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Abstract—The advent of 5G/6G broadband wireless networks
brings several challenges with respect to optimal resource plan-
ning and allocation. In a heavily interconnected network of wire-
less devices, and users along with their equipment, all compete
for scarce resources which further emphasizes the importance
of fair and efficient allocation of those resources for the proper
functioning of the networks. This paper tackles a crucial and
timely topic, i.e., understand the various factors involved for
optimizing network performance and ensuring fair access for
different users, applications and devices. Integrating Machine
Learning (ML) and Artificial Intelligence (AI) for predictive
dimensioning and pattern mining over the network traffic can
enable dynamic and intelligent resource allocation, increase net-
work capacity, enhance the underlying capabilities between users
and core network, and better correlate the Quality of Service
(QoS). The scientific contribution of this paper entails novel AI
models harvesting data from real-world 5G/6G testbeds offered
through the AI as a Service (AIaaS) paradigm to enable model
reuse and seamless exploitation for different 5G/6G application
requirements and learning tasks.

I. INTRODUCTION

A key characteristic of 5G/6G networks is their diverse and
ever-changing environment, encompassing several different
elements including varying frequency, time, space, power,
and user dynamics. This complexity presents a significant
hurdle in terms of resource distribution and task scheduling,
necessitating a careful trade-off analysis across these factors,
along with considerations about the network’s condition, traf-
fic behaviors, and user inclinations. As a result, there is a
pressing need for optimisation approaches that span multiple
dimensions to identify solutions that are either optimal or close
to optimal, harmonising the competing goals and limitations
inherent to various network components and situations. The
ultra-low latency and high-speed capabilities of 5G and the
emerging 6G networks enable the collection of large datasets
from various sources like Internet of Things (IoT) equipment,
sensors, and mobile devices, in real-time. This data is in-
valuable for training and validating Machine Learning (ML)
models, especially those requiring immediate data processing,
like optimal resource planning and predictive dimensioning
derived from real-time analytics for prompt decision-making.
The unique characteristics of 5G, such as network slicing,

also facilitate the testing of new algorithms under various
network conditions, ensuring robustness and efficiency in
diverse application contexts. As we transition to 6G, these
capabilities will be further enhanced, offering even greater
opportunities for innovative data-driven solutions.

This paper explores how data from advanced experiments
performed over a real-world 5G/6G testbed can be used to
assess resource usage and plan for optimal resource allocation
and optimisation. 5G testbeds play a pivotal role in data
generation, acting as rich sources for real-time, high-volume,
and diverse data derived by user applications, which are
essential for the development and testing of advanced ML
models, methods, and algorithms. Alongside real data, 5G/6G
testbeds can be used to generate synthetic data, which is
particularly useful when real data is scarce, sensitive, or costly
to obtain. This synthetic data, crafted through algorithms or
artificial environments (e.g., digital twins or simulations), can
help in training ML models without compromising privacy or
incurring high costs. By providing both real and synthetic data
under specific scenarios, 5G/6G testbeds are a valuable tool
for Artificial Intelligence (AI), since scenario-based data col-
lection can be performed not only via real equipment but also
via different real-world application scenarios simulation, such
as urban traffic patterns, over-the-top (OTT) media services,
industrial automation processes, or smart city applications.
By doing so, they can generate and collect data that mirrors
real-life situations, allowing for the analysis of complex,
dynamic and heterogeneous systems. What is also important
is that testbeds can generate annotated data and patterns that
sometimes are really difficult to collect and identify on an
operator’s production network.

This work injects the AI methods and mechanisms to 5G
testbeds to perform:

• Optimal resource planning, since the resources of a pro-
duction network are limited and usually more expensive
and more advanced than a 5G testbed, where the latter
also allows for various degrees of experimental freedom;

• Real-time data analytics derived by predictive and pre-
scriptive learning tasks, which is crucial for applications
requiring immediate response;
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• Data correlation and multi-domain integration, since a
5G/6G testbed can facilitate the fusion of data from
multiple application domains, enabling a holistic view of
complex ecosystems. This integration can reveal correla-
tions and interdependencies that are not apparent when
data silos exist; and

• Customisable network slicing for diverse requirements,
thus allowing the creation of multiple virtual networks
with different characteristics, allowing parallel testing and
experimentation.

