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Abstract—Privacy preservation over federated data has gained
its momentum in the era of securing users’ sensitive data.
Combining and analysing sensitive data from multiple sources
offers considerable potential for knowledge discovery. However,
there are different constraints which should be fulfilled, such as
what are the data to be preserved; what is meant by privacy
preservation; what are the constraints on federated computing;
and what are the secure mechanisms to train, query and explore
data without accuracy loss. We introduce the Protected Federated
Query Engine which applies Fully Homomorphic Encryption and
Querying Mechanisms over decentralised data sources of diverse
schemas and granularities to efficiently collect, align, aggregate
and serve Artificial Intelligence Operations (AIOps) and Data
Operations (DataOps) without sacrificing accuracy and efficiency.

Index Terms—encrypted data management, privacy-preserving
AI models lifecycle, privacy-preserving AI model training and
serving over decentralised and heterogeneous data

I. INTRODUCTION

Nowadays, many applications handling sensitive data, com-
ing from the healthcare, insurance, mobility domains and
more, require the management of the complete data lifecycle.
Such data implies that privacy-preserving infrastructures need
to be put in place, so that reliable and secure data operations
can be provided.

In addition to this, contemporary applications combine and
analyse sensitive data from multiple federated sources for
better knowledge discovery and more accurate models’ train-
ing. In some applications the enforcement of data protection
regulations prohibit data centralisation for analysis purposes
because of potential privacy risks, such as the accidental
disclosure of data to third parties. Besides, there are a number
of issues that pose problems for such analyses, including tech-
nical barriers, privacy restrictions, data protection compliance
to one or more legal jurisdictions, security concerns, and trust
issues.

Motivated by these pressing needs, this paper introduces
a Protected Federated Query Engine with key differentiating
factor that the encrypted data are then serving for collection,
aggregation, and filtering via DataOps and Artificial Intelli-
gence (AI) methods via AIOps. The aim is to optimize the
complete data path, in terms of efficient, reliable, secure,
and trustworthy data processing and federated analysis. We
report early results via a promising prototype which enables to
extract actionable insights from ubiquitous open breast cancer

data [1] in a decentralized way, delivering efficient DataOps
and intelligent AIOps, enforcing encryption mechanisms at the
expected point of action.

The contributions of this paper are, as follows:
• The presentation of a reproducible, governance- and

provenance-rich microservices prototype for protected
data federation for trainable, queryable and actionable
data which are preserving privacy across the complete
data path;

• A mechanism for executing federated queries on top of
encrypted data aiming at preventing access to sensible
data from unauthorized users, applications and processes;

• A mechanism for Fully Homomorphic Encryption (FHE)
which allows cloud servers, edge, and fog nodes to
perform Data and Ops over encrypted data, while only
authorised clients (i.e., users and applications) are able
to see the decrypted data; and

• A Protected Federated Query Engine for decentralised
query confidentiality which ensures that cross-domain
knowledge cannot be generated and propagated between
different nodes, resources, and administrative domains.

II. RELATED WORK

Many circumstances necessarily force changes in privacy-
preserving for supporting efficient DataOps and AIOps, such
as the heterogeneous, decentralised and vast amounts of data to
be analysed. Also, in the last years, there is an increased need
for secure operations and analyses over the data eliminating
their disclosure to third parties.

Therefore, this section briefly covers the most relevant and
up-to-date research works, mostly related to homomorphic
encryption and privacy-preserving distributed data operations.
The literature review shows that either there are ambiguous
definitions of privacy and confusion between privacy and
security in the field [2], or secure multiparty computation
(SMPC) is being performed where a cryptographic protocol
calculates a result set, where the data of each participating
party remains concealed, or Federated Processing / Learning
is being performed in a parallel or incremental manner [3].
The Protected Federated Query Engine is mostly related with
the SMPC approach with the differentiating factor that the
encrypted data are then federated in order to serve DataOps



for collection, aggregation, querying and filtering and AIOps
for AI and statistical model training and inference.

Clifton et al. [4] propose a toolkit of components that
can be combined for specific privacy-preserving data mining
applications and show how the latter can be used to solve
several data mining and privacy preservation problems.

