse types and coming from a variety of sources, and that they are capable of actually 

generating value and extracting insights out of these data, by providing secure and unmediated access to 

large-scale High Performance Computing (HPC) infrastructures supporting advanced data discovery, pro- 

cessing, combination and visualization services, solving computationally-intensive challenges modelled as 

mathematical algorithms requiring very high computing power and capability. 
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1. Introduction 

According to McKinsey & Company, about a third of food pro- 

duced is lost or wasted every year, amounting to a $940 bil- 
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lion economic hit, at the same time when 50% more and bet- 

ter food will be needed over the next 20–30 years [1] . Inefficien- 

cies in planting, harvesting, water use, reduced animal contribu- 

tions, as well as uncertainty about weather, pests, consumer de- 

mand and other intangibles contribute to the loss. Precision Agri- 

culture (PA) and Precision Livestock Farming (PLF) come to as- 

sist in optimizing agricultural and livestock production and mini- 

mizing the wastes and costs aforementioned. PA is a technology- 

enabled, data-driven approach to farming management that ob- 

serves, measures, and analyzes the needs of individual fields and 

crops. Sensors on fields and crops are starting to provide literally 

granular data points on soil conditions, as well as detailed info on 

wind, fertilizer requirements, water availability and pest infesta- 

tions, which in addition to aerial images captured by unmanned 

aerial vehicles, or drones, which can patrol fields, can alert farm- 

ers to crop ripeness or potential problems and provide early warn- 

ings of deviations from expected growth rates or quality. Satellites 

can be at the service of PA, too, facilitating detection of relevant 

changes in field by using satellite imagery, identification of crop 

threats as nutrients deficiency or insect damage etc. PLF is also a 

technology-enabled, data-driven approach to livestock production 

management, which exploits technology to quantitatively measure 

the behavior, health and performance of animals. PLF deals with 

the management of livestock by continuous, automated, real-time 

monitoring of (re)production, health and welfare of livestock and 

the corresponding environmental impact. The data sources utilized 

in it include amongst others on-line sound, video observations, 

feeding intake, drinking behavior data, data from sensors on the 

animals, and data from milking robots. 

Big data delivered by all the aforementioned sources has a 

multitude of payoffs in the domains of PA and PLF, that include 

precision monitoring of fertilizer and fungicide levels to optimize 

crop yields as well as risk mitigation that results from monitor- 

ing when temperature and humidity levels reach dangerous levels 

for crops, increasing livestock production while minimizing the en- 

vironmental footprint of livestock farming and ensuring high levels 

of welfare and health for animals, providing new efficient decision- 

making tools for helping agricultural development and livestock 

farming optimization [2] . By adding analytics (e.g. parallel matrix 

multiplication, deep convolutional neural networks) to these sen- 

sor and image data, opportunities also exist to further optimize 

these domains by having continuous data on how a field or the 

livestock is responding to a protocol. By allowing farmers to apply 

tailored care and manage resources more effectively, production is 

boosted, economic efficiency is improved, and waste and environ- 

mental impact is minimized. 

In the domains of PA and PLF, two main challenges are iden- 

tified: 1) to exploit this multitude of data in order to evaluate 

and benchmark the developed algorithms, thus facilitating dedi- 

cated improvements in performance, and thus advancements for 

new applications [3] , and 2) to make available advanced infras- 

tructure so as to harness the power of this information in order 

to benefit from the new insights, practices and products, and to 

not only facilitate the execution of these algorithms, but to do so 

efficiently time-wise. 

Thus, PA and PLF are currently being shaped by two major tech- 

nological trends: big-data and advanced-analytics capabilities on 

the one hand, and robotics—aerial imagery, feeding and milking 

robots, intelligent sensors, sophisticated local weather forecasts—

on the other. Towards this end, PA and PLF are driven by the need 

of 1) fusing a vast plethora of data sources which through various 

technological breakthroughs are currently available, 2) algorithms 

optimized for parallel execution that can exploit this multitude of 

data and harness their power, and 3) advanced infrastructural ca- 

pabilities to handle the execution of these big data enabled algo- 

rithms efficiently time-wise, lowering responsiveness down to sec- 

onds so as to cater for time-critical decisions. 

The current paper aims to introduce CYBELE, a platform aspir- 

ing to safeguard that the stakeholders involved in the agri-food 

value chain (research community, SMEs, entrepreneurs, etc.) have 

integrated, unmediated access to a vast amount of very large scale 

datasets of diverse types and coming from a variety of sources, and 

that they are capable of actually generating value and extracting 

insights out of these data, by providing secure and unmediated ac- 

cess to large-scale High Performance Computing (HPC) infrastruc- 

tures supporting advanced data discovery, processing, combination 

and visualization services, solving computationally-intensive chal- 

lenges modelled as mathematical algorithms requiring very high 

computing power and capability. 

The structure of the paper is as follows: Section 1 introduced 

the scope of the paper and highlighted the rationale behind the 

proposed research. Section 2 analyzes the methodology followed, 

graphically illustrating and explaining the proposed architectural 

approach for detaching the design, development and execution of 

HPC empowered big data analysis processes. Section 3 outlines the 

anticipated results, to be achieved, evaluated and technically vali- 

dated through a series of 9 demonstrators, 5 from the domain of 

PA, and 4 from the domain of PLF, which are also presented in the 

same section. Section 4 concludes the current paper. 

