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Abstract

The emergence of the Industrial Internet of Things paves the way for enhancing the real-time monitoring capabilities of contemporary facto-
ries. This can be materialised through sensors collecting data which can be further analysed. This paradigm enables the detection of indicators
concerning systems’ degradation and facilitates corrective actions to be performed ahead of time. In this paper, we propose a damage prediction
framework exploiting data that are coming from the core IT system in a steel industry use case. The novelty of our approach lies in the exploitation
of Deep Learning techniques over streaming operational sensor data. To evaluate the framework, real-life data are collected and analysed based
on daily operational activities enriched with the Remaining Useful Life (RUL). The Remaining Useful Life is automatically computed. We also
periodically align the damage attribute, which is recorded in the planned activities and is performed by the maintenance engineers. We demonstrate
the framework’s potential by conducting a quantitative and qualitative analysis to timely identify rare events based on historical data and predict

dynamic behavioural changes in the manufacturing settings.

© 2020 The Authors. Published by Elsevier Ltd.

This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the FAIM 2021.

Keywords: Industry 4.0; Industrial Internet of Things Architectures; Predictive Analytics for Production Monitoring; Advanced Machine Learning and Artificial

Intelligence Approaches for Industrial Use Cases

1. Introduction

Predictive Maintenance (PM) is becoming a kind of hype
these days and is being proclaimed as the ’killer app’ for the
Industrial Internet of Things (IIoT) and Factories of the Fu-
ture (FoF). The shift from compartmentalized technical infras-
tructures to digitized ecosystems along with the rise of IloT
technologies influence the current approaches by introducing
a plethora of easily interconnected sensors collecting real-time
machinery data capturing the temperature, acceleration, vibra-
tion, greasing or lube oil levels of moving parts and opera-
tional conditions from monitored assets. A key differentiator
in real-time IIoT monitoring is that it allows for different assets
and systems to connect, work together, share and analyse data
which can be further translated into actions. In the course of
predictive maintenance operations, the ultimate goal is to moni-
tor through the sensors the performance and condition of equip-
ment during normal operation in order to reduce the likelihood
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of damages or failures. Provided that a set of functionalities
first enable to predict when equipment failure may occur based
on certain factors, then a set of decision making actions occurs
followed by preventing the failure through regularly corrective
and scheduled maintenance. There are numerous examples that
have showcased the impact of a disruption from a failure in
terms of time, cost and public safety. For instance, in March
2008 a failure in the baggage system at Heathrow airport is esti-
mated to have cost $32 million and affected 140,000 people [3].

Today’s democratized Artificial Intelligence (AI), Machine
Learning (ML) and Deep Learning (DL) enable the computa-
tion of predictive analytics. System’s health through continu-
ous monitoring and analysis is of great importance in industrial
informatics field. Their combination with IIoT help a growing
number of manufacturers to monitor their production line in
real-time and prevent failures before they occur. A good so-
lution to this problem is to use continuous monitoring and ad-
vanced analytics to detect or predict the status of a manufactur-
ing damage.

Converging IIoT with Al and advanced ML holds the po-
tential to realize the digitized ecosystems, the industrial trans-
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formation known as Industry 4.0 and the concept of smart
(self)-optimizing digital infrastructures empowered by Predic-
tive Maintenance processes. This approach can further drive the
proactive execution of decisions, which can boost productiv-
ity, achieve better regulation compliance and workplace safety,
ensure an eco-friendly work environment with low energy con-
sumption, high environmental preservation and overall costs re-
duction. At the same time, this convergence seeks to define the
golden section to timely do work on an asset, so that mainte-
nance frequency is as low as possible and reliability is as high
as possible without unnecessary interruptions by saving opera-
tional time, maximising resources and cutting costs. In the short
term, the Predictive Maintenance methodology is expected to
be streamlined as a proactive, efficient, automated, and high
performing approach.