This work presents a 5G testbed, logging monitoring metrics
and feeding an analytics pipeline for deriving insights along
with our early benchmarking results. The analytics pipeline is
exposed with the as a Service model, thus as an AI as a Service
(AIaaS) capability, to enable reuse and seamless exploitation
of the provided AI mechanisms.

The rest of the paper is organized, as follows: Section II
provides the current literature review around 5G networks
dimensioning, optimisation and resource allocation using AI
and ML models. Section III presents the 5G testbed setup,
configuration and data generation. Section IV, presents our
analytic pipeline architecture, while Section V discusses our
first experimental results, and Section VI concludes the paper
and provides research ideas to be pursued in the future.

II. RELATED WORK ON 5G COMMUNICATION NETWORKS
DIMENSIONING AND OPTIMAL RESOURCE ALLOCATION

Resource planning for 5G networks has been a subject for
research since the first deployments of such networks. The
ability to fully take advantage of the available resources is a
major interest for providers so that the maximum customer
satisfaction can be achieved while minimising CApital ex-
penditure (CAPEX) and OPerating EXpenses (OPEX). The
research as expected is more oriented to commercial network
deployments and not targeted for research testbeds. In this
regard, Waleed et al. [1] identify and present solutions regard-
ing the resource allocation task of 5G networks by satisfying
often competing objectives and constraints (i.e., throughout,
CPU usage and memory use), while maintaining the Quality
of Service (QoS) required by the network users. This is all
presented in the context of Cloud Radio Access Network
(CRAN), an architecture that separates base station functions
into two main components: the Centralized Processing unit
(CP) and the distributed remote radio unit (RRU), which
allows for centralized control and coordination leading to im-
proved resource utilisation and efficient network management.
A similar survey on commercial CRAN networks has been
performed in [2] focusing on the power consumption and
harvesting the baseband unit (BBU) computational resource,
capacity, and wavelength parameters.

Kamal et al. [3] performed a literature review on the 5G
resource allocation problem trying to get insights on questions
ranging from 5G challenges and resource allocation impor-
tance to resource allocation algorithms and metrics used in
such approaches. The authors state that resource allocation is
an important aspect on 5G systems, since it allows systems to

be more dynamic and satisfy diverse users’ requirements. They
analyze work from other authors to find the common ground
on algorithms and parameters used. On a different approach,
the authors in [4] have a more hands-on approach, by defining
the resource allocation problem through mathematical terms
considering three kinds of resources (i.e., bandwidth, cpu us-
age and memory), while trying to accommodate three different
kinds of services requiring either bandwidth as in enhanced
mobile broadband (eMBB), latency as in ultra-reliable and
low-latency communications (uRLLC), and finally massive
machine-type communications (mMTC). They also performed
simulation tests and presented their algorithms and results.

Moscholios et al. [5] presented a special issue to bring
together the state-of-the-art research contributions addressing
the challenges of contemporary 5G communication networks
design, dimensioning, and optimisation, computing resources,
and services.

Jayaraman et al. [6] proposed a modified Resource Allo-
cation (RA) scheme using a learning-based Resource Seg-
mentation (RS) algorithm. Their algorithm uses a modified
Random Forest Algorithm (RFA) with Signal Interference and
Noise Ratio (SINR) and Position Coordinates (PC) to obtain
the location of end-users. It further predicts Modulation and
Coding Schemes (MCS) for establishing a connection between
the end-user device and the Remote Radio Head (RRH).

Abdellatif et al. [7] proposed a dynamic network slicing
and resource allocation framework that maintains high-level
network operational performance, while fulfilling diverse ser-
vices’ requirements and Key Performance Indicators (KPIs),
e.g., availability, reliability, and data quality. They introduced
a novel methodology and resource allocation schemes, that
enable high-quality selection of radio access points, resource
allocation, and data routing from end users to the cloud.

Zhao [8] proposed an energy-efficient resource allocation
method by using a Deep Reinforcement Learning (DRL)
method, which enhances the network performance and reduces
the network operational cost. The method considers the con-
nection relationship between base stations, users and the trans-
mission power allocated by base stations to users as decision
variables, maximising the overall energy efficiency, and taking
the needs of mobile users as constraints, to guarantee advanced
QoS.