Sun et al. [2] provide a systematic review of privacy-
preserving data mining techniques from 231 scientific articles
published in the past 20 years. They present a summary of
the state of the art, compare the problems they address, and
identify the challenges in the field.

Welten et al. [3] support analyses on sensitive patient
data by simultaneously complying with local data protection
regulations using an approach called the Personal Health Train
(PHT). The main principle of the PHT is that the analytical
task is brought to the data provider and the data instances
remain in their original location. The proposed engine dif-
ferentiates by supporting secure multiparty homomorphic en-
cryption for multiple parties to jointly compute some function
over their own data without revealing the original data to any
other parties. In addition, to protect the participants from being
attacked by external parties (who are outside of the federated
ecosystem), the proposed approach also protects the parties
from each other.

A Homomorphic Encryption (HE) scheme allows the eval-
uation of arbitrary computations on encrypted data without
decrypting it. In theory, realizing SMPC through a HE scheme
is a simple and efficient approach. However, despite its
promising theoretical power, the practical side of the approach
remains underdeveloped [5]. In mathematics, homomorphism
describes the transformation of one data set into another while
preserving relationships between elements in both sets. In
other words, an encryption algorithm E and a decryption D
should satisfy the following conditions:

• c1 = E(a1), c2 = E(a2)
• D(f (c1, c2)) = f (a1, a2)
In the proposed approach, all the DataOps and AIOps (i.e.,

the aforementioned f) can be executed as-is in the encrypted
data and the result analysis can be performed by the decryption
key owner. HE can eliminate obstacles to privacy and enable
data sharing.

To the best of our knowledge Goldwasser et al. [6], proposed
and introduced the first semantically secure homomorphic
encryption scheme by replacing Rivest–Shamir–Adleman’s
(RSA) trapdoor function [7] with a Probabilistic Encryption.
The common types of homomorphic encryption are: Partially
Homomorphic, Somewhat Homomorphic, Leveled Homomor-
phic Encryption and Fully Homomorphic Encryption (FHE).
Since FHE has extremely high security, it allows users’ data
to be protected anytime it is sent to the cloud (e.g., from edge
devices) and has made great contributions to privacy protection
in cloud computing [8]. FHE can support multipliable oper-
ations (currently addition and multiplication), allowing more
computation to be performed over encrypted data [9].

Many attempts have been made not only to propose new
theoretical encryption algorithms but also be practical. The

first FHE algorithm based on ideal lattices which satisfied both
additive homomorphism and multiplicative homomorphism
demonstrates the feasibility of computing any function on
encrypted data. In homomorphic encryption, messages are
encrypted with a noise that grows at each homomorphic evalu-
ation of an elementary operation. The number of homomorphic
operations is limited, but can be made asymptotically large
using bootstrapping. This technical trick allows to evaluate
arbitrary functions by essentially evaluating the decryption
operation on encrypted secret keys.

Chechulina et al. [10], introduced a new fully homomorphic
scheme that does not require massive computation resources
and provides acceptable sizes of encryption keys and output
values. The approach has an only constraint: the result of all
the mathematical operations can not exceed the number of
relatively prime numbers set.

Brakerski et al. [11], [12] introduced the concept of leveled
homomorphic encryption to overcome the performance issues
of bootstrapping. The parameters are chosen sufficiently large
to evaluate the entire computation without bootstrapping. Ad-
ditionally, they added support for Single Instruction, Multiple
Data (SIMD)-style batching. This takes advantage of the
fact that the plaintext space is a ring of polynomials with
numerous coefficients, which may be interpreted as numerous
distinct independent slots and allows for the compression of
numerous messages (often 213-216) into a single ciphertext.
Automorphisms additionally (i.e., HElib [13] implementation)
enables homomorphically executable rotations between slots.
The Gama-Georgieva-Izabachene (CGGI2) scheme [14], [15]
performs bootstrapping in less than 100 milliseconds, while
previous implementations/schemes needed several minutes
even in efficient implementations. However, fast bootstrapping
is incompatible with batching, introducing a trade-off between
latency and throughput when compared to second-generation
schemes. Al Badawi et al. [16] proposed and implemented (in
C++) a new open-source FHE software library (OpenFHE) that
incorporates selected design ideas from prior FHE projects,
such as PALISADE [17], HElib, and HEAAN [18]. OpenFHE
introduces several new design features: (i) the supported FHE
schemes also support bootstrapping and scheme switching; (ii)
the library can support multiple hardware acceleration back-
ends using a standard Hardware Abstraction Layer (HAL);
and (iii) OpenFHE includes both user-friendly modes, where
maintenance operations (such as modulus switching, key
switching, and bootstrapping) are automatically invoked by
the library, and compiler-friendly modes where an external
compiler makes these decisions.

