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12.1 Introduction: Background and Driving Forces 

With the earth’s population approaching 8 billion, the United Nations (UN) estimate that global 

food production will need to increase by at least 60% to feed the world by 2050; and therefore, 

it is currently considered a daunting target [1]. This demand will also rise because of increase 

in people’s wealth resulting in higher meat consumption plus the increasing use of cropland for 

biofuels [2]. Precision Agriculture (PA) and Precision Livestock Farming (PLF) promise both 

high quantity and quality of the products with minimum of resource usage, such as water, 

energy, fertilisers, and pesticides, promoting profitability, efficiency, and sustainability, while 

protecting the environment [3]. Despite the advancements in the field of applications, data and 

technologies, the adoption of novel products, services and tools by the farm operators has fallen 

short of expectations [4], while the agri- and aqua- food industry is turning to the ICT solution 

providers for the answer [5]. Towards this direction, big data and Artificial Intelligence (AI) 

have a pivotal role to play and, together with the High-Performance Computing (HPC) 

technology, they are already disrupting the agri- and aqua- food industry and pointing the way 

forward. In addition to this, as the data volumes and varieties increase with the expansion in 

sensor deployments, novel data engineering techniques are also instrumental in collecting, 

harmonising, enriching and processing distributed data from different sources [6]. These should 
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be conducted in a way that the latency, performance and precision requirements by the end 

users and applications are also satisfied.  

The driving forces for empowering vegetable or livestock farmers, fish and seafood producers 

with digital agricultural and aquacultural innovation tools are leveraging the need for low-cost 

solutions using easy-to-deploy sensors, drones, computer vision and Machine Learning (ML) 

algorithms. Understanding how HPC, big data and AI technologies could improve farm or 

seafood productivity, it could significantly increase the world’s food production by 2050 in the 

face of constrained arable land and with the water levels receding.  

While much has been written about digital agriculture’s potential, little is known about the 

economic costs and benefits of these emergent systems. In particular, the on-site decision-

making processes, both in terms of adoption and optimal implementation, have not been 

adequately addressed. Besides, there are important questions to be answered related to 

technical viability, preparedness, and training of end users in such tools, economic feasibility, 

and data protection.  

The biggest promise of digital agri- and aqua- culture technological advancements is the ability 

to evaluate the system on a holistic basis at multiple levels (individual, local, regional, and 

global) and generate tools that allow for improved decision making in every sub-process. Some 

of the applications of such tools target reduction of risks in agriculture and aquaculture 

production, such as predicting and detecting crop diseases early on in production [22]. For 

instance, the use of drones in arable frameworks or optimisations in fish feeding enables to 

create detailed maps for damage control, prevent waste of food and benefit the entire value 

chain [7]. Some other technologies target risks associated with extreme weather conditions and 

climate change, which impact the efficiency in yield production and society more broadly, 

including consumers and citizens [8].  



  

In the CYBELE project (Fostering Precision Agriculture and Livestock Farming through 

Secure Access to Large-Scale HPC-Enabled Virtual Industrial Experimentation Environment 

Empowering Scalable Big Data Analytics)1 [8], all these questions are addressed within a 

multi-modal and combinatorial approach. CYBELE demonstrates how the convergence of 

HPC, big data, AI, IoT and cloud computing could revolutionize farming, reduce scarcity, and 

increase food supply, bringing social, economic, and environmental benefits. The CYBELE 

framework coordinates unmediated access to huge amounts of datasets and their metadata from 

diverse data types including sensor data, textual data, spatiotemporal data, satellite and aerial 

image data, etc. from a multitude of distributed sources targeting the agriculture and 

aquaculture domain. The CYBELE approach is holistic in a sense that it guides end-to-end 

time-demanding and compute-hungry analytic pipelines by seamlessly converging HPC, big 

data and AI technologies under the umbrella of high performance e-infrastructures without 

requiring previous or extensive user experience and technical skills.  

12.2 Identified Gaps: Motivating the CYBELE Vision 

PA and PLF come to assist in optimizing agricultural and livestock production and minimizing 

the wastes and costs. PA is a technology-enabled, data-driven approach to farming 

management that observes, measures, and analyses the needs of individual fields and crops. 