2. Materials and methods 

Few approaches have started being developed during the last 

few years mainly in the field of PA, but also targeting the do- 

main of PLF. With regards to PLF, scientific approaches since 2010 

focused mainly on the theoretical aspects of the challenge, ex- 

plaining mainly how to implement PLF into practice [4] , how IoT 

or even how audio-visual monitoring and analysis could also be 

exploited towards recognizing group behavioral patterns, identify- 

ing individual animals, detecting the occurrence of fertility, dis- 

ease and discomfort, as well as to measure changes between in- 

dividuals and groups of animals over time, including for exam- 

ple the approaches presented by Romeo S. [5] , Terrasson G., Llaria 

A. et al. [6] , Terrasson G., Villeneuve E. et al. [7] , Andonovic I. 

et al. [8] , while the first platforms claiming to support PLF have 

already been developed, including for example the Precision Live- 

stock Farming system by Bosch [9] . PA on the other hand is a more 

mature domain, and various commercial solutions currently exist, 

offering advanced services including real time insights, yield mon- 

itoring, built-in accounting, field management and more, including 

amongst others Trimble [10] , AgDNA [11] , Sentera [12] , AgroSense 

[13] , Fasal [14] , Agricolus [15] , OneSoil [16] , ProAgrica [17] and 

more. These have been developed over the years building upon the 

technological advancements mainly in the technological domains 

of IoT, Unmanned Aerial Vehicles and Satellite and Image Process- 

ing and analysis, and upon the scientific literature made available 

during the last decade, including (yet not limited) for example the 

approaches by Lin J-S. and Liu C-Z [18] , van Henten E. J. et al. [19] , 

Ge Y. et al. [20] , Primicerio J. et al. [21] , Zhang C. and Kovacs J. M. 

[22] , Ye J. et al. [23] , Srbinovska M. et al. [24] , Ferrandez-Pastor F. 

J. et al. [25] , Popovic T. et al. [26] , and Sawant S.et. al. [27] . 

Nevertheless, CYBELE aspires to reach far beyond the currently 

offered services, and offer a holistic platform targeting both do- 

mains of PA and PLF, and offering services not only to farmers, but 

also to a plethora of stakeholders involved in the agri-food value 

chain (research community, SMEs, entrepreneurs, etc.). CYBELE 

also innovates in providing to these stakeholders integrated access 

to a vast amount of very large scale open and proprietary datasets 

of diverse types and coming from a variety of sources (including 

sensor data, environmental and climate historical data, satellite 

and aerial images). Last but not least CYBELE offers the technolog- 
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ical tools to the aforementioned stakeholders for experimentation 

with these data assets, and for the composition of novel services 

through the corresponding modelling environments, while ab- 

stracting the infrastructure required to support the development 

and the delivery of these resource demanding services. 

CYBELE will capitalize on: 1) The computing capacity and 

efficiency potential delivered by HPC e-infrastructure and HPC- 

empowered services, enabling the processing of large amounts of 

heterogeneous data, and boosting modern scientific discovery, solv- 

ing computationally-intensive challenges modelled as mathemati- 

cal algorithms requiring real HPC architectures to achieve the re- 

quired efficiency. 2) Technological advancements in big data tech- 

nologies and related services, a) facilitating the aggregation of very 

large scale datasets (and/or their metadata) of diverse types (sen- 

sor data, satellite and aerial image data, etc.) from a multitude of 

distributed data sources; b) allowing the (semantic) alignment of 

the aggregated data and metadata to a common schema and data 

model; c) empowering the execution of advanced data analytics 

extracting hidden knowledge and insights and d) empowering the 

delivery of intuitive and adaptive data visualization services, pro- 

viding to the CYBELE stakeholders with a more understandable and 

more easily evaluated interface to the results of the complex sim- 

ulations. 3) The potential of cloud services for delivering simple 

and secure service provisioning, thus providing a bouquet of do- 

main specific and generic services on top of the CYBELE virtual, 

industrial experimentation environment to both research organi- 

zations but mainly to industrial communities with focus on SMEs 

lacking access to HPC infrastructures and the competences neces- 

sary to fully exploit them, facilitating the elicitation of knowledge 

from big agri-food related data, addressing the issue of increas- 

ing responsiveness and empowering semi-automated / automation- 

assisted decision making when the prediction window is narrow. 

The proposed architectural approach for detaching the design, 

development and execution of HPC empowered big data analy- 

sis processes is depicted in Fig. 1 . This layered approach aims at 

ensuring interoperability among all involved components, putting 

emphasis on the way that pipelining of information (from data 

query, to simulation formulation, to analysis and to visualiza- 

tion) is supported, safeguarding smooth interoperation of the as- 

pired services. In order to achieve this, CYBELE consortium aims 

at designing and delivering 1) on the one hand standardized in- 

terfaces putting emphasis on exposing reusable functional primi- 

tives for the HPC and Big Data frameworks integrated within CY- 

BELE, so that pipeline reusability is supported, minimizing the 

need of reprograming core integration engines, and 2) on the other 

hand normative schemes and common data models featuring com- 

mon semantics, annotating the information to be exchanged be- 

tween components, thus ensuring information harmonization and 

enabling seamless communication amongst the various heteroge- 

neous components. 

Big, heterogeneous data (to be also made available to the CY- 

BELE industrial test beds) are made available through HPC powered 

repositories. Prior to the check-in and storage, as demonstrated on 

the middle left part of the architecture, the data pass through a 

data quality check pipeline in order to address the data verac- 

ity and timeliness challenges that are typically associated with big 

data. From the moment that data are collected in CYBELE, quality 

checks are performed to discover inconsistencies and other anoma- 

lies in the data and eventually ensure their integrity and complete- 

ness, to be followed by a number of steps associated with data 

cleansing procedure (ranging from data filtering and cleaning to 

normalization). Finally, the CYBELE Data Provenance Service puts in 

place the necessary mechanisms to record all relevant information 

that influence the “incoming” data of interest. In CYBELE, the Data 

Provenance Service is intrinsically linked to the Data Policy and As- 

sets Brokerage Engine that facilitates the data sharing and trading 

features that will be offered by the platform to link data providers 

and data consumers. Checked-In data will also be semantically an- 

notated and harmonized so as to promote data interoperability and 

reuse. Since the data will come from a multitude of physically dis- 

tributed data sources, a common semantic data model will be cre- 

ated which will be used to semantically describe and annotate the 

data. The model will be used as a common language to annotate 

data and the messages exchanged between the components, so as 

to facilitate the pipelining and enable the seamless communication 

of the various heterogeneous components. The clean and semanti- 

cally uplifted (open and proprietary data) will be then made avail- 

able for querying, analysis and visualization. 