The Protected Federated Query Engine protects data flows,
queries and machine learning results via FHE through a
federated, coordinated and programmable mechanism which
has been implemented for securely executing queries and
preserving the accuracy of the trained models and the inferred
results. The federated mechanism has been implemented on
top of encrypted data with the aim to preserve access to sen-
sitive information from unauthorized users. The FHE enables
cloud servers, edge, and fog nodes to compute arbitrary func-



tions (i.e., aggregations, filters, joins, etc.) over the encrypted
data, while only authorized clients (i.e., users, devices, and
applications) are able to view the decrypted data.

III. PROTECTED FEDERATED QUERY ENGINE

The core purpose of the Protected Federated Query Engine
is to protect the data flows from cloud servers, edge and fog
nodes with the ability to execute queries in a federated manner
and preserve the privacy of the data and the accuracy of the
trained models and the inferred results.

A. Conceptual Architecture

The Protected Federated Query Engine aims at protecting
data flows by preserving the privacy and ensuring the informa-
tion on the underlying data and analytic operations performed
over the data without sacrificing efficiency of the DataOps
and accuracy of the AIOps, respectively. It supports operations
enabling federated queries execution on top of encrypted data
taking care of the entire decentralised data lifecycle. It supports
data sources which may have diverse schemas, granularity and
types. The engine manages this heterogeneity via multiple con-
nectors allowing to interact with different databases. The latter
introduces a new perspective to the workloads management of
online analytics and aggregation, serving as Online Analytical
Processing (OLAP).

The Protected Federated Query Engine consists of a Coordi-
nator and a customized number of Worker nodes which com-
municate with each other through a REST API. Each query
statement concerning the encrypted data is submitted to the
coordinator node, which, consequently, parses the statement
and then, creates the query with a query plan, which is finally
distributed for execution across a series of multiple workers.

Fig. 1. Protected Federated Query Engine Architecture.

Secure and distributed multiparty computation is realised via
a Fully Homomorphic Encryption method, which allows dis-
tributed entities to compute arbitrary functions over encrypted

data, while only authorized clients (i.e., users and applications)
are able to access, analyse and process the decrypted data. The
high-level architecture of the proposed Protected Federated
Query Engine is depicted in Figure 1.

B. Prototype and Experiments

The existing State-of-the-Art (SotA) FHE libraries facilitate
users, with little or no expertise in the cryptography, to
fully overcome the hindrances imposed by the complexity of
implementing the homomorphic functions.

The open-source library used for the implementation of the
FHE mechanism is Zama [19] and the framework for the
entire data federation lifecycle is Trino [20]. It is used as the
federated querying mechanisms on top of distributed, large
and diverse data sources. Figure 2 depicts the experimental
setup for measuring the AIOps efficiency of the proposed
engine. The AIOps efficiency has been measured through the
AI model’s accuracy. We conducted experiments by measuring
a conventional model’s accuracy against FHE-enabled model’s
accuracy, both in the training and the inference phase. DataOps
collect, aggregate and filter data from two different data
storage systems in the support of the federated querying
mechanisms.

Fig. 2. Experimental Setup.

The supporting data federation mechanisms are written in
Java, where a Coordinator orchestrates the workloads among a
customised number of Worker nodes which communicate with
each other through a REST API. In this setup, a Coordinator
with two Workers have been deployed, in the support of
MySQL and MongoDB data storage systems, respectively.

