
P5: Event-driven Policy Framework for
P4-based Traffic Engineering

Panagiotis Famelis∗, Georgios P. Katsikas∗, Vasilios Katopodis∗, Carlos Natalino†, Lluis Gifre Renom‡,
Ricardo Martinez‡, Ricard Vilalta‡, Dimitrios Klonidis∗, Paolo Monti†, Daniel King¶, Adrian Farrel¶

∗ UBITECH, Athens, Greece {pfamelis, gkatsikas, vkatopodis, dklonidis}@ubitech.eu
† Chalmers University of Technology, Gothenburg, Sweden {carlos.natalino, mpaolo}@chalmers.se

‡ Centre Tecnològic de Telecomunicacions de Catalunya (CTTC/CERCA), Castelldefels (Barcelona), Spain
{lluis.gifre, ricardo.martinez, ricard.vilalta}@cttc.es

¶ Old Dog Consulting, Llangollen, United Kingdom {daniel, adrian}@olddog.co.uk

Abstract—We present P5; an event-driven policy framework
that allows network operators to realize end-to-end policies on top
of P4-based data planes in an intuitive and effective manner. We
demonstrate how P5 adheres to a service-level agreement (SLA)
by applying P4-based traffic engineering with latency constraints.

Index Terms—P5, SDN, P4, SLA, traffic engineering.

I. INTRODUCTION

Software-Defined Networking (SDN) is poised to greatly
simplify network management through network-wide visibility
and direct control over the underlying switches from a
logically-centralized control plane. Since 2014, P4 stands on
the cutting edge of SDN as the primary language for data
plane programming [1], catalyzing innovation in numerous
areas of networking, such as packet scheduling [2], traffic
engineering [3], network telemetry [4], security [5], etc.

Open Networking Foundation (ONF) is driving the
evolution of programmable networking through state of the
art P4 controllers, such as ONOS [6], and broader P4
programming frameworks, such as SD-Fabric [7]. These
platforms are inline with the P4 ecosystem and community,
offering elegant abstractions that bundle together (i) a schema
of the P4 pipeline automatically derived from the P4 compiler,
(ii) target-specific binaries to deploy a pipeline onto a P4
device, and (iii) driver behaviours that allow to map pipeline-
agnostic flow objectives to pipeline-specific rules.
The problem. Despite the huge popularity and constant
evolution of the P4 language as well as the community efforts
to advance the P4 control plane, expressing intuitive end-to-
end network policies atop P4 data planes is still extremely
hard. Such policies express how the network’s forwarding
behavior should change in response to changing conditions.
Realizing these policies in a P4-based network requires not
only domain-level expertise, but also a systematic ability to
(i) collect network state across multiple switches, (ii) reason
about this state in an end-to-end fashion, and (iii) compile
a correct and compelling traffic engineering strategy that will
adapt the data plane according to the policy requirements.

This work is partially funded by the EC through the 5GPPP TeraFlow
project with grant agreement number 101015857 and the HORIZON-JU-SNS-
2022 ACROSS project with grant agreement number 101097122.

Our work. We propose P5; an event-driven policy framework
for P4-based traffic engineering. Our solution introduces two
important abstractions atop P4 devices and their drivers.
First, a service layer that oversees and controls multiple P4
devices allowing network operators to establish end-to-end
connectivity between any two endpoints in the network in the
form of intents. Secondly, we introduce a policy framework
based on the event-condition-action policy model [8], which
intuitively allows network operators to associate an end-to-end
service with a service-level agreement (SLA) when a certain
(set of) condition(s) is met. We implemented P5 as part of the
ETSI TeraFlowSDN (TFS) open-source controller [9]–[11], a
novel disaggregated SDN control plane comprised of stateless
and stateful Kubernetes micro-services that interact with each
other to fulfill network management tasks.
Our demo. We demonstrate P5 on a Mininet-based topology
of bmv2 [12] software P4 switches and hosts, where P5
implements a policy to ensure that the end-to-end latency of
a service is strictly bounded. We introduce artificial delay to
several links between switches to evaluate the efficiency of
our solution to (i) detect SLA violations, (ii) trigger path
re-computation, and (iii) establish new service paths as a
result of dynamic P4 flow rule modifications across multiple
switches. In stark contrast to existing solutions, we highlight
the simplicity of P5 in expressing end-to-end network policies,
which make it appealing for developers and researchers to
perform quick prototyping in programmable data planes. We
encourage the open-source community to embrace ETSI TFS
and further contribute to its microservices in order to support
additional use cases.