In order to enable simulation execution, a dedicated Experi- 

ment Composition Environment will be designed and delivered, as 

demonstrated on the upper right part of the architecture. The Ex- 

periment Composition Environment aims to facilitate the detaching 

of the design, development and execution of the big data analy- 

sis processes, supporting embedded scientific computing and re- 

producible research. The analysis process will be based on the se- 

lection of an analysis template, where each analysis template will 

represent a specific algorithm with the associated software and ex- 

ecution endpoint, and will provide to the user the flexibility to 

adjust the relevant configuration parameters, including input pa- 

rameters for the algorithm, execution parameters, parameters as- 

sociated with networking and computing resources constraints, as 

well as output parameters. The Experiment Composition Environ- 

ment will support the design and implementation of data anal- 

ysis workflows, consisted of a series of data analysis processes, 

interconnected among each other in terms of input/output data 

streams/objects. Upon the execution of an analysis template, the 

outcome could constitute the input for another analysis template. 

The output of the analysis template execution will be a session ob- 

ject that contains on memory all output values. 

In order for the Experiment Composition Environment to run, 

it requires input datasets (training and/or evaluation datasets). For 

this reason, an Advanced Query Builder will be designed and de- 

veloped which will provide users an intuitive environment to de- 

fine and execute queries on data available in the CYBELE platform. 

After input datasets have been selected and the workflows have 

been designed, the advanced analytics on top of big data need 

to be executed. In the case of CYBELE, advanced analytics algo- 

rithms will be provided to the stakeholders with the ability to vi- 

sually explore the different kinds of data, while discovering and 

addressing new patterns. Machine learning and predictive mod- 

elling techniques will be updated in order to be able to manage 

the predictive life cycle of data preparation, exploration and analy- 

sis, for achieving better deployment and monitoring. However, the 

execution of advanced analytics on top of big, diverse data, raises 

the need for strong computational power and increased computing 

memory so as to be able to not only extract insights, but to do this 

within a reasonable time frame. The execution of the demonstra- 

tion cases selected raises the need for several HPC attributes in- 

cluding Storage Intensity, Computing Intensity, Memory Intensity, 

Throughput Intensity and Short Turnaround Time. 

Towards this end, analytics workflows designed, will be sent 

for execution on well-known HPC and Big Data frameworks, which 

will run on HPC resources abstracted to the user, as demonstrated 

on the lower part of the architecture. CYBELE relies heavily on HPC 

infrastructure, to provide the compute power required to advance 

models and methods and will take a two-fold approach; a) focus 

on tuning the HPC software stack to allow for efficient execution 

of Big Data processing frameworks on top of HPC resources, b) tar- 

get the HPC resource management layer and its interface with Big 

Data processing frameworks and orchestration engines, thus bridg- 

ing the gap between the HPC and Big Data worlds. In addition to 

that, the efficient execution of analytics workflows and the man- 
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Fig. 1. CYBELE conceptual architecture. 

agement of resources comes with multiple challenges. In the con- 

text of CYBELE, optimization of workflows on different frameworks 

will be examined for performance, along with tasks scheduling 

on resources to meet resource constraints/performance constraints/ 

time constraints. Depending on the workflow and the frameworks 

in use, CYBELE consortium will explore the abilities of the frame- 

work’s scheduler to optimize the workflow and guarantee perfor- 

mance, as well as the deployment through an orchestrator such 

as Kubernetes, which can optimize the performance of a workflow 

over multiple frameworks with its highly modular architecture and 

ability to run multiple and customized schedulers. 

The analysis results will then need to be visualized and pre- 

sented to the end users in a precise, coherent, and user-friendly 

way. Towards this end, as demonstrated on the upper left part of 

the architecture, adaptive visualization / user interfaces will be de- 

livered, improving the way in which information is presented, for 

example by converting the raw data into interactive visualizations 

and dosing the information available at any given time. Synchro- 

nized views can be included within a customizable dashboard that 

allows adaption of the visualization and the analysis of dynamic 

data to an appropriate level according to the profile and knowl- 

edge of the end user. 

The following sub-sections go into more depth for some of the 

aforementioned core components of the CYBELE conceptual archi- 

tecture, to better familiarize the user with the technical approach 

to be followed in order to yield the aspired results. 

2.1. (HPC & Big Data storage & computing) resource abstraction 

CYBELE relies on HPC infrastructure, to provide the compute 

power required to advance models and methods for PA. In this di- 

rection, CYBELE will take a two-fold approach; first, we will focus 

on tuning the HPC software stack to allow for efficient execution 

of Big Data processing frameworks on top of HPC resources. Sec- 

ond, we will target the HPC resource management layer and its 

interface with Big Data processing frameworks and orchestration 

engines. This approach is necessary to bridge the gap between the 

worlds of HPC and Big Data, which reflects to the system architec- 

ture, the software stacks and the resource abstraction, and stems 

from having their roots in different classes of problems. We should 

note that HPC infrastructure used in CYBELE includes both typical 

HPC resources, as well as partitions of resources built for data an- 

alytics and other data-intensive applications. However, within CY- 

BELE, we envision to explore the full scaling and computing capa- 

bilities of all available HPC resources. 

A core issue to be addressed within CYBELE is efficient I/O 

and data movement, to handle the volume and velocity of data. 