Munaye et al. [9] proposed a method which enables the
improvement of the IoT connectivity related with the network
slicing concepts. The allocation of resources is based on
individual network slices specified as audio, texting, video, and
browsing. Then, to maximize the average resource allocation
performance, they trained a DRL to optimally allocate network
slices to the users, balancing resource blocks, and support QoS
for fair resource allocation.

Laboni et al. [10] formulate the resource allocation task
in 5G mobile edge computing (MEC) as a multi-objective
problem through a mixed-integer non-linear programming
problem. They adopt a hyper-heuristic algorithm by leveraging
the combined powers of Sine-Cosine, and other optimisation
algorithms. Their algorithm works at the higher level, and it
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exploits one of the three lower-level heuristics in each iteration
to efficiently capture the dynamically varying environmental
parameters, and thereby solve the resource allocation problem.
This helps to achieve a global optimum in allocating resources
of a 5G MEC network.

Pamba et al. [11] develop a resource allocation model
using a novel deep learning algorithm for optimal resource
allocation. Their algorithm is formulated using the constraints
associated with optimal radio resource allocation. The ob-
jective function design aims at reducing the system delay.
Their study predicts the traffic in a complex environment
and allocates resources accordingly. Their results show an
improved rate of allocation compared to the other methods.

Existing works are limited either by addressing medium
allocation characteristics, or computational resources allo-
cation. Compared to the above-mentioned approaches, the
scientific contribution of this work is the proposition of a
resource allocation predictive model using Deep Learning to
correlate traffic sources from network applications with the
optimal resources to be allocated to enhance the core network
scheduling capabilities.

III. 5G TESTBED SETUP AND CONDUCTED EXPERIMENTS

Our experiments have been performed at the University
of Patras 5G facility, an academic isolated non-public 5G
infrastructure. This facility offers end-to-end support to various
application verticals using the lab for experimentation.

A. Testbed Description

The Network Slice as a Service (NSaaS) delivery model
is supported, where custom network slices are provided for
evaluation of both equipment and software solutions, as well
as KPIs. Entry point to this facility is the web portal [12] of the
open-source Operations Support System (OSS) Openslice [13].
Telemetry and monitoring is supported to all layers of the
experiment flow to offer comprehensive metrics ranging from
Radio Access Network (RAN) measurements to cloud-related
metrics. Prometheus [14] is used for storage and data persis-
tence, and Grafana [15] for dashboards and graphical mon-
itoring of the results. Custom made data collectors are also
deployed in the lab. On the 5G network front, various in-
stallations and configurations are deployed and supported. For
further information, please refer to the Patras 5G Wiki [16].

B. Experiments Description

We present the initial experimental results performed in
Q4 2023 and Q1 2024 in the above mentioned 5G Testbed.
The experiments were of three distinct categories, as detailed
below.

1) Common Aspects of Experiments: As shown in Figure 1,
some aspects are common in all experiments. The basic setup
for each experiment was the deployment of a 5G network with
core and RAN elements. For each experiment the correspond-
ing Network Application (NetApp) has been deployed on a
Virtual Machine (VM), whilst the 5G core network ensured the
connectivity between the devices used in the experiments and

Fig. 1. Testbed Overview and Setup

the corresponding NetApps. Depending on the NetApp and
the experiment requirements, GPU access was also provided
per case.

To access the network, various UEs were used, such as
5G-enabled mobile phones. For cases where the end user
device was not 5G ready, a Customer Premise Equipment
(CPE) was used as a gateway by providing 5G back-haul
access and allowing legacy devices to connect, either through
Ethernet or WiFi networks. Finally, in cases where simulation
was required, either laptops or properly configured VMs were
deployed that used the above mentioned CPE, as a gateway to
use the 5G core network.