However, despite the acknowledgement for direct and indi-
rect benefits from this methodology, still it is not well perceived
by the industry, mainly due to the lack of services and tools at a
reasonable cost level, the required amount of labeled data, the
high requirements in technical and field expertise and the scep-
ticism about its efficiency. In many cases, bottlenecks are also
introduced by the data heterogeneity, the lack of automated data
acquisition processes and the inefficacy of the traditional sta-
tistical and machine learning approaches [6], [7]. The latter is
also affected by the inherent difficulties in extracting significant
features which are indicating the differentiation of the moni-
tored asset until failure and in revealing the high-dimensional
attributes of massive signals, which affect the accuracy and ef-
ficiency of health assessment of the system. In fact, these are
the main reasons why there is a shortcoming to implement a
“preferred” system to the degree it is needed.

This paper proposes an approach which bridges the gap that
currently maintenance is realized via deterministic, frequently
scheduled and costly machinery replacements to proactively
prevent breakdowns as well as the high requirements in techni-
cal and field expertise arising from these complex systems. This
is currently met due to the heterogeneity of the existing solu-
tions (e.g. different sensor types, diverse collected data, the lack
of semantic alignment, need for prior knowledge of the techni-
cal infrastructure, the organisation’s policies and needs, etc.)
and their practical implementation [11], [12]. Also, the limited
availability of labeled data, as well as the complex nature of
multivariate time-series produced by sensors (i.e. communica-
tion errors, connection timeouts, need for semantic alignment,
etc.) is a challenging task, ultimately aiming to efficiently and
timely predict undesirable situations. As this paper will show in
detail, the major factors influencing the availability, provenance
and management of the collected data have little to do with the
quality of the predictions produced out of them. Therefore, the
contributions of this paper are as follows:

e Develop novel cross-platform standardised connectors
for all key information sources along with filtering,
faceting and semantic concepts over the data collected
in real-time, which are periodically aligned and enriched
with recorded maintenance activities;

e Propose a set of Deep Learning algorithms for Predic-
tive Maintenance, by exploiting state of the art training
models for time-series regression and classification, such
as Long Short Term Memory (LSTM), which has been
proven suitable for sequence modeling and temporal de-
pendencies learning;

e Evaluate the proposed framework with real-time sensor
data and validate its effectiveness through the perfor-
mance metrics of mean squared error, precision, recall
and accuracy.

2. Related Work

Sensor interface devices are considered to be highly essen-
tial for sensor data collection through industrial Wireless Sensor
Networks (WSN) in IIoT environments. Due to this, a variety
of new methods towards the demonstration of smart sensor in-
terfaces are proposed. A similar method introduced by Chi et
al. [5] focuses on the design of a re-configurable smart sensor
interface for industrial WSN in IIoT environments, in which a
Complex Programmable Logic Device (CPLD) is adopted as
the core controller. Thus, it can read data in parallel and in
real-time with high speed on multiple different sensor inter-
faces [16]. Furthermore, sensor data collection may comprise
sensor nodes where sensed data are collected and subsequently
forwarded to a central base station for further processing as in-
troduced by Wang et al. [27]. The latter is considered as a typ-
ical approach, and is similar to the methodology that we fol-
lowed, in which the collected data are stored in order to be fur-
ther analysed.

Detection of technical malfunctions is determined by a di-
agnosis and prognosis system where input data from various
sources are received, appropriate computational processing is
executed towards abnormalities detection and removal (i.e. data
cleaning, outliers, missing values elimination, etc.) [24] and
decision options are produced. Compared to top-down mod-
eling provided by the traditional physics-based models [31],
[33], data-driven machine health monitoring systems offer a
new paradigm of bottom-up solution for the detection of faults
and unexpected damages after the occurrence of certain fail-
ures (i.e. diagnosis), the prediction of future working condi-
tions and forecasts about the Remaining Useful Life (i.e. prog-
nosis) [4], [8], [17]. However, the complex and noisy working
condition hinders the construction of physical models, which
make the modelling of complex dynamic systems very diffi-
cult [23]. Most of these physics-based models are unable to be
updated with on-line measured data, which limits their effec-
tiveness and flexibility.

A plethora of simple or complex algorithms with different
outputs is required, also feeding later processing stages, by
implementing a properly configured timed or event-triggered
chain-able execution of methods with parameterized instances.
The challenge comes when translating the ambiguous methods
results from complex multi-modal technical systems towards
the status evaluation of the entire system. Regression, classi-
fication [9] and/or survival models facilitate to predict failure
over time [22] or the Remaining Useful Life (RUL) [28]. Also,
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anomalous operations [32] can be efficiently flagged [21] by
data records isolation in linear time [2].