II. P5 DESIGN

P5 is designed as an ensemble of seven microservices, as
shown in Figure 1. Network administrators interact with P5
through a web-based user interface (UI), which allows to
(i) declare the devices and links (i.e., topology) to manage,
(ii) create overlay services within their network(s), and
(iii) associate specific network policies to these services to
satisfy customer requirements. All this information is persisted
into a logically-centralized, yet physically distributed and
scalable, database provided by the Context microservice.



Fig. 1. P5 design based on the ETSI TeraFlowSDN open-source controller.

Concept. P5 spans across three layers as shown in Figure 1.
The device layer leverages a South-Bound Interface (SBI)
microservice to interact with the underlying network devices
through the P4Runtime API and a Monitoring microservice for
collecting network telemetry. Managing a network at the level
of individual devices requires network administrators to master
highly-complex and technology specific device configurations.
For this reason, P5 introduces additional microservices atop
the device layer as shown in Figure 1. This tiered segregation
offers two powerful abstractions:

• A service layer that allows network administrators
to describe end-to-end connectivity between any two
endpoints through high-level intents.

• A management layer that allows network administrators
to associate end-to-end connectivity services with run-
time network policies.

Abstraction #1: Abstract end-to-end services translated
into P4 configuration. Upon a service request by a network
administrator (see Figure 1), the Service microservice receives
a request to provision connectivity between two remote
endpoints from the Web UI. First, the Service microservice
requests a path between these endpoints - highlighted in yellow
in Figure 1 - from the Path Computation microservice. Then,
the Service microservice configures the underlying network
devices along the path between the endpoints through the SBI.
To keep the Service layer agnostic from technology-specific
details, Service leverages a minimal service definition (see
Listing 1) that allows users to express what they want to
connect, while letting the underlying system decide how to
realize the connection. The Service microservice translates this
minimal service definition into an abstract device configuration
model that is in turn automatically translated into P4 rules from
the P4 device driver of the SBI microservice.

1 {
2 "service_type":"P4",
3 "service_endpoint_ids": [
4 {// endpoint A
5 "device_uuid": "SWA",// device ID
6 "endpoint_uuid": "X" // port number
7 },
8 {// endpoint B
9 "device_uuid": "SWB",// device ID

10 "endpoint_uuid": "Y" // port number
11 }
12 ]
13 }

Listing 1: Example end-to-end service definition in P5, for
P4-based connectivity between two endpoints.

Abstraction #2: Real-time policies atop end-to-end services.
Managing the run-time of an end-to-end service is of
paramount importance for network administrators as modern
systems become more and more complex. P5 offers another
powerful abstraction, which allows network administrators
to associate monitoring metrics stored in the Monitoring
database with conditions according to the event-condition-
action policy model [8]. When these conditions are met, the
Monitoring microservice raises an alarm that is consumed by
the Policy microservice to trigger specific service or device-
level actions. The example policy in Listing 2 invokes path
re-computation for a given service as an action to bound
the end-to-end latency of a service below 4 ms. Additional
actions can be requested for other use cases, such as adding
specific service constraints or configuration, in which case the
network administrator shall specify an action configuration
This is how the Policy microservice adds another “P” on top
of P4 (i.e., P5), offering event-driven SLAs for end-to-end
connectivity services through P4 pipelines.

1 {
2 "service_uuid": "d5261206-1047-00345",
3 "policy_rule": {
4 "priority": 0,
5 "condition_list": [
6 {
7 "kpi_id": "E2E_LATENCY",
8 "operator": "GREATER_THAN",
9 "kpi_value": 4000 // in us

10 }
11 ],
12 "action_list": [
13 {
14 "action": "RECOMPUTE_SVC_PATH",
15 "action_config":[]
16 }
17 ]
18 }
19 }

Listing 2: Example P5 network policy for bounding the end-to-
end latency of a service below 4ms. The action simply triggers
path re-computation, without additional configuration needed.



III. DEMO STORYLINE

Demo setup. To verify P5, we use a Mininet-based topology
of P4 switches based on the bmv2 [12] software switch as
shown in Figure 2. On top of this topology, we deploy P5
as part of the open-source ETSI TFS controller [9] using
the seven microservices depicted in Figure 1. The network
administrator inputs a list of devices and links in JSON
format, which P5 parses and establishes connections with
all eight (8) P4 switches through the SBI component. Once
device handshaking is completed, the topology is stored into
the Context microservice, thus the network administrator
can proceed with service instantiation as per Listing 1.
In this demonstration example, the service endpoints are
“SW1-port4” and “SW8-port4”, thus we formulate the JSON
accordingly.

