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Abstract—Combating crime and conditions of high physical
risk in cities, the environment, and critical infrastructures re-
quires a multifaceted approach. For sensitive problems, such
as advanced situational awareness in the fields of civilian ap-
plications and environmental protection, Artificial Intelligence
(AI) and Neural Network (NN) adoption has been slow due to
concerns about their reliability, leading to several algorithms
for explaining their decisions. Despite the possibilities for AI in
critical infrastructure protection and civilian applications, many
challenges still exist. For instance: (i) there are complex and
high risks meaning that AI systems need to be transparent and
interpretable to gain decision-maker trust; (ii) AI models may
be vulnerable to imperceptible manipulations of input data even
without any knowledge about the AI technique that is used;
(iii) the need to efficiently process distributed, multimodal and
big data coming from different, but however cheap, Internet
of Things (IoT) and sensory devices (e.g., drones, cameras,
accelerometers, telemetry, geomagnetic field, and proximity sen-
sors); and (iv) many AI methods based on Machine Learning
(ML) require huge amounts of training data, resulting in a
Big Data computation problem. We introduce, benchmark, and
demonstrate an adversarial explanations approach that we can
efficiently tackle both adversarial robustness and explanation
complexity of AI systems. To achieve this, we train robustified
NNs and transparent explainers on big imagery data and leverage
the attacks’ knowledge as explanations to gain greater fidelity to
the AI model. The merit of the proposed approach is that the
new and robustified model has a great performance against new,
unseen types of perturbations and attacks. This way, we pave
the adoption of more informed and responsible AI integration in
sensitive application domains.

Index Terms—adversarial explanations, robust and trustwor-
thy explainability, AI model interpretability with confidence
scores

I. INTRODUCTION

The target audience for crime prevention efforts in civilian
applications is broad, including residents, Law Enforcement
Agencies (LEAs), First Responders, and Government Offi-
cials. Recent developments in Artificial Intelligence (AI) have
resulted in breakthroughs for many classical AI applications,
such as computer vision, edge AI, and more. As a result, there
are many efforts to exploit these developments for advanced
situational awareness in civilian applications to safeguard the
protection of people and the environment. These applications
mainly serve object detection, tracking and surveillance, recon-
naissance, threat evaluation, intelligence analysis, education,
and training. However, despite the possibilities for AI in

civilian applications, there are many challenges to consider.
For instance, (i) civilian AI-systems need to be transparent
and interpretable to gain decision maker trust and to facilitate
real-time risk analysis of the landscape; this is a challenge
since many AI-techniques are black boxes that lack sufficient
transparency and interpretability of AI models preserving the
internals of the decision paths producing the results, (ii)
civilian AI-systems need to be robust and reliable; this is
a challenge since it has been shown that AI-methods may
be vulnerable to imperceptible manipulations of input data
even without any knowledge about the AI-method that is
used, (iii) distributed and multimodal big data are coming
from different, but however cheap, Internet of Things (IoT)
and sensorial devices (e.g., drones equipped with cameras,
accelerometers, geomagnetic field and proximity sensors); this
is a challenge since these data require different processing
modalities (i.e., online vs. offline; federated vs. centralized),
alignment, cleaning, and fusion to feed AI-systems, and (iv)
many AI-techniques are based on Machine Learning (ML)
that requires huge amounts of training data; this is challenge
since there is often a lack of precise and sufficient data
in civilian applications and environmental monitoring. These
concerns about explainability and adversarial robustness apply
to a variety of ML algorithms [1], however, in this work, we
focus on the sub-field of Neural Networks (NNs) tackling the
challenges of adversarial explanations to derive trustworthy
and informed decisions.

State-of-the-Art (SotA) methods attempting to explain the
reasoning behind NN decisions on top of imagery data fo-
cus on the generation of heatmaps or bounding boxes that
indicate regions of input salient to the NN’s output [2].
The problem with these explanations is that they do not
report beyond a rough attention area, making it difficult to
infer objective quantitative metrics and qualities about the
reliability, confidence, and trustworthiness under the region of
consideration. Also, most of the explanatory methods used to
describe the region of consideration rely on the linearisation of
a highly non-linear network, and capture relevant details only
for specifically crafted or exact input [3], heavily depending
on the data quality, veracity, and availability from the field of
application. Adversarial attacks or the synthetic generation of
adversarial training examples (i.e., adversarial examples) [4]
may randomly change the NN’s output. The critical issue



is that the input perturbations from adversarial attacks do
not align with the heatmaps or bounding boxes generated by
the SotA explanation techniques. That is, without linking the
robustness gained by the adversarial attacks with explanations
towards an adversarial explanations approach, the NN decision
has limited fidelity and validity.

