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Abstract—Whilst the Fifth Generation (5G) mobile
networks are being deployed worldwide, the adoption of
this next-generation networking paradigm by the vertical
businesses such as the 4th industrial revolution (Industry
4.0) sectors is lagging. One of the empirical barriers for
the verticals to embrace 5G rapidly is the lack of easy-to-
access platforms that facilitate cost-efficient deployment
of their Network Applications (NetApps) to create end-
to-end services. This paper presents a novel and realistic
NetApp platform to remove this barrier, thereby speeding
up the smooth vertical businesses’ transition to 5G and
beyond networks. Particularly, the paper provides a
vision and insights on an innovative Unmanned Aerial
Vehicle (UAV) based Industry 4.0 NetApp to cast lights
on how 5G NetApps can help shape the resultant new
business models and open new business opportunities. In
this case, the NetApp is able to improve the results by
detecting intruders in real time and reducing the delay
of detection by 226 ms (38%).

Index Terms—NetApp, Object Detection, UAV, In-
truder Detection

I. INTRODUCTION

The 4th industrial revolution (Industry 4.0) com-
bines physical and digital technologies under con-
nected system infrastructures to improve efficiency in
manufacturing productivity and quality, work safety,
environmental protection, and supply chain optimi-
sation. The realisation of Industry 4.0 relies on not
only locally installed smart Internet of Things (IoT)
monitoring and automated control technologies, but
also the combination of emerging technologies over
smartly interconnected and collaborating infrastructures.
The Fifth Generation (5G) mobile networking is a key
enabler to meet the strict networking requirements set
in Industry 4.0, allowing the launching of Network
Applications (NetApps) tailored to the infrastructure
capabilities and the requested service provisioning
requirements. This is an essential requirement for 5G
and beyond networks, which should support the user-
centric approach for the Industry 4.0 industries in
the creation and management of their own digital
services, along with the independent growth of the other
existing and emerging stakeholders such as 5G network

operators, who are typically also the infrastructure
owners, the NetApp developers and so on. Towards this
direction and in addition to the design and development
of 5G platforms and ecosystems that enable infras-
tructure virtualisation and support of edge processing,
smooth and cost-efficient porting of NetApps in 5G
ecosystems needs to be supported too, thereby making
the Industry 4.0 sector (and in principle any emerging
vertical sectors) ready to exploit its full potentials,
such as production automation, robotics technologies,
smart logistics and metering. The successful porting of
NetApps requires attracting vertical service developers
and providers (being currently mostly activated in the
cloud), and their enhanced ability to easily deploy new
tailored features, such as performance monitoring and
optimisation, cognitive decision making and enhanced
cyber security capabilities. In turn, the challenging
performance and operating requirements of the new
class of NetApps should be efficiently supported by
the underlying platform, embracing recent well-known
technologies, like Network Functions Virtualisation
(NFV) and Multi-access Edge Computing (MEC) that
transform network operators’ infrastructures into dis-
tributed data centres with advanced virtualisation and
software-driven capabilities.

To achieve the above vision, several projects have
been launched recently, especially those by the Eu-
ropean Commission. For instance, VITAL-5G targets
to showcase the benefits of 5G-based NetApps using
real-life trials over state of the art vertical facilities
(warehouse, hubs, ports) and advanced European 5G-
testbeds [1]. 5G-EPICENTRE [2] employs cloud-native
5G infrastructure and NetApps for public protection
and disaster relief. In [3], Smart5Grid introduces a
5G solution for supporting integration, testing and
validation of existing and new 5G services and NetApps
from third parties for smart energy grids of the future.
In 5G-ERA [4], use cases from four vertical sectors
including public protection, disaster relief, transport
healthcare and manufacturing will be validated by
prototyping NetApps solutions using 5G technology. In
5G-IANA [5], a 5G open experimental platform for the



Fig. 1. Overall vision and the adopted approach of easy (i) porting and/or (ii) development of industry 4.0 NetApps over advanced
experimentation facilities combining real 5G and private industrial networks.

automotive sector will be developed to provide computer
and communication infrastructure, management and
orchestration components along with advanced NetApps
specified for this sector. All these projects shed light on
the importance of having easy-to-access platforms and
cost-efficient deployment for the creation of end-to-end
business services over 5G networks. The work reported
in this paper reflects the a new NetApp architecture in
the 5G INDUCE project [6], which emphasises Industry
4.0 NetApps and leverages Unmanned Aerial Vehicle
(UAV) platforms.

The remainder of the paper is organised as follows.
Section II defines the NetApps and its overall vision.
Section III describes the NetApps architecture and main
components. Section IV highlights UAV based Industry
4.0 NetApp, and the corresponding experimental results
are presented in Section V. Section VI concludes the
paper.