Fig. 2. P5 demonstration scenario.

Workflow. We demonstrate a policy-based service restoration
workflow that is comprised of various steps, highlighted in
blue in Figure 2. An input policy - similar to the example
shown in Listing 2 - bounds the end-to-end latency of
the deployed service between client and server below a
certain threshold. A probe is deployed with the purpose of
monitoring the end-to-end latency and reporting it to the
Monitoring microservice. Initially, we assume that the service
is established according to the red path shown in Figure 2.
To validate the policy, we explicitly introduce excessive link
latency (using Linux traffic control) along the service path as
shown by step 1 in Figure 2. The P5 Monitoring microservice
captures this state change in step 2 and raises an alarm
for potential policy violation, which is caught by the Policy
microservice in step 3. This event causes the execution of a
policy action, which jointly involves a service update (step
4) through path re-computation (step 5). When a new service
path is returned by the Path Computation microservice (e.g.,
the green path in Figure 2), Service compiles a list of
device configuration commands for establishing the new path
followed by another list of commands for decommissioning
the old path. These commands are translated into actual P4
flow rules by the SBI, before being enforced to the data plane

via the P4Runtime API (step 6). In the scenario in Figure 2,
P5 can pick any path between client and server, thus the red
and green paths in the figure are illustrative.
Audience interaction. During the live demonstration,
attendees will be able to select which link to introduce latency
to and how much latency to introduce, and we will be able to
observe the behavior of P5 through the steps just described.
The P5 Web UI will be visualizing the available devices &
links, the deployed service and its parameters, as well as the
real-time state of the provisioned policy.

IV. CONCLUSION AND FUTURE WORK

We introduce P5; a modern SDN framework for managing
P4 data planes using two powerful abstractions atop low-level
P4 device configuration: (i) an end-to-end service layer that
allows network administrators to establish intent-based end-
to-end connectivity between endpoints and (ii) an overlay
management layer that facilitates policy definition, allowing
network administrators to associate deployed services with
conditions on system-level KPIs and corresponding remedy
actions in an intuitive fashion. We demonstrate an end-to-end
P5 service with an adaptive latency-based policy as part of
the open-source ETSI TFS controller atop software-based P4
topologies in Mininet.
Future work. Towards the next release of the ETSI TFS
controller [10], we consider two orthogonal development
activities as future work for P5. First, the support for in-
band network telemetry [4] for capturing the network state
in a P4-native manner. Secondly the evaluation of P5 in inter-
domain scenarios with heterogeneous device types and larger
topologies, focusing on scalability and performance aspects.

REFERENCES

[1] P. Bosshart et al., “P4: Programming Protocol-independent Packet
Processors,” SIGCOMM Comput. Commun. Rev., vol. 44, no. 3, pp. 87–
95, Jul. 2014.

[2] A. Sivaraman et al., “Programmable packet scheduling at line rate,” in
Proceedings of the 2016 ACM SIGCOMM Conference, ser. SIGCOMM
’16, New York, NY, USA, 2016, p. 44–57.

[3] T. Holterbach et al., “Blink: Fast Connectivity Recovery Entirely in the
Data Plane,” in 16th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 19), Boston, MA, Feb. 2019, pp. 161–176.

[4] The P4.org Applications Working Group., “In-band Network Telemetry
(INT) Dataplane Specification Version 2.1,” Nov. 2020.

[5] A. G. Alcoz et al., “Aggregate-Based Congestion Control for Pulse-
Wave DDoS Defense,” in ACM SIGCOMM 2022 Conference, ser.
SIGCOMM ’22, New York, NY, USA, 2022, p. 693–706.

[6] Open Networking Foundation (ONF), “Open Network Operating System
(ONOS) SDN controller,” Mar. 2023.

[7] ——, “SD-Fabric™,” Mar. 2023.
[8] M. Boucadair, Q. Wu, Z. Wang, D. King, and C. Xie, “Framework for

Use of ECA (Event Condition Action) in Network Self Management,”
IETF, Internet-Draft, Nov. 2019, work in Progress.

[9] “ETSI Open Source Group for TeraFlowSDN,” Feb. 2023.
[10] “ETSI TeraFlowSDN GitLab,” Mar. 2023.
[11] R. Vilalta et al., “Teraflow: Secured Autonomic Traffic Management for

a Tera of SDN Flows,” in 2021 Joint European Conf. on Netw. and
Commun. & 6G Summit (EuCNC). IEEE, 2021, pp. 377–382.

[12] P4 Language, “Behavioural model (bmv2) reference P4 software
switch,” Mar. 2023.