Besides, Deep Learning is recently used for training deep
neural models for Predictive Maintenance of monitored as-
sets [29], based on the streaming and/or batch nature of data
coming from the available sensors. Temperature, acceleration
and vibration measurements, lube oil levels, machinery uti-
lization, failure events over time, etc., due to their sequen-
tial nature can be modelled with neural network models such
as the Long Short Term Memory (LSTM) neural network,
which is capable to learn the past dependencies over the data
that may influence future events. It has been shown that such
models can achieve high performance and precision in health
assessment and Predictive Maintenance tasks in a variety of
industries [13], [18], [20] without requiring system-specific
engineered features depending on high level experts’ experi-
ence [16], [26].

In the context of predictive algorithms and their selection
for a particular industrial business case, another approach in-
troduced by Sikorska et al. [25] considers appropriate model
selection for successful practical implementation by taking into
account not only a mathematical understanding of each model
type, but also the assessment of how a particular industrial orga-
nization intends to utilize the model and its outputs. Adhikari et
al. [1] dealt with time-series prediction and classification meth-
ods and proposed a linear combination method for time-series
forecasting that determines the combining weights through a
novel neural network structure. The designed neural network
successively recognized the weight patterns of the constituent
models from their past forecasting records and then predicted
the desired set of the combining weights.

Although the current approaches of data-driven failure pre-
diction systems use monitoring devices, methods for detection
of technical malfunctions, time-series prediction and classifica-
tion methods, each individual work typically focuses either on
predictive algorithms or on costly sensor interfaces [30] with-
out unleashing the full potential of their combination. In gen-
eral, the problem of failure prediction is much more complex,
particularly as the problem of data-driven failure prediction is
more complex.

Compared to the aforementioned approaches, the proposed
framework differs by introducing a data-driven prediction sys-
tem, which exploits Deep Learning techniques from streaming
operational sensor data which are categorized by filters in or-
der to facilitate the process of detection and are simultaneously
stored in a centralized storage infrastructure in real-time. The
streaming data are analysed to provide real-time predictions for
each functional asset monitored through sensors in the produc-
tion line, which subsequently can trigger potential reactive mea-
sures for timely preventing the respective failures. A more sig-
nificant aspect of the proposed framework is its ability to man-
age data at scale, in order to facilitate the time and complexity
reduction in the required analysis.
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Fig. 1: High level architecture.

3. A Deep Analysis Framework exploiting Industrial Time-
Series Streaming Data

The Predictive Maintenance (PM) framework introduced in
this paper consists of 3 core components: the Sense Module, the
Detect Module and the Predict Module. In Figure 1, we present
the high level architecture of the proposed framework.

3.1. Deep Analysis Methodology

Long Short-Term Memory Networks (LSTM) [14] is a Re-
current Neural Network (RNN) architecture, which can be
viewed as a deep neural network rolled in time. The internal
state of the network does not only rely on the current input but it
also depends on the states of the system during previous times.
This is fundamentally different from the feed-forward neural
networks, since LSTM network is designed to capture informa-
tion of sequential data and maintain contextual features from
past observation, in order to predict future ones. This neural
architecture has been successfully applied in many real-world
problems involving sequential data, mainly in the field of Nat-
ural Language Processing (NLP) [10]. In this way, LSTM has
been proven a precise and efficient approach of modeling our
world of sequential information over time in a simple way.

Given the strong temporal dependencies in the industrial sys-
tem failure prediction, in this work we explore the application
of LSTM neural networks to model the dynamic nature of man-
ufacturing systems. A step towards this goal can be achieved
by forecasting the time-series of sensor’s measurements, which
can contain important indicators of upcoming system failures or
abnormal behaviors. This is the aim of the present study, where
we investigate the accuracy of the prediction models on a gen-
eralised data-driven basis (cf. Algorithm 1).

Fig. 2: A many-to-many deep recurrent neural network forecasting architecture.