On HPC infrastructure, storage resources and compute resources 

are decoupled, and compute resources use a parallel file system, 

such as LUSTRE [28] or General Parallel File System (GPFS) [29] , 

and Portable Operating System Interface (POSIX) [30] semantics 

to perform I/O operations, or a network file system (NFS) and 

name-space sharing. As a result, storage is optimized for infre- 
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quent I/O of large batches of data, typically to instantiate simu- 

lations or store results or checkpoints. On the other hand, tradi- 

tional Big Data infrastructure relies on low-latency and reliable lo- 

cal storage, with a distributed file system, such as the Hadoop Dis- 

tributed File System (HDFS) [31] , handling the batches of data and 

guaranteeing fault-tolerance. The mismatch between the two ar- 

chitectures can cause severe performance degradation when exe- 

cuting big data frameworks over HPC resources, as big data frame- 

works are designed with the principle of data being close to the 

processing unit. We will work to alleviate this mismatch using lo- 

cal file systems mapped by the shared file system and will ex- 

plore software layers that eliminate overheads related to POSIX- 

like semantics [32] . We will additionally enable efficient mecha- 

nisms for Big Data frameworks to use near storage, such as Solid 

State Drives (SSDs), to enable scaling up to multiple nodes avoid- 

ing the latencies involved from frequently accessing the shared file 

system [33] . Besides techniques for efficient “vertical” data move- 

ment, within CYBELE, we will procure Remote Direct Memory Ac- 

cess [34] (RDMA)-enabled data analytics frameworks [35] , to en- 

able efficient “horizontal” data movement, i.e. efficient communi- 

cation between nodes, since modern HPC infrastructure that allows 

for such deployments. Container technologies (e.g. Docker) will al- 

low for seamless adaptation of the software stack to the needs of 

the application, without affecting the HPC applications executing 

on the HPC systems. 

CYBELE will also work on efficiently coupling the resource man- 

agement for Big Data frameworks over HPC resources. HPC re- 

source managers (SLURM [36] , Torque [37] , etc.) interact with the 

user, who submits a “job”, only once, to grant the requested re- 

source allocation that remains unmodified until completion of the 

application. In contrast, Big Data resources managers (MESOS [38] , 

YARN [39] , Kubernetes [40] , etc.) embrace the concept of elastic 

resource allocation: they either allocate resources to meet appli- 

cation demands, or negotiate with applications for resources. Also, 

Big Data frameworks implement their own, standalone schedulers 

to manage their tasks on a set of resources. To enable the execu- 

tion of Big Data frameworks over HPC resources, within CYBELE, 

we will enable the execution of Big Data resource managers over 

resource allocations provided by the traditional resource managers 

of HPC systems. To achieve this, we will deploy advanced orches- 

tration engines, like Kubernetes, alongside traditional HPC resource 

managers. We will extend the HPC resource managers with the 

ability to interface with orchestration engines, to allow for the cre- 

ation and deployment of YARN, Hadoop, Spark, and other clus- 

ters on resource allocations granted by HPC resource managers. 

This approach has manifold benefits: i) the operation of HPC sys- 

tems is not disrupted, ii) any Big Data framework can run over 

HPC resources, iii) any Big Data scheduler can be deployed, iv) 

the HPC resource manager dedicated a set of isolated resources 

(CPUs, memory, GPUs, FPGAs, etc.) to the executing frameworks, 

v) the HPC resource manager can implement topology-aware and 

I/O aware policies, vi) the Big Data resource manager/orchestrator 

(as a second level of scheduling) can implement resource elasticity 

within the given resources and locality-aware policies. 

2.2. Parallel execution management 

Within CYBELE, the data preparation and modeling tasks, which 

fall under the category of Big Data processing and analytics, need 

to run efficiently in its ecosystem, for a variety of data and model 

sources. The CYBELE architecture will support a variety of frame- 

works, for batch processing, e.g. Hadoop, for streaming process- 

ing, e.g. Apache Storm and Apache Kafka, for iterative processing, 

e.g. Apache Mahout and Apache Spark. Several of these frame- 

works come with components that will serve the needs of CYBELE 

demonstrators for machine learning (e.g. MLBase), deep learning 

(e.g. DeepLearning4j), predictive analytics (e.g. Oxdata H2O), graph 

analytics (e.g. GraphX). In addition, many frameworks offer support 

for transparent execution of workloads on accelerators, namely 

GPUs. The efficient execution of analytics workflows and the man- 

agement of resources comes with multiple challenges. In the con- 

text of CYBELE, we will work on the following aspects: i) how 

to optimize workflows on different frameworks for performance, 

ii) how to schedule tasks on resources to meet resource con- 

straints/performance constraints/ time constraints. 

For workflows with time constraints, e.g. stream processing, CY- 

BELE will rely on dedicated data analytics platforms. Depending on 

the workflow and the frameworks in use, we will explore the abil- 

ities of the framework’s scheduler to optimize the workflow and 

guarantee performance, as well as deployment through an orches- 

trator such as Kubernetes, which can optimize the performance of 

a workflow over multiple frameworks with its highly modular ar- 

chitecture and ability to run multiple and customized schedulers. 

The challenges are different for compute-intensive workflows, as 

are deep learning tasks on high-dimensional data: such workloads 

require high computational power and large scale. To this direc- 

tion, CYBELE will work with best practices and optimized soft- 

ware, coming from the world of HPC, to enhance performance 

through scaling and efficient utilization of all available compute re- 

sources (CPUs, GPUs, FPGAs, etc.). For non-critical data processing 

tasks with low demands on resources, we will explore the poten- 

tial of using YARN or we will directly use the built-in schedulers 

of frameworks. 