Typical factors affecting standard agriculture include amongst others soil, climate, seed, 

cultivation practices, irrigation facilities, fertilizers, pesticides, weeds, harvesting, post 

harvesting techniques, etc. These key enablers hold the potential of providing the concepts 

stemming from real-world cases, the information, the mathematical models, and the 

computational power required in order to make well-informed, optimal choices in various real-

world driven PA and PLF verticals, and to ensure that the gaps currently encountered in these 

                                                 

1 https://www.cybele-project.eu/  
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verticals are either: 1) due to the lack of information sources; or 2) due to the lack of proper 

mathematical models capable of generating value and extracting insights out of these data 

sources; or 3) due to the lack of the infrastructure capacity capable of handling the execution 

of the computationally demanding mathematical models harnessing the power of massive 

amounts of diverse types of big data. In addition to these, one of the key bottlenecks in 

leveraging the promise of digital agri-/aqua- culture is the lack of proven benefit from data 

shared by farmers or data owners in agri-/aqua- domains. There are also other factors that result 

in so-called identified gaps, namely: data ownership concerns, privacy issues, economics, 

financial incentives of data ownership and dissemination, anticipated and quantified return on 

investment, data aggregation and pipelining from the source(s) to the desired locations, to name 

a few. If even a subset of the gaps described above can be circumvented using a mix of 

technologies, policies, and awareness, the possible outcomes of digital agri-/aqua- culture can 

shine. Some of these include seed-variety mapping to performance characteristics resulting in 

better selection (e.g., soya yield and protein content prediction) [9], [10]; better understanding 

of regional and temporal conditions leading to sustainable and localized modelling of nutrition 

and supplementation needs (e.g., climate services for organic food production); and capability 

for statistical modelling of the on-site conditions (e.g., sustainable pig production, open sea 

fishing), leading to increased efficient hyperparameter tuning and optimal machine selection 

(e.g., pig weighing optimisation, aquaculture feeding optimisation).  

Therefore, in CYBELE we are interested in both gaps and challenges on the one hand and some 

possible technological and policy solutions on the other to transform some of the promises of 

digital agri-/aqua- culture into a reality. This is the reason why we designed and implemented 

scalable Testbeds for efficient scheduling of HPC, big data and AI tasks with diverse 

capabilities including: 1) the flexible CYBELE data model; 2) data check-in, curation, 

alignment and integration with real agri-/aqua- culture multi datasets; 3) efficient information 



  

retrieval from multiple sources with advanced data querying and exploration functionalities; 4) 

data science and business intelligent algorithms; 5) high performance computing; 6) high 

scalable storage, consistency, availability and partition tolerance; 7) security-by-design; 8) data 

governance and monitoring; 9) distributed and cloud deployments.  

 

Figure 1. The CYBELE Solution towards the Convergence of HPC, Big Data and AI technologies 

12.3 Materialising the Solution: Convergence of HPC, Big Data and AI 

On the convergence of HPC, big data and AI technologies and in order to materialise the 

solution, the CYBELE framework follows a layered approach which aims at ensuring 

interoperability among all involved components, putting emphasis on the way that pipelining 



  

of information (from data queries to simulations formulation, to data analytics and to 

visualisations) is supported, safeguarding smooth interoperation among the different services. 

Figure 1 presents the high-level architecture of the CYBELE framework. 

More analytical information per component of the framework, as well as the perceived 

information flows, the technical interfaces (APIs) and the interaction amongst them are 

presented in the following figure (Figure 1). 

 

Figure 2. User Interaction with the Data & Infrastructure Access Security Layer 

12.3.1  Data & Infrastructure Access Security Layer 

CYBELE implements an integrated data & infrastructure access security layer which is spread 

along the whole Framework and e-infrastructure. Following this approach, for all the designed 

components and the described workflows, security mechanisms and protocols are used towards 

a Framework of enhanced security capabilities. Taking this approach into consideration, every 

component has been implemented with the appropriate security functionalities in mind. These 

include security of data-at-rest, data-in-motion and data-in-use. The security layer consists of 

four (4) security modules; i) Certificate Authority (CA), ii) User Authentication and 

Authorization (UAA) server, iii) Vulnerability Assessment (VA) toolkit, and iv) Anomaly 



  

Detection service. Figure 2 presents the user interactions with the data & infrastructure access 

security layer.  

12.3.2 Embedded Experiments Composition Layer 

The embedded experiments composition layer comprises of two components: a) The 

Experiment Composition Environment (ECE) which automates the design, development and 

execution of the big data analysis and simulation processes; and b) The generic & domain 

specific analytic algorithms which supports the methods for the descriptive, predictive, and 

prescriptive analytics in the frame of the CYBELE industrial applications. An analysis process 

or simulation through the Experiment Composition Environment includes retrieving as input 

the datasets from the advanced query builder and defining a new or selecting an existing 

analysis template from the abstract model templates. Then, the end user is able to i) set end-

to-end objectives for the experiment to be conducted (i.e. time performance, algorithm’s 

accuracy, time constraints, etc.), ii) select a specific algorithm with the associated software and 

execution endpoint, iii) adjust the relevant configuration parameters, including input 

parameters for the algorithm along with their description and their default value, execution 

parameters that denote whether an analysis should be realized in a scheduled or automated way, 

as well as the periodicity factor for the latter case, parameters associated with networking, 

storage or computing resources, and iv) adjust the output parameters along with their type (text, 

image, data, html). The implementation of the experiment composition environment is based 

on open source including custom UIs in React [11] and data pipelines engines including the 