Figure 2 presents the forecasting architecture of the recurrent
neural network we used in this paper. The rectangles represent
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the hidden layers, and the circles at the bottom and on the top
represent the input layer and output layer, separately. The solid
lines represent weighted connections. An input feature vector
sequence x = (X141, ..., X) With sequence length L'is passed to
a stack of multiple recurrently connected hidden layers through
weighted connections to compute the hidden vector sequences
h = (41, ..., hy) and consequently, the output vector sequence
vy = (ViL+1, ---» ¥r) Which represent the predictions of future sen-
sor readings through the learnt model.

output o recurrent
.
.
. recurrent

LSTM cell
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input forget gate

©
e
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Fig. 3: Schematic of LSTM unit.

Unlike RNN, LSTM addresses the problem of long-term de-
pendencies by additionally introducing a purpose-built memory
unit to store information of previous time steps. The basic struc-
ture of LSTM memory unit is composed of three essential gates
and a cell state. As shown in Figure 3, the memory cell contains
the information it memorized at time ¢, the state of the memory
cell is bound up together with three gates, the input vector of
each gate is composed of the input part and the recurrent part.
A forget gate controls what to abandon from the last moment,
the input gate decides what new information will be stored in
the cell state, while, the output gate decides which part of the
cell state will be output and the recurrent part is updated by
current cell state and fed into the next iteration [14].

The formulas for updating each gate and cell state are de-
fined as follows:

7 =gW.x' +RY ' +b,) )
=oc(Wix + Ry + poc™ +b) )
fr=ocWx' + Ry +proc™ +by) 3)
d=iod+fod! 4)
o' = o(Wox' + Ry ™ + p, 0 ¢ +b,) 5)
Yy =0 oh(c) 6)

! The sequence length L can be arbitrary long in order to memorize a very
long historic sequence. However, there is a trade-off with the computational
resources and the time required to train the model.

Here x' € R? and y' € R¢ are input and output vector of
the unit at time ¢, Wi(k = z,i, f,0) and Ry(k = z,i, f,0) are
weight matrices for input part and recurrent part of different
gates, by(k = z,i, f,0) denotes bias vector and the functions
o, g and h are non-linear functions such as sigmoid or tanh, ©
means point-wise calculation of two vectors. For completeness,
we add py(k = i, 0, f) to the formulas, which denote peephole
connection and is mostly used in LSTM variants.

3.2. The Sense Module

The Sense Module consists of a set of functionalities that
are responsible for acquiring, handling and transmitting data
streams that are typically being generated from sensors in-
stalled at the industry’s production line. The sensor data are
stored in real-time in the framework’s central InfluxDB [15]
database. The InfluxDB database is open source and is used to
optimize and integrate time-series data. Analytics and insights
generated in real-time are also stored as InfluxDB data in the
form of time-series. The integration points between the sensors
and the framework have been achieved by using an underly-
ing Kafka [19] platform. Along with the centralized storage
database for sensor data, categorization filters are also avail-
able for efficient distribution of each variable to the category
that belongs to. Pre-processing filters are used to handle the
raw time-series data in order to then analyse them more eas-
ily. These filters include: (i) the replacement of missing values
by their mean, so incomplete data points can still be used in
further analysis; (ii) the discretisation of data where a numeric
attribute is converted to a nominal one, treating all values in an
automatically determined interval as being the same nominal
data; and (iii) the normalisation of data which transforms a nu-
meric attribute to a different interval. In such a way, variables
are curated, harmonised and categorized under specific parts of
the technical equipment, which facilitates the consistent identi-
fication of specific malfunctions in the production line. It also
enables the automatic semantic alignment of the collected data.
In Figure 4, we present the processing pipeline of the Sense
Module.

Sensor Real-Time
Sensor Data Ingest Sense Stream to
—’( St e Storage
ream Katka API =
Fig. 4: The Sense Module Pipeline.

3.3. The Detect Module

The Detect Module consists of a sequence of “State Detec-
tion” and “Health Assessment” steps. It includes real-time sta-
tistical/machine learning algorithms embedded in an appropri-
ate and continuously processing software in order to recognize
the presence of an unusual (and potentially hazardous) state
within the behaviours or activities of the monitored system,
with respect to some model of ‘normal’ behaviour which are
either learned from real-time data observations or labelled from
domain experts. The detection models continuously learn from
the actual equipment behaviour by updating and improving the
incorporated diagnostic models by using a LSTM model. The
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Detect Module is then able to recognise and categorise differ-
ent states from the data. The detection models can be designed
to provide more accurate predictions of certain behaviours or
to provide a ’snapshot’ to a specific behaviour. In Figure 5, we
present the processing pipeline of the Detect Module.