Summarising, each identified attack or issue would trigger
a different NN decision intervention to take the correspond-
ing action. In this work, we combine adversarial robustness
and explanation methods with a confidence score to help a
decision-maker derive abundant insights and reports with high
trust. We ground the NN models and adversarial explanation
methods developed in promptly detecting fire incidents, as a
case study for critical civilian applications applied to environ-
mental protection. The merit of adversarial explanations for
the target audience is the ability to: (i) thoroughly investigate
the facts of each case in real-time with abundant evidence; (ii)
allow for transparency and public scrutiny; and (iii) ensure
that LEAs, First Responders, and Government Officials are
informed and accountable for their actions.

We harvest imagery data collected in real-time from cameras
embedded in drones participating in environmental monitoring
missions and situational awareness applications to explain and
reason about different aspects that may cause attacks on AI
systems or harm an AI model’s decision. The merit of the
application case is of high value for people’s protection and
environmental preservation because when a drone performs
flights, it may also detect environmental crimes, including
fires with augmented knowledge about adversarial attacks. The
drone can then classify fires correctly with high accuracy, and
promptly report back the event to a decision maker, even when
adversarial attacks are present. The contributions of this paper
are, as follows:

• Harvests information from video streamed over drones
equipped with high-resolution cameras for surveillance
and public safety cases, environmental monitoring, and
wildfire management.

• Applies a meta-algorithmic approach to improve AI
systems and introduce a novel solution on adversarial
explanations for situational awareness (e.g., contextually
enriched and augmented data for object detection, ad-
versarial robustness, and explanations with confidence
score) to illustrate key attributes salient for classification
and abundant knowledge, which is a much more reliable
method of explaining an NN’s decision.

• Tackles both NN’s resilience and robustness, along with
explanation complexity and fidelity by applying adversar-
ial explanation methods. We have developed an extended
AI pipeline to gain insights into how the AI models arrive
at their conclusions, benchmark their performance, and
reason with confidence scores about the causes that have
resulted in their classification categories.

The rest of the paper is organized as follows: Section
II provides the current literature review around innovative
methods of AI for robustifying and explaining their behavior.

Section III offers a detailed overview of the dataset. Section IV
presents the technical architecture of the proposed AI pipeline
enriched for adversarial explanations and confidence scores.
Section V discusses our experimental results, and Section VI
concludes the paper and provides insights to be pursued in the
future.

II. LITERATURE REVIEW

Numerous studies have delved into innovative applications
of adversarial robustness and explainability. Among the no-
table contributions, researchers have explored advanced adver-
sarial robustness algorithms, XAI, and hybrid approaches com-
bining both merits of adversarial robustness and explanatory
analysis. The breadth of research underpins the importance
of leveraging diverse AI technologies to mitigate AI systems
risks either due to data quality issues or adversarial attacks on
AI models. In the proposed work, we improve the reliability
and resilience of NNs with augmented examples, informed
explanations, and reported confidence scores.

Gao et al [5] study the adversarial robustness of deep
neural networks for classification tasks. Through concrete
classification examples and matrix-theoretic derivations, they
show that the adversarial fragility of neural network-based
classifiers comes from the fact that very often neural network
only uses compressed features to perform the classification
tasks. Thus in adversarial attacks, one needs to add pertur-
bations to change the small subsets of features used by the
neural networks. Their theoretical results show that the neural
network’s adversarial robustness can degrade as the input
dimension d increases.

Benchama et al. [6] introduce an intrusion detection sys-
tem that harnesses Generative Adversarial Networks (GANs),
Multi-Scale Convolutional Neural Networks (MSCNNs), and
Bidirectional Long Short-Term Memory (BiLSTM) networks,
supplemented by Local Interpretable Model-Agnostic Expla-
nations (LIME) for interpretability. They generate synthetic
network traffic data, encompassing both normal and attack
patterns, and feed it into an MSCNN-BiLSTM architecture
for intrusion detection. The integration of LIME allows them
to explain the model’s decisions.

Card et al. [7] explore the adversarial vulnerabilities of
a neural network-based malware classification system under
the spectrum of dynamic and online analysis environments.
They train a Feed Forward Neural Network (FFNN) to clas-
sify malware categories and use the state-of-the-art method,
SHapley Additive exPlanations (SHAP) to inform the adver-
sarial attackers about the features with significant importance
on classification decisions. Their results demonstrate a high
evasion rate for some attacks’ instances, showing a clear
vulnerability of a malware classifier for such attacks.

Luo et al. [8] investigate the privacy risks of Shapley value-
based model interpretability methods using feature inference
attacks, i.e., reconstructing the private model inputs based on
their Shapley value explanations. They present two adver-
saries: (i) the first adversary reconstructs the private inputs
by training an attack model based on an auxiliary dataset and

https://github.com/marcotcr/lime
https://github.com/marcotcr/lime
https://shap.readthedocs.io/en/latest/


black-box access to the model interpretability services; and (ii)
the second adversary, even without any background knowl-
edge, successfully reconstructs most of the private features
by exploiting the local linear correlations between the model
inputs and outputs.