II. DEFINITION OF NETAPPS

A NetApp comprises a set of networked Virtual
Network Functions (VNFs), together with the required
resources, deployable and operating over 5G and beyond
networks, distributed across the various end-to-end
network infrastructure including edge, core network and
so on. The VNFs in a NetApp are typically developed
by vertical business service developers for particular
vertical use cases, and thus they are different from the
network VNFs (such as those 5G system data plane and
control plane VNFs: UPF (User Plan Function), Access
and Mobility Functions (AMF), Session Management

Functions (SMF), etc.) usually developed and deployed
by network service providers and/or network operators.
However, a NetApp does not exclude additional VNFs
(and even Physical Network Functions (PNFs)) from
the service provider and/or network operator in order
to enhance its operation and or performance; examples
may include encryption and decryption VNFs for secure
communications, video processing VNFs and so on.
There are three types of VNFs: customer-facing service
VNFs, network-facing (3GPP) VNFs, and value-added
middleware VNFs. A NetApp can be deployed on
demand as requested by a vertical user, by a network
operator or a service provider in conjunction with a
network operator, depending on the business models.
A NetApp should be cloud-native to allow automated
cloud-based deployment; it can operate over a network
slice. A NetApp may have embedded edge intelligence
in its edge VNFs to benefit from MEC. For AI-based
critical missions, a NetApp requires low end-to-end
latency to enable real-time procedures and cognitive
application reaction. A NetApp should be compatible
with private 5G and beyond networks, and hybrid private
and public 5G and beyond networks.

III. ARCHITECTURE FOR NETAPPS

The proposed NetApps architecture in the EU 5G
INDUCE project [6] is shown in Fig. 1. This NetApps
paradigm allows separating various business roles
in an ecosystem, including (5G) network operators,
industries (e.g., Industry 4.0 businesses), and NetApp



Fig. 2. Structure of the NAO and OSS and extensions/additions of
components in support of the NetApp developers.

developers. It features four pillars, including a full-
stack NetApp management platform for facilitating the
composition and deployment of Industry 4.0 NetApps
over 5G networks, advanced NetApps validation for
validating the diverse industrial NetApps (e.g., UAV-
based NetApps for critical Industry 4.0 infrastructure
inspection and surveillance, network performance and
monitoring etc.) on boarded by industries, industrial &
5G experimentation infrastructure for pre-deployment
testing, and enabling businesses for allowing the various
business roles to collaborate. As shown, network func-
tions belonging to an NetApp can be distributed over
the different network segments/nodes in the industrial &
5G infrastructure to create end-to-end business services.

Network management is typically owned by the
network operator, who is reluctant to expose any infras-
tructure details to end users; however, industries require
such information for optimised business application
deployment. Thus, an advanced Operations Support
System (OSS)/Business support systems (BSS) provides
the interface that translates NetApp requests into net-
work connectivity and resource allocation requirements.
The NetApp Orchestration (NAO) is integrated with
the OSS, extending its capabilities to the interfacing
with the industrial and the NetApp developers, while
the network operator gains the ability to apply polices
and any intelligent data analytics at the service level.
This scheme maintains the edge resource management
capabilities of the standardised ETSI NFV Orchestra-
tion (NFVO) framework that manages the distributed
resources over the virtualised infrastructure. NFVO then
enables an application-oriented network management
and optimisation approach. We adopt this two-layer
orchestration approach, as shown in Fig. 2, which clearly
separates the application orchestration from the OSS
processes. This enables developers and industries to
create and manage respectively the NetApps that are
requesting deployment over the network orchestrator,
which in turn undertakes the placement of the VNFs
(application and network) on the available resources
following the requests (intents) of the NAO. The NAO
provides an API to NetApp developers for NetApp

composition, and it manages its lifecycle. The proto-
typing of this orchestration solution is partially based
on MATILDA [7].

IV. UAV-BASED INDUSTRY 4.0 NETAPP

To demonstrate the concept, experimental surveil-
lance services for critical industrial infrastructures have
been designed and preliminary prototyped. This Ne-
tApp performs automatic UAV-based area surveillance
monitoring to detect intruders to industrial premises
and provide real-time warning accordingly.

Protection against intruders is of myriad importance
as the cost of commercial crimes for 7 sectors only
in UK alone was about £8.6 billion in 2015/2016, and
those crimes were largely intruder-related [8]. Timely
surveillance can identify uninvited and potentially
dangerous presence of intruders such as humans or even
animals in critical Industry 4.0 infrastructure. The target
of this NetApp is to help detect intruders in real time to
prevent damages to be caused significantly. Empowered
by advanced machine learning based human detection
algorithms, and linked to efficient warning mechanisms,
the NetApp services are deployed with AI surveillance
algorithms running in the edge and end user monitoring
devices located both locally (at infrastructure premises)
and remotely. The UAV is operated at the premises
and can be connected to 5G or other existing wireless
networks such as WiFi.