Spring Cloud Data Flow [12] to facilitate workflows authoring as directed acyclic graphs 

(DAGs) of analytic processes. In this case, each process within a workflow is represented by a 

node which is fully parameterizable through the above-mentioned attributes (ii), (iii) and (iv) 

and the intercommunication of the processes is represented by an edge which is also 

parameterizable through the above-mentioned attribute (i). The user is able to save her end-to-



  

end analyses by appending all the specifications of an experiment or simulation for future use 

and reuse in a YAML file [13]. The file can be stored to the data storage in a structure namely 

the experiments’ library for future reuse. Figure 3 presents the user interaction with the 

embedded experiments composition layer. 

 

Figure 3. User Interaction with the Embedded Experiments Composition Layer 

Within CYBELE, the applications of ML for PA and crop management include yield 

prediction, disease or insect damage detection, weed detection crop quality, crop yield 

monitoring while the respective ones for PLF include animal welfare, and livestock production, 

appetite detection, feed optimisation and biomass estimation. With regards to the 

aforementioned applications, the part of domain specific analytic algorithms coupled with ECE 

are presented in Figure 4, where based on user needs an analytic pipeline, also called custom 

workflow, is created consisting by both generic and custom algorithms. Most of the domain 

specific analytic algorithms are built over distributed processing and machine learning 

environments (e.g., Apache Spark MLlib [14], Distributed TensorFlow [15], etc.) exploiting 

their capabilities for scalable cluster computing on executing advanced analytics.  

 

Figure 4. Algorithm Implementation Pipeline Workflow Diagram 



  

12.3.3 Parallel and Distributed Execution Management Layer 

The data analysis workflows are deployed for execution to the parallel and distributed 

execution management layer. These workflows are instantiated on both HPC and Big Data 

resources abstracted to the end user, as depicted in the lower part of the CYBELE Framework. 

The technological approach relies heavily on HPC e-infrastructure, to provide the compute 

power required to advance models and methods. The workflow management component is 

responsible for interpreting workflows designed with the experiment composition environment 

and forwarding them to the component responsible for orchestration, which performs the 

execution of the task collections upon the computational resources. A common pattern in 

scientific and cloud computing involves the execution of many computational and data 

manipulation tasks which are usually coupled, i.e., the output of one task is used as an input 

for another task. Hence non-trivial coordination is required to satisfy data dependencies. The 

workload of task execution needs to be directed to the available distributed computational 

resources [12].  

Therefore, a tight integration among ECE workflows and the orchestration component is 

required to guarantee execution and it is performed through the workflow management 

component. Individual tasks supported by CYBELE workflows are HPC simulations, big data 

analytics jobs or even simple data transfer or data transformation tasks. Once a workflow is 

designed, the workflow management component interprets the workflow in the language of the 

orchestrator and through the orchestration component, it then proceeds with its deployment 

upon the adapted computational e-infrastructure consisting of HPC and big data partitions. 

The resource management & orchestration component holds a very important place in the 

software stack of distributed systems since it is responsible for providing the necessary 

compute power to the executed tasks based on their requirements and the availability of 

resources. The component consists of five different modules. It combines resource 



  

management features, such as providing fine control of hardware resources, mapping tasks 

upon resources, and enabling isolation of tasks upon allocated resources, along with 

orchestration features, such as environment provisioning and applications’ life-cycle 

management. Traditional state-of-the-art HPC resource managers, such as Slurm [16] and 

Torque [17], which have been designed with performance in mind, provide optimisations for 

resource management and job scheduling; however, they do not provide any additional 

orchestration features. On the other hand, new-generation resource managers developed 

originally for Cloud and Big Data, such as Mesos [18], and Kubernetes [19], have been 

designed with elasticity in mind; hence, they give more importance to orchestration and less to 

performance. As the CYBELE workflows typically consist of both HPC and big data analytic 

tasks, as presented in Figure 5, the CYBELE Framework includes programming models and 

runtimes from both fields. Specifically, the Programming Models & Runtimes component, 

consists of three modules: 

 HPC Programming Models & Runtimes: These include the programming models & 

runtimes typically employed by scientific tasks executed on HPC resources, such as MPI 

[20]. 

 Big Data & AI Programming Models & Runtimes: These include the programming 

models & runtimes typically employed by data analytic tasks executed on cloud & big 

data e-infrastructures, such as Apache Spark [14], TensorFlow [15], etc. 