An important issue CYBELE will need to address is workflow 

scheduling across different system partitions and/or resource al- 

locations, as provided by the HPC resource manager. For exam- 

ple, a workflow may include some data streaming tasks and some 

data analytics tasks, which, for reasons of performance, should run 

on different partitions of a system and be composed of different 

frameworks. Within CYBELE, we will develop those necessary com- 

ponents, interfaces and tools for HPC resource managers and the 

orchestrator, that will allow communication of events and data be- 

tween frameworks through the resource manager, for the execu- 

tion of a workload. 

Efficient workflow execution heavily relies on selecting the right 

framework and the best set of resources for the various tasks. A 

compute or data operator within a workflow can be expressed on 

top of various engines, and some may be more efficient than oth- 

ers. Also, for the efficient execution of the workflow, each task 

needs to be assigned the right amount of resources. To opti- 

mize workflow execution on HPC systems, we will explore the us- 

age of IReS, an open-source, multi-criteria meta-scheduler of tasks 

onto analytics engines and resources, developed for the EU-funded 

project ASAP. In CYBELE, we will focus on integrating IReS with 

the orchestrators and resource management tools used within the 

project. 

2.3. Workflow & experiment composition & instantiation 

The Experiment Composition Environment aims to facilitate the 

detaching of the design, development and execution of the big data 

analysis processes (including descriptive, predictive, classification, 

clustering, and prescriptive analytics) aspired and expected by the 

demonstrators for the execution of their scenarios, supporting em- 

bedded scientific computing and reproducible research. 

The basic requirement driving the implementation of the Ex- 

periment Composition Environment regards the need to provide 

simple and homogeneous access to a variety of algorithm pack- 

ages, without the necessity of having deep knowledge of the ex- 

ecution requirements of each algorithm. This requirement will be 

supported through the provision of access to set of registered algo- 

rithms along with the provision of user-friendly interfaces for the 
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specification of the main execution parameters. In order to support 

the flexibility on realizing part or an overall analysis workflow, the 

design and implementation of the Experiment Composition Envi- 

ronment will be based on a microservices-based architecture en- 

abling in a modular way both registering new algorithms at the 

analysis engine, as well as invoking the execution of the analytic 

processes. 

The Experiment Composition Environment will expose a set of a 

set of open APIs facilitating the access to the analytics mechanisms 

and the design, development and execution of analytics, empower- 

ing software developers to develop analysis scripts without restric- 

tions in the programming language (e.g. R, Python, Java) and data 

scientists to design analytic workflows, consisting of sets of pro- 

cesses and related input and output parameters in a user friendly 

and intuitive way. The environment will also support the applica- 

tion of different execution modes, e.g. sequential or parallel exe- 

cution of R algorithms for smaller data streams or in clustering 

mode by the HPC and big data frameworks (e.g. Spark, Hadoop, 

Kafka etc.) provided through the parallel execution management 

layer over the managed HPC clusters abstracted through the Re- 

source Abstraction Layer. 

The analysis process will be based on the selection of an anal- 

ysis template after the input datasets (training and/or evaluation 

datasets) have been queried and provided to the Experiment Com- 

position Environment by the Advanced Query Builder. Each analy- 

sis template will represent a specific algorithm with the associated 

software and execution endpoint, and will provide to the user the 

flexibility to adjust the relevant configuration parameters, includ- 

ing input parameters for the algorithm along with their description 

and their default value, execution parameters that denote whether 

an analysis should be realized in a manual or automated way, as 

well as the periodicity factor for the latter case, parameters as- 

sociated with networking and computing resources constraints, as 

well as output parameters along with their type (text, image, data, 

html). 

The proposed approach also supports the design and imple- 

mentation of data analysis workflows, consisted of a series of data 

analysis processes, interconnected among each other in terms of 

input/output data streams/objects. Upon the execution of an anal- 

ysis template, the outcome could constitute the input for another 

analysis template. In this way, complex analysis processes can be 

broken down in smaller processes interlinked in the form of a 

workflow. 

The output of the analysis template execution will be a session 

object that contains on memory all output values (e.g. set of URLs 

providing access to the set of results). Session object values re- 

turned by a template call can feed as arguments a subsequent tem- 

plate call, without ever retrieving the object. Thus, analysis tem- 

plates chaining will become even more powerful and pave the way 

for greater experimentation flexibility, considering a code snippet 

as an input value parameter, enabling injecting raw code into the 

function call. The implementation of the Experiment Composition 

Environment will be based on open source tools such as Apache 

Airflow enabling authoring workflows as Directed Acyclic Graphs 

of tasks. 

2.4. Advanced analytics 

In order to perform advanced analytics to the provided data 

through either its autonomous or semi-autonomous examination, 

several sophisticated techniques or tools will be used in order to 

discover deeper insights, make predictions, or generate recommen- 

dations. The main object is to focus on forecasting future events 

and behaviors, enabling businesses to conduct what-if analyses to 

predict the effects of potential changes in business strategies. For 

that reason, classical statistical methods, as well as newer, more 

machine-driven techniques will be used, such as deep learning, for 

identifying patterns, correlations and groupings in data sets. 

In more details, in the case of CYBELE, advanced analytics al- 

gorithms will be provided to the stakeholders with the ability to 

visually explore the different kinds of data, while discovering and 

addressing new patterns. What is more, machine learning and pre- 

dictive modelling techniques will be updated in order to be able 

to manage the predictive life cycle of data preparation, explo- 

ration and analysis, for achieving better deployment and monitor- 

ing. Through CYBELE, the provided advanced analytics algorithms 

will semi-automate, or even automate the already developed pro- 

cesses that exist to improve data performance, thus gaining quicker 

and more efficient results. Moreover, the data mining process will 

be streamlined, creating both high-performance and accurate mod- 

els, while predictive models will be possible to be built using tra- 

ditional statistical, data mining or text mining algorithms. As a re- 

sult, the latter will lead to cost and latency reduction, since CYBELE 

will automate in-database scoring to improve model performance 

and get faster results. To this end, another innovation of CYBELE 

will be to design machine learning and prototyping algorithms for 

production that will be able to automatically update themselves by 

constantly retaining data sets, performing cross-validation, refining 

and discovering new rules. The work that will be done will be to 

first build incremental algorithms that will be then parallelized. In 

this case, there will be a strong need for building accurate local 

knowledge in order to optimize the work of aggregating nodes. 