Y o=
o == ’
RESTAPI (< —— Reallime
Stream (o Time-Series Dctcction
_ _
Storage Storage
Fig. 5: The Detect Module Pipeline.

Besides, the Detect Module provides functionality to execute
queries on the time-series data. Some of the executed queries
include:

e The provision of a list of applicable sensor streams for
a later analysis based on the preferred data values (e.g.
“Give me all sensor streams with an acceleration sensor
value more than X.”);

e The provision of a subset of the data within each previ-
ously selected sensor stream, e.g. based on a time range.
Standard time-series queries are applied here (e.g. “Give
me for all sensor streams I previously found the raw data
of the last 5 days.”).

3.4. The Predict Module

The Predict Module includes state prediction of a whole sys-
tem or components with respect to the mechanical system, i.e.
prediction about the time-to-failure and the probability distribu-
tion function of the failure occurrence against to the projected
performance level for each component of the system assuming
no maintenance actions. The analysis is carried out by different
algorithms and essentially by combination of data-driven algo-
rithms in conjunction with physical models. Therefore, a LSTM
model is used taking into account the data and information gath-
ered in the InfluxDB along with maintenance actions performed
in order to continuously update the prognostic models. The pre-
dictive models are able to provide a real-time estimate of the
current performance level for the system while simultaneously
forecasting the predicted performance levels based on current
and time-framed historical data. In Figure 6, we present the pro-
cessing and analysis pipeline of the Predict Module.

Y&®
—_ Real-Time Real-11me
Tine-Semes | _Detection . £+ g _ Prediction @u
Storage REST API

Feature

Extraction

Fig. 6: The Predict Module Pipeline.

The phases of the algorithm are listed in Algorithm 1. The
Deep Analysis Framework takes as input in the form of Time-
Series Streaming Sensor Data S and Historical Sensor Data
(H{rain, Hiesr) and the Number of training epochs e and gives
as output a set of Time-Series Predictions R in real-time. Ini-
tially, iterating over e epochs (Lines 3 - 15), the proposed LSTM

model is trained over historical sensor data H,,,;,, with the stan-
dard backpropagation through time (BPTT) algorithm (Lines 4-
7). Afterwards (Lines 8 - 14), the RMSE and MAE error metrics
are calculated on both seen and unseen data (H,,,;, and H,. re-
spectively) and their convergence is evaluated. If the test error
stops decreasing after a certain training epoch, means that the
LSTM model has reached its generalization potential, thus the
training stops. The final trained model is then stored (Line 16)
in the framework’s central InfluxDB database. In the follow-
ing, for a sequence of consecutive time-series (Lines 21 - 26),
the algorithm filters sensor values by distributing each value
in a range category that it belongs to (Line 22). Then, the al-
gorithm applies the already trained LSTM model (i.e. binary
classification for damage cf. Figure 8 or regression for RUL
cf. Figure 11) in the filtered data (Line 23), stores them in the
InfluxDB (Line 24) and concatenates existing with future pre-
dictions (Line 25). Finally, the algorithm returns the predictions
as time-series (Line 28).

Algorithm 1: Deep Analysis Framework

Input: Real-Time Sensor Data S, Historic Sensor Data (Hyyqin,H;est), Number of
training epochs e
Output: A set of Time-Series Predictions R

1 begin
2 /*Initially the proposed LSTM model is trained on historical sensor data™/
3 for (i <e)do
4 foreach (H € H_train) do
5 FORWARD_PROPAGATE model(Hy)
6 BACKWARD_PROPAGATE model(H},)
7 end
8 /*Measure model’s performance in each epoch™/
9 RMS Eqrgin. MAE yqin = model(Hirqin)
10 RMSE, .5, MAE,.5; = model(Hes)
11 if RMS E\yinests MAE pain et converged then
12 /*Stop training™/
13 break
14 end
15 end
16 StoreEMobEL(model)
17 end
18 begin
19 /*The Deep Analysis Framework receives Real-time Sensor Data as input and the Trained
Model®/
20 LoapMobeL(model)
21 foreach (S; € S) do
22 Fy « FiLrer(LoNGHISTORICSEQUENCE(S iy - . - » Sisw)
23 Ry «— model(Fy)
24 STORE(Ry)
25 CONCATENATE(R, Ry)
26 end
27 /*Time-Series Predictions are sent as output™/
28 return(R)
29 end

4. Experimental Evaluation

In this section, we describe our approach to model and pre-
dict the behavior of a real-world manufacturing system, consist-
ing of several components with embedded sensors. Modeling is
a basic and fundamental design approach to solving real-world
problems. Our goal is to validate the efficiency of the proposed
framework based on Al principles in order to provide better
predictability of the real-world system.