The 5G core network deployed can be configured to satisfy
various requirements of the 5G tested scenarios. By modifying
the configuration parameters, the deployed network can be
oriented in downlink configuration. This means that more
resources are allocated for the downlink path (gNb to UE),
and therefore the downlink bandwidth of the network can be
maximised. If the experiment requires the UE to send data
as fast as possible (via the uplink), the correct configuration
can be applied to satisfy this, as well. Finally, a low latency
configuration is also available, if required, depending on the
configuration of the 5G network. For this purpose, different
bandwidth measurements have been recorded, as shown in
table I:

Bandwidth (Mbps)
Downlink Config Uplink Config

Downlink bw 700 200
Uplink bw 30 150

TABLE I
5G TESTBED EXPERIMENTS

2) Experiment 1: It has focused on a Public Protection and
Disaster Relief (PPDR) scenario where the end user devices
stream video via mobile phones. This experiment used Real-
time Transport (RTP) protocol and the stream was directed to
the corresponding NetApp. An uplink gNodeB configuration
was used and no GPU was used. Various tests were performed
using 1, 2 and 3 mobiles phones simultaneously with various
configurations on the end user device application side.

3) Experiment 2: It has focused on a PPDR scenario, where
the NetApp streams video to the end user devices over UDP
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Fig. 2. Experiment 3 - Sample Results

protocol. The device was not 5G enabled and it used the CPE
to connect to the 5G network. Downlink gNodeB configuration
was used for this experiment and various tests were performed
by modifying the configuration of the NetApp, which made
use of the available GPU. Simulation tests were also performed
for this experiment by substituting the end user device with
a laptop configured to receive the stream and connected with
the CPE.

4) Experiment 3: It has focused on a PPDR scenario, where
the end user device sends data to the NetApp using the TCP
protocol. Simulation tests were performed by configuring a
VM to act as the end user device and transmitting the required
data through the CPE. Uplink gNodeB configuration was used,
and the NetApp made use of the available GPU. Figure 2
shows some results obtained during testing.

5) Experiments Overview: In Table II, we enlist the ba-
sic characteristics of the performed experiments. For each
experiment, we present the traffic type and the expected
direction of the traffic according to the UC. Regarding the 5G
network configuration, the tested gNb configuration is stated,
as well as whether various gNb configurations were used in
the experiments. Finally, the type of UEs used are listed (real
or simulated).

Experiments Description
Experiment Configuration User Device

ID Type UL/DL Config Multiple Phys Sim
1 RTP UL UL Yes Yes No
2 UDP DL DL No Yes Yes
3 TCP UL UL/DL No No Yes

TABLE II
PERFORMED EXPERIMENTS

C. Data Description

The monitoring functionality of Patras facility allows for
gathering and storing of various metrics during the experi-
ments execution. In this work, we focus on specific metrics
gathered from the 5G cell, as well as metrics reported by
the used devices. The monitoring dashboard is depicted in
Figure 3.

1) Cell-related Metrics: We gather and analyse the bitrate
reported from the gNb in both the uplink and downlink
directions. This is reported in bits per second and measured
in the physical layer of the 5G connection. Both values are
gathered regardless of the traffic direction each experiment
is focusing on. It is worth mentioning that none of these

Fig. 3. Monitored Data Overview

experiments reached the maximum capacity of the deployed
5G network.

2) UE-related Metrics: In 5G connections, the end user
devices report various metrics that show the connection status
between the device and the gNb. The metrics gathered and
taken into consideration in this work are, the: (i) uplink and
downlink bitrate; and (ii) MCS. MCS defines the number of
bits carried by every symbol during transmission and is an
indicator of the signal quality. In general, high MCS means
high quality and higher bitrates. Signal to Noise Ratio (SNR)
for the uplink direction is also taken into account, as the
Channel Quality Indicator (CQI) reported by the UE to the
gNb indicating the quality of the connection between them
from the UE perspective.

It should be noted that in the experiments where multiple
5G devices have been deployed, the metrics from a single UE
have been used as an indicator.

IV. DATA ANALYTICS PIPELINE ARCHITECTURE

An essential part of learning over the monitored data is
the Data Analytics Pipeline. In this section, we provide the
phases of the data analysis. The analytics pipeline serves two
purposes: (i) harvest the telemetry data to predict workloads
and decision making related to resource allocation, slicing and
service orchestration; and (ii) expose Application Program-
ming Interfaces (APIs) to support the AIaaS paradigm. By
exposing the learnt patterns via AIaaS APIs enables to adapt
the configuration of the 5G testbed to optimise its functions.
The Data Analytics Pipeline is presented in Figure 4. As it is
depicted, we harvest telemetry 5G data and we further feed a
data exploration and analytics pipeline to learn patterns about
the experimental NetApps and their workload class. Last, the
trained AI models are being exposed via dedicated AIaaS APIs
to serve the learnt patterns, and thus support a set of predictive
tasks.