Our goal will be to consider the most suitable existing algorithm 

in the incremental case, and make it distributed. For instance, the 

FP-Growth principle may be used, in order to evaluate the per- 

formance when the computing nodes divide their input streams 

into batches and send regular updates to the intermediate nodes. 

A major issue will be to deal with the trade-off between compu- 

tation time and results accuracy, thus approximate algorithms will 

be considered since they are able to perform in real time. 

3. Results 

The CYBELE project officially started on January 2019, thus no 

scientific results have yet been made available. Nevertheless, the 

CYBELE concept, approach and technical solution will be evaluated 

and technically validated through a series of 9 demonstrators, 5 

from the domain of PA, and 4 from the domain of PLF, which are 

briefly described in the forthcoming sections. 

3.1. Organic Soya yield and protein-content prediction 

The EU is strongly dependent on other continents for plant- 

based proteins. Plant proteins are mainly used for animal hus- 

bandry and by far the majority of the need is covered by soybean. 

Currently, the EU imports the equivalent of about 32 M tons of 

soya, mainly as processed soya-meal, from Brazil, Argentina and 

the US. Unlike the US and the rest of the world, GMO products 

are banned in the EU, meaning that we must rely on our own 

production and increase its efficiency. The constrains are only par- 

tially due to market trends while there is a large room for technical 

improvement in cultivation and processing phases. Those improve- 

ments should be aiming at increasing the efficiency of production 

and, at the same time, decreasing the environmental impact. An in- 

novative concept that well summarises the need for improvement 

is to optimise the protein production instead of optimising the pro- 

duction of soybean in general, meaning that the inputs brought 

into the system should aim at producing as much protein as possi- 

ble. Using the dataset acquired through crowdsourcing, we will de- 

rive methods for predicting yield and protein-content maps based 

on satellite imagery and additional information (if available) con- 

cerning electromagnetic soil scans, drone images and sensory data. 
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Time-series of satellite images are very indicative of the relative 

yield and protein content on the field, i.e. they can pinpoint the 

areas in which soybean grows better and in which it grows worse. 

By knowing the absolute value of the yield and protein content 

on the whole farm, we can “reverse-engineer” these traits in these 

specific areas of the field and derive the corresponding maps. We 

will train state-of-the-art satellite image processing techniques for 

delineation of different zones inside the fields and advanced ma- 

chine learning algorithms for prediction of yield and protein con- 

tent based on the crowdsourced data. 

3.2. Climate smart predictive models for viticulture 

Climate change has a profound impact on the growth rate and 

growth patterns of plants and crops. More specifically, different 

crop growth and development processes are affected by climatic 

variability via linear or nonlinear relationships resulting in com- 

plex and unexpected responses. It has been argued that such re- 

sponses can best be captured by process-based crop simulation 

models that quantitatively represent the interaction and feedback 

responses of crops to their environments. The purpose of this Use 

Case is to demonstrate the capacity of the HPC solutions proposed 

in the project for supporting complex highly-nonlinear models for 

vine and grape growth with respect to the extreme number of vari- 

ables (data types) that have been shown to affect the quality and 

quantity of the produced yields. Such crop models could estimate 

vine and grape growth and crop yield at larger scales, with spa- 

tial sources of information on soils, water, land use, and other fac- 

tors. This way, much larger predictions of yield could be achieved 

across regional scales. This could also allow researchers to look at 

different scenarios of land use change, water, and climate change. 

In the context of the proposed Use Case, we aim to examine the 

efficiency of different optimization techniques on both directions. 

Indicative examples for direction (a) is the usage of quasi-Newton 

optimization techniques like BFGS and its memory optimized L- 

BGFS variation, where an approximation of the Hessian matrix of 

the cost function is used and, in the latter case, is reduced to 

vector-matrix multiplications. Similarly, for direction (b) we will 

examine the applicability of different parallel matrix multiplica- 

tion algorithms like the Coppersmith–Winograd algorithm which 

has been shown to achieve the best complexity thus far ( O ( n 2.376 )) 

or the memory-optimal Cannon’s algorithm. 

3.3. Climate services for organic fruit production 

The increased occurrence of extreme weather events due to cli- 

mate change has heightened the need to develop support decision 

systems that can help farmers to mitigate losses in agriculture. En- 

vironmental hazards, such as frost and hail, have a relevant econ- 

omy impact on crops since they may cause several damages and 

injuries in sensitive crops and, therefore, production losses. Horti- 

cultural crops, such as apple trees, are sensitive to frost and hail 

events. and protecting them from the effects of low temperature 

and hail damage is crucial. Frost is a serious problem for horticul- 

tural / fruit-trees production both early and late in the season since 

water within the plants may freeze during a frost event, while 

the damage caused by hail depends on the hailstone size, num- 

ber per unit area and kinetic energy. In both cases, climate condi- 

tions influence the occurrence probability of these events, together 

with other issues such as vegetation present, topography and soil 

type with relevance at local scale. Passive and active protection 

methods for frost and hail exist in the market with their different 

characteristics, effects and costs. So, early warning systems at lo- 

cal scale with a suitable spatial resolution on frost and hail occur- 

rence and their associated risks are relevant for agriculture. Frost 

and hail forecasts may help farmers to reduce any possible injuries 

to their crops since protection methods can be used. Integration 

and comparison of estimated stage of fruit bud development mod- 

els with temperature and air humidity forecasts and other ancillary 

data can be used for risk probability mapping in order to establish 

an early warning system that can help farms to prevent damage 

effects through the use of protection methods for frost and hail. 