There are mainly two ways of executing the com-
putationally expensive algorithms for surveillance use
cases using UAVs. The first is to deploy and execute the
Artificial Intelligence (AI) models completely locally,
e.g., in the UAV, or in the UAV controller or a
smartphone connected to the controller. This localised
solution avoids the transmission latency compared with
the alternative approach that requires the video to be
sent to the network for AI processing. Nevertheless,
it is not energy efficient when allocating these AI
models to the UAV/controller/smartphone processor.
Furthermore, the execution speed is limited due to
constrained computational powers in these portable
devices, and thus real-time detection may not be feasible.
In contract, in the NetApp approach, the execution of
the AI models in the network side (e.g., a cloud) will
benefit from the abundant computational resources such
as high-spec GPUs available in the network for faster
and more accurate processing whilst avoid consuming
batteries of the UAV/controller/smartphone in the first
approach, at a higher transmission latency though. The
second approach will relieve the industry side from
equipping expensive computational resources to their
UAV platforms. Thus, this paper seeks to apply this
NetApp in the context of 5G Induce [6], targeting to
achieve real-time detection.



Fig. 3 presents the deployment of a NetApp composed
of three different VNFs in this use case from the
perspective of the NetApp developer, including a
Video Proxy VNF, an Intruder Detection VNF, and
a Publication Subscription Middleware VNF. The NAO
deploys these VNFs via the NetApp Composition API
and interconnects the VNFs in the 5G MEC platform.
A pilot flies the UAV, which is the User Equipment
(UE) in 5G terminology, on the premise.

The UE sends live video to the Video Proxy VNF,
which deliver the video to the other VNFs with high
performance, to mitigate the transmission latency draw-
back of the cloud solution. The Intruder Detection VNF
employs and executes the AI-based object detection
model. This is the most time-consuming task in the
whole loop; nevertheless, as the processing is executed
in the cloud, a high-spec GPU is deployed to achieve
real-time object detection. The model provides three
outputs: the coordinates of the detected object in the
image, the class of the object and the probability of
being that specific object. Compared with some other
solutions, this VNF does not provide the detected results
on the video. It just outputs the detection coordinates,
thereby saving graphical overhead in the pipeline.

Fig. 3. VNFs deployed in 5G MEC for UAV-based intruder detection
NetApp from the NetAPP developer view.

Fig. 4. Experimental Environment based on a NetApp scenario
where different VNF are deployed.

The detection results are published in a Publication
Subscription Middleware VNF. This VNF deploys a
software that executes the common Publisher-Consumer
solution, in which the UE continuously consumes the
detection results while the Intruder Detection publishes
the results.

V. EXPERIMENTAL RESULTS

This section provides the results of the NetApp
approach compared with a localised solution.

A. Experimental Environment

As shown in Fig. 4, the prototype is composed of an
Android smartphone and three dockerised containers for
the VNFs. While the Android App is in control of the
UAV, it transmits RTMP video to a NGINX server. then
the NGINX server delivers the video to the Intruder
Detection VNF. The Intruder Detection NVF comprises
three pipelines. First, the pre-processing pipeline carried
out by OpenCV prepares the video in a proper format
for the AI model. Second, the AI model implemented
in TensorFlow detects the intruders on the received
video. Finally, the third pipeline prepares the results
in the JSON format ready to be sent to the third VNF.
This last VNF employs the RabbitMQ service, which
implements a AMPQ messaging protocol.

To make the VNFs to be run efficiently in the docker
containers, some optimisation may be needed. In the
prototype, the Intruder Detector VNF has been tuned to
be fully compatible with NVIDIA graphic card, thereby
taking the advantage of GPU acceleration.

The AI model implemented in this prototype is
based on the YOLOv3 object recognition algorithm
[9]. This Convolutional Neural Network (CNN) is
computationally expensive and thus demands a high-
spec GPU. Otherwise, the inference time will be
significantly increased. Its detection accuracy is high,
achieving 55.3 mAP [9] using the COCO dataset [10].

The experiments are performed in two scenarios: In
the first scenario, which is a localised solution, the
YOLOv3 is executed inside a smartphone connected to
the controller via a USB cable, without being connected
to a 5G network. The Android smartphone has 8GB
of RAM and a Snapdragon 845 processor with a
Qualcomm Adreno 630 GPU. In the second scenario,



TABLE I
STANDARD YOLOV3 MODEL TRAINED WITH TWO DIFFERENT

DATASETS.