Fig. 4. AIaaS Pipeline (training and serving phase)
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A. Data Aggregation

We aggregate all the datasets from the experiments into a
single data structure, and add a new column specifying the
type of experiment. This new column is then used as the label
for the analysis in Section V.

B. Data Cleaning and Normalisation

Towards data cleaning, we replace all NaN values with zero
(0), since all of them are numeric values that vary at time.
Also, we remove irrelevant columns / features (metadata of
Prometheus, features where there is only one value in the entire
dataset, etc.).

We then normalize the data by using the standard scaling
method (i.e., subtract by the mean value and divide by the
standard deviation), and in some specific cases (such as in the
Deep Neural Network (DNN) modeling), we normalize by the
Min Max normalisation method.

C. Feature Correlation and Selection

Only features related to the cell uplink / downlink bitrates,
UE devices and details about the gNb service state are
kept. Feature correlation is then used as a statistical mea-
sure to understand the relationship between the 5G network
features. This measure expresses how much two features
change together. A positive correlation means that as one
feature increases, the other feature also increases. A negative
correlation means that as one feature increases, the other
feature decreases. A correlation of zero means that there is
no relationship between the two features. Feature correlation
is used to ease feature selection and extract the most important
features for the next step, which is data modelling.

D. Data Modelling and Predictive Tasks

We train three (3) AI models. The first supports predictive
workloads and forecasts future values of the 5G network
load; the second one supports binary classification to forecast
the class of the load (i.e., currently low-high classes are
supported); and the third one supports NetApps category
prediction based on the experiments type.

The predictive workloads facilitate to optimally allocate
the right resources based on the future workload values.
The load classification facilitates the decisions related with
the service orchestration, optimal slicing, and vertical scaling
when needed according to the load classes. Last, the NetApps
category prediction enables to forecast the expected type of
application in order to allocate resources according to its
requirements linked with the necessary QoS.

We split the data into training (80%) and test sets (20%) to
evaluate the performance accuracy of the models. To predict
workload values on future 5G network load, we trained several
Machine Learning models from conventional ML models
(i.e., Random Forest, Logistic Regression, XGBBoost) to
Deep Learning models (a feed-forward Deep Neural Network
(DNN), and a Long Short-Term Memory (LSTM) neural
network followed by a DNN). While for all models we use a
1D vector as input X, in the case of LSTM we use a 2D

input that are windows of features in previous steps. The
LSTM model takes as input a window of features X and
produces output Y, which is the prediction of the next value
of Y. To forecast the class of the load, we trained an LSTM
neural network that takes as input a window of features X and
produces output Y, which is the prediction of the class of Y.
Last, to forecast the type of application, we trained an LSTM
neural network that takes as input a window of features X and
produces output Y, which is the prediction Y of the NetApp
category. The size of the time window used in all AI models
training is 30s, having as input a 2D array with the length of
data in 30s frames. Other models, receive as input 1D array
(with the number of features as dimension) and outputs the
class of load, the class (i.e., category) of traffic type, or the
actual UL/DL bitrate depending on the task.

V. EXPERIMENTAL RESULTS

This section presents the experimental results on the teleme-
try data collected by the 5G testbed. We evaluate the perfor-
mance of the AI models by means of accuracy, precision, recall
and Mean Squared Error (MSE) according to the learning task.

A. Preliminary Analysis on 5G Datasets

By using the telemetry datasets coming from the 5G testbed,
we use the Data Analytics Pipeline to train the AI models
and expose the AIaaS predictive tasks as APIs. We also
benchmark over different ML and DL methods to measure
their performance by means of accuracy, precision, recall,
and MSE based on the learning task. More specifically, we
use different ML and DL models to achieve three tasks. A
regression task, where we predict the future value of the
5G cell uplink / downlink bitrate towards QoS prediction.
A binary classification, where we predict the class of the
load (i.e., currently low-high classes are supported). Finally,
a classification task, where we predict the type of the traffic
/ application (i.e., NetApp) that allocated resources in each
experiment to understand its behavioural pattern.