This pilot demonstrator will be focused on climate predictors that 

are either correlated with frost or hail occurrence and then can 

be used for planning risk prevention operations. satellite-derived 

earth observation data together with climate forecasts approaches 

will be joined for development and validation of the climate ser- 

vices. Moreover, earth observation time series based on validated 

data-sets from internationally leading organizations can be used 

for validation procedures. The aim is to explore the potential added 

value of novel earth observation satellites for climate services as a 

tool for horticultural crop / fruit-trees management. Climate pro- 

jections, crop growth models, soil parameters and satellite based 

time series of observations will be integrated to produce added 

value indicators for organic fruit producers. 

3.4. Autonomous robotic systems within arable frameworks 

Dictated by the weather, farming tasks have often to be carried 

out within a short time window. Consequently, equipment has in- 

creased in size to complete the work rapidly. One alternative so- 

lution is for farmers to manage fleets of smaller, autonomous ve- 

hicles and carry out the tasks as required. The range of operations 

to be delivered include soil chemical analysis, hyperspectral imag- 

ing (HSI) of soil/crop condition, real time object level (plant/weed) 

identification, individual plant harvest readiness assessment (par- 

ticularly for soft fruits) and plant level automated harvesting, cur- 

rently not possible because it would be massively labor intensive. 

The ultimate goal is for minimally sized equipment e.g. small trac- 

tor or scouting vehicle to carry the sensory devices e.g. spectral 

analysis equipment, imaging (visible and HSI). Such sensor ‘trans- 

porters’ can be combined with a network of ‘actuator’ devices such 

as plant level harvesters, precision soil enrichment vehicles or cul- 

tivation/planting equipment. It is envisaged that a pair (at least) 

of systems can operate in tandem on a given task with the sen- 

sory elements passing over the crop relaying measurement data to 

a central location. The data can then be processed to identify plant, 

weed, readiness for harvest etc., generating the inputs for the ac- 

tuator to harvest the appropriate plant. 

3.5. Optimizing computations for crop yield forecasting 

Crop yield monitoring can be used as a tool for agricultural 

monitoring (e.g. early warning & anomaly detection), index based 

insurance (index estimates) and farmer advisory services for var- 

ious stakeholders. These crop yield monitoring solutions ingest 

crop, soil & historic weather data, while also 10–25 weather data 

forecasts are used to provide a distribution of potential forecasts, 

using a cropping systems model to provide the productivity esti- 

mate. In this use case the parcel specific data associated with ad- 

vanced weather forecasts and computations (weather data interpo- 

lation, crop growth model) will be prepared for computations on 

an HPC, while also considering the addition of a third data source, 

data processed for Sentinel Satellite Imagery for validation of the 

parcel specific estimates. First step is to reproduce the currently 

used application for Europe to function as a baseline, second step 

is to use the same system for parcel specific estimates, at least for 

the Netherlands and potentially another Member State. There are 

three scientific challenges in this use case: 1) Data preparation for 

efficient computation on the HPC. Currently an individual compu- 

tation for one grid cell/polygon is optimized for efficient computa- 

tion. 2) The added value of producing crop productivity estimates 
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on a farmer’s parcel needs to be explored. 3) With faster and more 

computations, the possibilities for easily ingesting additional data 

(e.g. NDVI/WDVI derived from Satellite Imagery) increase dramati- 

cally. This requires scientific advances to ingest this data in a smart 

and automated way. 

3.6. Pig weighing optimization 

An accurate estimate of the live weight of slaughter pigs is use- 

ful to the farmer in several different ways. First of all, knowing the 

weight of the pigs in a pen allows the farmer to know the opti- 

mal time to send his pigs to the slaughter house. Second, an ac- 

curate estimate of the weights of the pigs can be used for more 

accurate dosing of medicine, which can potentially lead to a lower 

use of e.g. antibiotics, which is important for combating the spread 

of multi-resistant bacterial strains in farm animals as well as hu- 

mans. Knowing the optimal slaughter time alone is of such great 

value that some big pig producers have staff employed for the sole 

task of performing manual weightings. This practice is very labori- 

ous and time consuming, making it unfeasible for most producers. 

On these more common herds, being able to infer the live weight 

of the pigs indirectly via e.g. video images would be optimal. A 

number of studies have been published which attempt to achieve 

this using traditional image processing. The demonstrator has three 

main goals: (1) To estimate the mean and standard deviation of 

the live weight of grower/finisher pigs in a pen based on video 

images; (2) To track the weight of individual pigs in a pen based 

on video images; (3) To incorporate the growth curve estimated 

by the CNNs in previously developed models for early warning of 

diarrhea. 

3.7. Sustainable pig production 

Sustainable pig production and global food challenges require 

producing with optimal productivity, health and welfare of the 

pigs. The pig farmer is becoming a manager of growing farms with 

several thousands of fattening pigs. There are large efforts being 

done to improve genetics, improve feeding, etc. to maximize the 

productivity of the pigs. However, the usage and fusion of all data 

generated throughout the lifetime and after slaughter is the fu- 

ture way to be able to really fully exploit the potential of each 

fattening pig and remains a relatively uncultivated field of inno- 

vation. This demonstrator wants to improve the health and wel- 

fare of the pigs, and work on fulfilling the potential of each pig 

through its life and increase the quality of the end-product for the 

market and the consumers. This will be done through data fusion 

of various data sources coming from multiple on-farm sensors and 

software systems, image analysis, management data and slaugh- 

terhouse records. The impact of the data fusion and analytics will 

be demonstrated for the purpose of health and welfare warnings, 

boar taint and meat quality assessment. The demonstrator has two 

main goals: (1) improve the detection of health, welfare and per- 

formance problems at fattening pig farms through better use of 

available sensor and farm data; (2) reduce boar taint and improve 

carcass and meat quality by linking on-farm related factors and 

slaughterhouse data at a large scale. In general, the demonstrator 

aims to bring data and techniques together to enlarge the impact. 