The dataset has been vertically split and stored in order to be
queried in a federated manner. A join query is performed over
the common ’id’ field. The Workers fetch the encrypted data
from each connector and exchange intermediate synchronisa-
tion data with each other. Finally, the Coordinator returns the
results of the aggregated dataset and trains the FHE-enabled
model.

We report early experimentation results by using the Breast
Cancer Dataset [1] of the sklearn library. We selected 10
basic features which are, the: ’mean compactness’, ’mean
concave points’, ’radius error’, ’area error’, ’worsttexture’,
’worstperimeter’, ’worstarea’, ’worstsmoothness’, ’worstcon-
cavepoints’ and ’worstsymmetry’. We then trained a Logistic
Regression model and measured its accuracy via: (i) a con-
ventional training method; and (ii) a federated FHE-enabled
method. The federation mechanism is simulated by joining
and aggregating the breast cancer data from a MySQL and



a MongoDB via Trino. DataOps have been then performed
for data filtering and normalisation. The conventional training
method used is the Logistic Regression from sklearn [21],
while the FHE-enabled method used is the Concrete-ML of
Zama [19]. Concrete-ML applies an encoding step quantising
the data using a given number of bits. The higher the quan-
tisation bit width, the better the precision, and also the more
expensive the calculation.

In our experimentation, we used the default values of the
Concrete-ML model with quantisation width equivalent to 2
bits. The FHE-enabled model’s accuracy both during the train-
ing and the inference phase was identical with the conventional
model’s accuracy, and equal to 89%. Without compromising
the privacy and sensitivity of the data, we equally achieve
similar results. Figure 3 illustrates the comparative evaluation
between the FHE-enabled model’s accuracy and the conven-
tional model’s accuracy for different data sizes. We conclude
that the proposed engine and its underlying mechanisms enable
us to support data and AI operations over the encrypted dataset
efficiently without sacrificing accuracy.

Fig. 3. FHE-enabled vs. Conventional Model’s Accuracy Comparison.

IV. CONCLUSIONS AND FUTURE WORK

The purpose of this paper is to present early results re-
garding the Protected Federated Query Engine which supports
decentralised and secure multiparty computation. The engine
applies FHE and querying mechanisms over distributed data of
diverse schemas and granularities to efficiently collect, align,
aggregate and serve AIOps and DataOps without sacrificing
accuracy and efficiency, respectively.

In the near future, we plan to validate the solution in
privacy-preserving individuals’ mobility activities in indoor
applications. We also plan to experiment over the computing
performance of different FHE functions in order to scale
up, parallelise and make more efficient the multiparty key
generation.

V. ACKNOWLEDGMENTS

This work has received funding by the European Commis-
sion project HEU MobiSpaces (https://mobispaces.eu/) under
Grant Agreement No. 101070279.

REFERENCES

[1] Sklearn breast cancer data set. [Online]. Available: https://t.ly/yCoq
[2] C. Sun, L. Ippel, A. Dekker, M. Dumontier, and J. Van Soest, “A

systematic review on privacy-preserving distributed data mining,” Data
Science, no. Preprint, pp. 1–30, 2021.

[3] S. Welten, Y. Mou, L. Neumann, M. Jaberansary, Y. Y. Ucer, T. Kirsten,
S. Decker, and O. Beyan, “A privacy-preserving distributed analytics
platform for health care data,” Methods of Information in Medicine,
2022.

[4] C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin, and M. Y. Zhu, “Tools for
privacy preserving distributed data mining,” ACM Sigkdd Explorations
Newsletter, vol. 4, no. 2, pp. 28–34, 2002.

[5] S. M. Ghanem and I. A. Moursy, “Secure multiparty computation via
homomorphic encryption library,” in 2019 Ninth International Confer-
ence on Intelligent Computing and Information Systems (ICICIS), 2019,
pp. 227–232.

[6] S. M. Shaft Goldwasser, “Probabilistic encryption how to play mental
poker keeping secret all partial information,” in In Proceedings of the
fourteenth annual ACM symposium on Theory of computing. ACM,
1982, pp. 365–377.

[7] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital
signatures and public-key cryptosystems,” Communications of the ACM,
vol. 21, no. 2, pp. 120–126, 1978.
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