 HPC-enabled Big Data & AI Programming Models & Runtimes: To support multiple 

Big Data and AI runtimes to be deployed on HPC clusters, we deliver specific modules 

featuring optimized versions of the runtimes, referred as HPC-big data collocation, 

tightly integrated with the HPC computational resources [20], [21].  



  

 

Figure 5. User Interaction with the Parallel and Distributed Execution Management Layer 

12.3.4 Data Services Layer 

The data services layer is composed of a collection of services which facilitate data check-in, 

cleaning, enrichment & alignment, storage, querying and controlled proprietary data sharing. 

The data are ingested through the data check-in service and are stored in the distributed data 

storage. The data check-in is an umbrella of services that ensure the veracity, timeliness, 

transparency and legacy characteristics coupled with the big data. The data cleaning & 

curation service performs a set of quality checks to discover inconsistencies, missing values 

and other anomalies in the data and eventually ensure their integrity and completeness by 

following several data cleaning procedures. The data policy and assets brokerage service 

facilitates data sharing and offers IPR features to link data managers (i.e., agri-/aqua- tech 

providers, data providers and data consumers). The data encryption & anonymization service 

ensures the preservation of the private information coming with data having intellectual 

property rights and is integrated in the data check-in.  

Checked-in data are semantically annotated and harmonized through the semantic alignment 

& enrichment service to promote data interoperability and reuse. Data-oriented enrichment 

helps to develop robust and flexible annotations and provide a valuable source for common 

representation of similar concepts for disambiguation purposes. Since the data are coming from 

a multitude of physically distributed data sources, the common semantic model serves as a 

reference model to semantically align, describe, annotate and share these diverse data 

collections. Thus, the model enables the on-demand data discovery, exploration and querying.  

The clean and semantically enriched data are stored in the data storage while the data 



  

annotations are stored at the CYBELE metadata repository. Both the data and annotations are 

made available to the advanced query builder for further exploration, analysis and 

visualisation. The advanced query builder provides to end users an intuitive environment to 

select the preferable datasets, combine them, define and execute queries on the 

available/combined data in the distributed data storage. The user interactions with the different 

data services are depicted in Figure 6. 

 

Figure 6. User Interaction with the Data Services Layer 

12.3.5 Visualisation and Reporting Layer 

The visualisation and reporting layer is responsible for the visual representation and reporting 

of the results produced from the other functional components of the CYBELE framework. This 

layer consists of an adaptive visualisation tool which follows a user centred design approach. 

It facilitates end users to generate or use beautiful and appealing, as well as scientifically correct 

and relevant visualisations. Users are able to explore data, dynamics (i.e., evolving weather 

conditions, prices prediction, etc.), draw conclusions, and create reports. The visualisation and 

reporting layer apart from applying the user interfaces, it is able to exploit large datasets 

resulting from computer simulations that use HPC resources provided that the data follow a 

machine-readable format. It is also capable of extracting insights from large and complex data 

coming from combined structured (e.g., simulations, sensors) or unstructured (free text, 



  

images) sources and presenting them in the most useful manner interacting with the data 

storage, ECE and advanced query builder. The user interaction with the visualisation and 

reporting layer is presented in Figure 7. 

 

Figure 7. User Interaction with the Visualisation and Reporting Layer 

 

12.4 Key Takeaways and Conclusions 

The CYBELE Framework facilitates the execution of different scenarios coming from the agri-

/aqua- culture domains by enabling the execution of batch, micro-batch and streaming 

processes. Following a layered approach, each layer serves to abstract to the end user the 

technical details and eases the design, configuration and enactment of complex big data, HPC 

and AI applications. The experiments composition environment facilitates the detaching of the 

design, development and execution of the big data, AI and HPC tasks, supporting embedded 

scientific computing and reproducible frameworks. A set of generic & domain specific Analytic 

algorithms have been developed, stored and fetched in the definition of data analysis 

workflows, consisted of a series of data analysis processes, interconnected among each other 

in terms of input/output data streams/objects. The parallel and distributed execution 

management layer focuses on tuning the HPC software stack to allow for efficient distributed 



  

execution of big data processing frameworks and AI algorithms on top of parallel HPC 

resources and enriches with programmable mechanisms the resource management & 

orchestration and its interface with big data processing frameworks and orchestration engines, 

thus bridging the gap between the HPC and big data worlds. The data services layer takes care 

of the entire data lifecycle from ingestion and integration to semantic alignment and querying. 

The results of queries and analytics are exposed to the visualisation and reporting layer with 

the ability to visually explore the different kinds of data, while discovering and addressing new 

patterns and insights. The analysis results use adaptive visualisations and user-friendly 

interfaces, improving the way in which information is presented. 
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