3.8. Open sea fishing 

During the last decade, fisheries management in the EU in- 

creasingly succeeded in rebuilding overfished stocks and prevent- 

ing overfishing. These successes stem mainly from the increased 

availability of data and better analysis methods that enabled to as- 

sess, and thus provide more precise management for an increasing 

number of commercially exploited fish stocks. Despite this posi- 

tive trend, the state of the largest part of the marine ecosystem, 

including most fish stocks, remains largely unknown causing that 

little ecosystem-based management has been put in place. An im- 

portant reason for this is that most marine data is collected by 

means of scientific surveys on research vessels. Such surveys are 

expensive, and consequently, it is practically impossible to provide 

a full spatiotemporal data-coverage of the seas. Due to the lack 

of sufficient processing capacity and adequate database systems, 

nor fishers e.g. to optimise their operational decisions, nor fisheries 

managers make optimal use of these data. Solutions to be explored 

within the context of CYBELE include: 1) Hidden Markov Modelling 

combined with nonparametric methods (e.g. interpolation of vessel 

tracks) will be used to analyse vessel trajectories, whereupon the 

various states will be coupled to landing data. This will provide in- 

formation about the occurrence of hotspots and provide better in- 

sights into the targeting behaviour of the fleet, as well as the spa- 

tial distribution of fish. 2) The data of all the sensors on board of 

a fishing vessels will be merged whereupon multivariate analysis 

will be used to increase the value of the information and provide 

advice to skippers. This demonstrator’s objective is to reduce the 

fuel usage per kg of landed fish, and to reduce the amount of by- 

catches. 3) Images of the hyperspectral and RGB cameras will be 

analysed using Deep Convolutional Neural Networks. Adapted seg- 

mentation and classification networks such as YOLO, U-Net, Mask 

RCNN and others will be used to obtain accurate fish species masks 

during the haul. As deep learning architectures are data-hungry, 

autoencoder networks will be used to apply data augmentation in 

a more efficient way. 

3.9. Aquaculture monitoring and feeding optimization 

Aquaculture is probably the fastest growing food-producing sec- 

tor and now accounts for more than 50 percent of the world’s fish 

that is used for food. With the world population expected to reach 

nine billion by 2050, the aquaculture sector will play a key role in 

ensuring food and nutrition security. However, this growth is not 

without challenges; in order to satisfy the demand and minimize 

the impact on the environment, the sector has to use new tech- 

nologies to intensify, diversify and produce in a more efficient, sus- 

tainable and environmental friendly way. One of the main issues 

in commercial aquaculture is the lost food when the fish are fed. 

This not only increases the cost of the produced fish (feed cost is a 

major cost component that accounts for approximately 70% of the 

OPEX of the farm) but furthermore, this wasted food is deposited 

in the seabed and generates an environmental impact on the sur- 

rounding area. Another challenge is maintaining the farm in a good 

condition. If the cages are not in the correct positions, have defor- 

mations, anti-bird nets not placed correctly, etc. this usually leads 

to damages, financial losses and uncontrolled escapes to the en- 

vironment. The project will make use of drones, image processing 

and data mining to optimize feeding, evaluate impact on the envi- 

ronment and evaluate the status of the infrastructure in open sea 

aquaculture. Within the context of CYBELE, we will use methods 

like segmentation and region proposal and object tracking, in or- 

der to analyze water movements from color, problems in nets and 

cages, fish positions, etc., up to video analysis and machine learn- 

ing, in order to investigate fish behavior in a deeper level. This in- 

formation will be combined with other data such as weather infor- 

mation and sensor measurements (mainly related to Oxygen and 

current speed) in order to develop an efficient feed management 

system that can help companies to make optimum use of the feed, 

reduce costs and also reduce the impact on the environment. 
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Table 1 

Necessity of integrating and making available HPC and Big Data infrastructures. 

HPC Attributes Derm. #1 Derm. #2 Derm. #3 Derm. #4 Derm. #5 Derm. #6 Derm. #7 Derm. #8 Derm. #9 

Storage intensity 
√ √ √ √ √ √ √ 

Computing intensity 
√ √ √ √ √ √ √ √ √ 

Memory intensity 
√ √ √ √ √ 

Throughput intensity 
√ √ √ √ √ √ √ 

Short turnaround time 
√ √ √ √ 

3.10. Necessity of HPC and Big Data infrastructures 

The following table summarises how aligned is the set of 

demonstrators organized by CYBELE consortium partners, with the 

necessity of integrating and making available HPC and Big Data 

infrastructures as opposed to trying to achieve the demonstrator 

goals through conventional infrastructures, ( Table 1 ). 

4. Conclusions 

The scope of the current paper is to introduce CYBELE, a plat- 

form aspiring to safeguard that the stakeholders involved in the 

agri-food value chain (research community, SMEs, entrepreneurs, 

etc.) have integrated, unmediated access to a vast amount of very 

large scale datasets of diverse types and coming from a variety of 

sources, and that they are capable of actually generating value and 

extracting insights out of these data, by providing secure and un- 

mediated access to large-scale HPC infrastructures supporting ad- 

vanced data discovery, processing, combination and visualization 

services, solving computationally-intensive challenges modelled as 

mathematical algorithms requiring very high computing power and 

capability. The CYBELE project officially started on January 2019, 

thus no scientific results have yet been made available. Neverthe- 

less, the CYBELE concept, approach and technical solution will be 

evaluated and technically validated through a series of 9 demon- 

strators, 5 from the domain of PA, and 4 from the domain of PLF, 

as briefly presented. 
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