4.1. Data Preliminaries

The dataset we used is coming from monitoring the core ma-
chine of the production line. In this setting also served as the
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preliminary design basis for the setup of the entire pipeline of
the proposed architecture by installing, configuring, integrat-
ing and validating the Sense Module, Detect Module and Pre-
dict Module. The dataset comprises 2, 976, 665 readings from 4
sensors installed in the core machine, measuring acceleration,
velocity, overall bearing and shock. We have also the times-
tamp and the diameter of the material that passes through the
monitored machine in real-time. Finally, the dataset is enriched
with the damage which indicates whether a damage exists or
not. The damage is the only attribute which is collected once a
month and aligned periodically coming from planned mainte-
nance activities.

We developed 2 kinds of deep learning models. The first is
a neural network consisted of LSTM units in the support of bi-
nary classification (i.e. damage or not) by applying a binary
cross entropy loss function. The second model is an LSTM
network for regression, predicting the Remaining Useful Life
of the monitored machine. This means that the data are be-
ing processed differently in each case. For the binary classifi-
cation model, we take into consideration the identifiers of the
machines which behaviour naturally and degrade after some
regular cycles (i.e. after some millions of timestamps). For the
regression problem, we exploit only the identifiers of the ma-
chines that demonstrate frequent damages in order to model the
Remaining Useful Life which acts as label for the regression
problem. In both cases, we make predictions for multiple ma-
chines, not only for one. The data have been collected over the
period of 2.5 months, with sampling rate 0.1 Hz (i.e. one reading
per 10 seconds). After the above mentioned processing and re-
scaling of values in the range of [0, 1], the binary classification
problem consists of 234, 831 training samples and 71, 334 test
samples. The regression problem consists of 196,374 training
samples and 71,517 test samples. It should be mentioned that
no shuffling is used because both problems handle time-series
data, so the test set consists of the last samples of the sequences.
After experimentation with all the provided features, both mod-
els performed better using the acceleration, the diameter and
the label which expresses the damage for the binary classifica-
tion model and RUL for the regression model.

4.2. Model Fitting

The best way for picking the most appropriate neural net-
work architecture and the training parameters for the desired
results is through the hyper-parameter optimization algorithms.
After tuning of the number of LSTM units, batch size, learning
rate, activation function, optimizer and dropout probabilities,
we selected two LSTM architectures for the binary classifica-
tion and regression problem, respectively. Both of the architec-
tures reside in the same flowchart (cf. Figure 7) for training
and testing. In the inference process, we deploy the model as a
RESTful API by using the TensorFlow serving API and making
requests using the test data.

4.2.1. Damage Prediction
As far as the binary classification architecture (cf. Figure 8)
is concerned, we trained the model by using batch size of 512,

T DKeras

——> Training LSTM

Preprocessing l

T

Inference

Time-series data

stored locally

4 /

Testing set /—> —

y

Preprocessing

Results

Fig. 7: Flowchart for training and testing.

learning rate of 0.001, 5 epochs, the tanh activation function and
the sigmoid activation function after the dense layer. We also
used the binary cross-entropy cost function, the adam optimizer,
0.5 dropout probability after each LSTM sequence and a win-
dow of 100 time-series. The input is processed in a batch mode,
which refers to the mini-batch of samples in each training step,
multiplied by the time-series window which is 100 time steps
and finally multiplied by the number of features which are 3,
namely diameter, acceleration and damage.