YOLOv3 Standford UWS Dataset
Images 42462 12914
Training Set 80% 80%
Validation Set 20% 20%
Iterations 45000 15000
Accuracy 73.52% 87.94%

the NetApp for intruder detection is deployed in the 5G
MEC. The GPU deployed in MEC is a GeForce GTX
TITAN X NVIDIA. The UAV piloted in this scenario
is a DJI Inspire v1 drone, which streams live video
at a resolution of 1280x720 pixels and 24 frames per
second (FPS).

B. Quantitative Results

For quantitative results, YOLOv3 was trained with
two datasets (tab. I). First, the training was conducted
over a public dataset named Stanford Drone Dataset
(SDD) for human detection from UAV [11]. This will
allow other researchers to compare their work with
these results. Moreover, we trained YOLOv3 with a
private UWS dataset allowing us to perform intruder
detection in industrial areas [12] and wildness for
smart agriculture scenarios. Thousands of frames were
extracted and manually labelled to provide the ground
truth for the training process. The training process
was executed offline. Thanks to the additional training
dataset, the detection accuracy has been significantly
improved from 73.52% to 87.94%, as shown Table I.

We have compared the two approaches: a localised
solution based on the smartphone [13], [14] and the
NetApp solution. Table II presents the comparison
results in terms of model size, loading time, and
inference time of the employed scenarios. Although
the same AI model and same weights are used, the size
is different depending on the execution environment.
In the smartphone solution, the model is transformed
into the Snapdragon Neural Processing Engine (SNPE)
format to exploit the full capabilities of the Snapdragon
GPU. In contrast, the NetApp executes the neural
network in TensorFlow. The SNPE is more efficient as it
compresses the neural network by 24MB. Regarding the
loading time to the GPU, the TensorFlow deployment
in the NetApp takes 422ms more to load compared with
the Snapdragon. It is noted that the loading time only
occurs once at the beginning of the process. Therefore,
it is not a determining metric. In contrast, the inference
time is a process continuously performed every time
a video frame is received for detection. This metric
is the time taken since the frame is received by the
CNN until the results are presented. Here, there is a

TABLE II
MODEL SIZE, LOADING TIME AND INFERENCE TIME OF

EMPLOYED SCENARIOS.

Model Size Loading Time Inf. Time
Smartphone 224 MB 2618 ms 594 ms
NetApp 248 MB 3040 ms 37 ms

decisive difference between the two approaches: 594
ms when in the smartphone solution, compared with
the impressive 37 ms achieved in the NetAPP solution.

These results clearly favour the NetApp solution.
Meanwhile, we need to consider the transmission
latency of the video sent over the network. Fig. 5 shows
the cumulative average of frames and the amount of
time taken until the detection results are presented. For
the smartphone solution, we just need to consider the
inference time as no transmission latency is caused.
The NetApp needs to consider the latency sum of the
inference time and the video transmission latency.

However, the smartphone is only able to detect 1.68
FPS and thus discards the other 22.32 FPS out of the 24
FPS streamed. Consequently, the smartphone solution
led to the delay of 594 ms. The NetApp solution is able
to detect each frame of the video at 24 FPS, providing
the results with a delay of 368 ms. This in turn has a
great impact on the accuracy of the NetApp solution
since it is capable of detecting 22 more frames than the
smartphone solution is. Overall, the NetApp solution
outperforms the smartphone solution significantly, and
thus we have validated our proof of concept for the
NetApp approach.

C. Qualitative Results

In Fig. 6, some screenshots were taken for the NetApp
solution, as shown in Fig. 6(a) for the detection of two
intruders in an industrial site. The UAV was flying
at 15 meters of altitude. Figures 6(b) and 6(c) further
illustrate a smart agriculture scenario where the UAV
was flying at 25 meters and the intruder was hiding in

Fig. 5. Accumulate average of the amount of time taken to process
a video in both scenarios.



tall grass. As seen in the figures, the detection results
were all successful, and the delay was negligible.

VI. CONCLUSIONS

This paper has provided a novel view in splitting an
application into distributed Virtual Network Functions
to achieve a NetApp approach for vertical businesses to
benefit from 5G services. These NetApps provide to the
industry sectors a new way to enable their applications
in 5G networks, achieving advanced performance by
leveraging powerful edge computing capabilities among
others. In addition, the NAO and its integration with
the OSS extends the capabilities allowing an easy
interfacing with the vertical end users and application
developers. We have demonstrated how the deployment
of a UAV’s intruder detector in a NetApp scenario re-
duces the delay of detection in 226 ms (38%). Moreover,
this solution is able to perform object detection in every
frame in contrast to the localised solution where it is
just able to detect at 1.68 FPS.
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