B. Analytic Tasks and Results

In table III, we present the evaluation measures of the above-
mentioned algorithms. The results are derived by using the
predictions of each model to assess the performance (i.e., in
the classification or regression tasks) of the test set. We also
measure the training time required to let the model converge to
a high accuracy score. We observe that most of the algorithms
perform very well on predicting the NetApp type using the
5G dataset. More specifically, Table III shows that Random
Forest, XGBBoost, and LSTM with DNN achieve higher than
95% accuracy along with precision and recall. Random Forest
achieves the best overall performance (96.5%), and also has
the lowest training time.

The same approach was adopted to gather the experimental
results for the CPU load classification related with the Experi-
ment 1. As it is depicted in Table IV, Random Forest achieves
the highest performance with 97.7%.
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Classification (Traffic/Application Type)
Algorithms Accuracy Precision Recall Time
Random Forest 96.5 96.6 96.4 1.01
Logistic Regres-
sion

73.7 75.2 73.7 0.58

XGBBoost 95.4 95.5 95.4 3.65
DNN 82.0 82.0 82.0 56.23
LSTM+DNN 95.11 95.13 95.11 61.01

TABLE III
APPLICATION CLASSIFICATION - RESULTS IN % AND SECS

Classification (CPU Load for Experiment 1)
Algorithms Accuracy Precision Recall Time
Random Forest 97.7 97.7 97.7 0.37
Logistic Regres-
sion

71.0 71.6 71.0 0.05

XGBBoost 94.0 94.0 94.0 1.27
DNN 86.5 87.0 86.5 20.68

TABLE IV
LOAD CLASSIFICATION - RESULTS IN % AND SECS

The tables that are following present the MSE of the test
set for predicting the Uplink and Downlink bitrate for each
of the experiments, respectively. Again by following a similar
approach, we evaluate the different algorithms by predicting
the next value of the bitrate in every direction. While all algo-
rithms perform well (i.e., with very low MSE), LSTM+DNN
model has the best overall performance, especially in cases
where other models struggle to predict the next value. For
instance, in Experiment 3 of Table V, the next value of the
Uplink bitrate is predicted with very low error.

Bitrate Regression (Experiment 1)
Algorithm Uplink Downlink
Random Forest 0.00016 0.00017
DNN 0.002 0.0009
XGBBoost 0.0007 0.0004
LSTM+DNN 0.00021 0.00008

Bitrate Regression (Experiment 2)
Algorithm Uplink Downlink
Random Forest 0.00084 0.00084
DNN 0.00085 0.00085
XGBBoost 0.00084 0.00084
LSTM+DNN 0.000095 0.00016

Bitrate Regression (Experiment 3)
Algorithm Uplink Downlink
Random Forest 0.022 0.00036
DNN 0.022 0.00053
XGBBoost 0.022 0.00039
LSTM+DNN 0.0043 0.00014

TABLE V
BITRATE NEXT VALUE - RESULTS IN MSE

VI. CONCLUSION

This paper presents a resource allocation predictive model
using Machine Learning and Deep Learning to correlate traffic
monitored from NetApps with the optimal resources to be
allocated to enhance the core network scheduling capabilities.
It presents the 5G testbed, the experiments conducted and the
datasets, as well as the Data Analytics Pipeline accompanied
by a set of learning tasks. We also present the AI models that
we trained to collect the first experimental results as an AI as a
Service (AIaaS) capability. The aim is to increase the reuse of

the network resources, to optimally allocate resources based on
the NetApp category and to support the seamless exploitation
of the provided AI mechanisms.

In the near future, we plan to enrich the variety of pre-
dictions with more complex 5G NetApps and learning tasks.
Enriching the AI models to learn additional patterns from
the 5G applications besides PPDR scenarios, like streaming
scenarios either in the traditional streaming scenario (downlink
traffic) or User Generated Content (UCG) scenarios that focus
on uplink traffic, will enable to update them with near real-
time resource allocation characteristics.
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