50 units LSTM 25 units LSTM

Input dropout Dense output

1

Fig. 8: LSTM architecture for damage prediction.

dropout

1

batch x 100 x 3 »1neuron > damage

The results acquired refer to the Model Accuracy Diagram
(cf. Figure 9) depicting the training and testing accuracy af-
ter each epoch and also the predictions over the test set (cf.
Figure 10) compared with the ground-truth values. These fig-
ures demonstrate that the test set converges with the training
set within 1 epoch and that the damage prediction is computed
with high accuracy over the ground-truth data. As we are han-
dling time-series data for this binary classification task, no shuf-
fling is used and therefore the model converges within very few
epochs. Upon this convergence, we limit up to 5 more training
cycles the model fitting in order to omit overfitting and achieve
at the same time model generalisation.

We also computed the confusion matrix (Table 1), extracting
precision, recall and accuracy metrics (Table 2).

Table 1: Confusion matrix of damage prediction.

Normal Damage
Normal | 45804 25
Damage | 26 25479

Table 2: Metrics for damage prediction.

Recall
99.89%

Precision
99.9%

Accuracy
99.92%
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model accuracy
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Fig. 9: Training-testing accuracy after each epoch.
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Fig. 10: Predictions vs ground-truth values on test set.

4.2.2. Remaining Useful Life Prediction

As far as the regression architecture is concerned (cf. Fig-
ure 11), we trained the model by using batch size of 512, learn-
ing rate of 0.001 decreased every 4 epochs by a factor of 0.4,
30 epochs, the rectified linear unit activation function, the mean
squared error cost function, the adam optimizer, 0.5 dropout
probability after each LSTM sequence and a window of 100
time-series.

200 units LSTM 100 units LSTM

Input 1 dropout 1 dropout Dense Output
(Emm—)
o

n ;
batch x100x3 — I r»* r-.l — 05 — & ——* 05 —1neuron—> RUL
o =2 ==

Fig. 11: LSTM architecture for RUL prediction.

The results acquired refer to the MSE (Mean Squared Er-
ror) Diagram (cf. Figure 12) depicting the training and test
MSE after each epoch and also the predictions on the test set
(cf. Figure 13) compared with the ground-truth values. These
figures demonstrate that the model well converges within 25
epochs and RUL prediction is computed with high accuracy
over the ground-truth data. In this regression task, it requires
more epochs to converge over the time-series data. No shuf-
fling is used because we wanted to predict RUL through a ro-
bust model which learns well over the data as the time-series or
events evolve. Also, potential degradation and variations mea-
sured by the sensors at the monitored machine contribute in
RUL prediction across the time. Upon convergence, we limit

up to 5 more training cycles the model fitting in order to omit
overfitting and achieve at the same time model generalisation.

MSE =1 57 (v = 9

model loss

.0175 4
0.0175 — train

— test
0.0150

0.0125

0.0100

loss

0.0075

0.0050

0.0025

0.0000 4
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epoch

Fig. 12: Training-Test MSE after each epoch.
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2019-10-23 07:17:30
2019-10-25 09:11:41
2019-10-30 01:05:33
2019-11-05 16:56:54
2019-11-08 11:51:00
2019-11-10 02:50:12
2019-11-11 07:23:19

Fig. 13: Predictions vs ground-truth values on test set.

5. Conclusions and Future Work

The purpose of this work is to present a systematic analysis
in the direction of Predictive Maintenance assisted by real-time
monitoring and unexpected events prediction. Deep learning, as
a sub-field of Machine Learning and Artificial Intelligence, is
serving as a bridge between big machinery data and data-driven
machine health monitoring. Therefore, within the past years,
they have been applied in various machine health assessment
tasks. The proposed LSTM-based Deep Learning architecture
gives very promising results in predicting the sensor behavior
and unexpected events such as damages and assets RUL.

In the near future, we plan to extend our data-driven solu-
tion for predicting the type of failure given the modeled behav-
ior of an industrial system by exploiting the available historical
maintenance data (e.g. kind of failures of working parts in ma-
chinery, regular maintenance activities to equipment, labelled
time frames with semantically enriched type of failures, etc.).
To this end, we will frame the task of failure prediction as a se-
quential multi-class classification problem by also experiment-
ing over larger data sets with more records. Towards this direc-
tion, we will augment our approach for predicting concrete fail-
ure events within an adequately-large time window, thus allow-
ing for effective, purely data-driven root cause analysis along
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with a set of recommendations for maintenance actions before
a damage occurs.
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