Li et al. [9] study Graph Neural Network (GNN) explainers
under adversarial attacks. They found that an adversary who
is slightly perturbing the graph structure can ensure the GNN
model makes correct predictions, but a GNN explainer may
yield a drastically different explanation on the perturbed graph.
They designed two methods (i.e., one is loss-based and the
other is deduction-based) to realize the attack and evaluated
their attacks on various GNN explainers showing that the
explainers are fragile.

Woods et al. [10] extend a methodology for adversarial
explanations (AE) to state-of-the-art reinforcement learning
frameworks, including MuZero [11], and propose improve-
ments to the base agent architecture. They demonstrate that
this technology has two applications: (i) for intelligent decision
tools; and (ii) to enhance training frameworks. In a decision
support context, adversarial explanations help a user make
the correct decision by highlighting those contextual factors
that would need to change for a different AI-recommended
decision.

Vascotto et al [12] propose a test to evaluate the robustness
of non-adversarial perturbations and an ensemble approach
to analyse more in-depth the robustness of XAI methods
applied to neural networks and tabular datasets. They show
how leveraging manifold hypothesis and ensemble approaches
can be beneficial to an in-depth analysis of the AI model’s
robustness.

Chowdhury et al. [13] employ the notions of necessity and
sufficiency from causal literature to come up with a novel
explanatory technique called SHifted Adversaries using Pixel
Elimination (SHAPE), which satisfies all the theoretical and
mathematical criteria of being a valid explanation. They show
that SHAPE is an adversarial explanation that fools causal
metrics that are employed to measure the robustness and
reliability of popular importance-based visual XAI methods,
outperforming popular explanatory techniques like Grad-CAM
and Grad-CAM++ [14].

The practical application of AI on a large scale neces-
sitates the ability to understand and justify the predictions
and decisions made. This requirement underpins the pivotal
role of XAI and adversarial robustness with guarantees in
fostering trust between AI systems and human actors. By
providing transparency and clarity in the decision-making
process, adversarial explanations bridge the gap between the
complex algorithms employed by AI and the in-depth under-
standing of end users. This transparency cultivates trust and
confidence in AI systems, thereby facilitating their widespread
adoption and integration into various domains with high and
safe guarantees, including civilian applications. In essence,
the ability of AI to offer interpretable explanations for its
decisions is paramount for realising its full potential and ensur-
ing harmonious collaboration between humans and machines.

Existing works are limited either by only addressing the
adversarial robustness or the explainability aspects to derive
interpretable cause-effect insights. Compared to the above-
mentioned approaches, the scientific contribution of this work
is the combinatorial approach toward adversarial explanations
to derive more informed and interpretable decisions with
objective scores. We benchmark and validate our approach
in usage scenarios of situational awareness applications and
environmental monitoring. The differentiation of the proposed
approach from existing efforts contributes to faster root cause
identification for object segmentation and detection tasks and
has a direct derivative in the development of more robust and
trustworthy solutions.

III. DATASET OVERVIEW

A. Fire Images

For advanced situational awareness in critical infrastructures
and forest protection, fire images are a diverse collection de-
picting various fire incidents. These images have been sourced
from multiple datasets to ensure a wide range of fire types,
sizes, and environmental contexts. They include a variety
of fire incidents and environmental conditions captured from
different heights with different resolutions. The data sources of
this work are (i) fire images captured by the drone camera of
the civilian and environmental application we have developed
for this study, (ii) public fire images created for the NASA
Space Apps Challenge in 2018, and (iii) a publicly available
Fire Detection Dataset. The fire images are characterized by
the following features:

• Diversity: Images include indoor and outdoor fires, rang-
ing from small flames to large conflagrations.

• Complexity: Scenes contain varying levels of smoke,
lighting conditions, and occlusions.

• Annotations: Each image is annotated with bounding
boxes around the fire regions, providing ground truth for
AI model training and evaluation.

• Big Data: Both by means of volume and velocity, as
large quantities of data measured in gigabytes have been
used for training, while the data has been captured by a
camera embedded in a drone and processed in real-time.

The total gigabyte size of harvested images is 10GB. A
sample of the dataset is shown in Figure 1.

B. Adversarial Attack Images

The adversarial attack images comprise images intentionally
modified to deceive the object detection module of an AI
system. These adversarial examples are designed to test the
robustness of the AI model under challenging conditions. Es-
sentially, the same images have been perturbed and alternated
by adversarial methods, as detailed below.

C. Dataset Statistics and Attacks

In the experiments of YOLO [15] and Grad-CAM [16]
using a CNN-ResNet50-Classifier, the dataset consists of the
above-mentioned fire images and fire images after they had
been attacked. So in the conducted experiments, there are two

https://github.com/jacobgil/pytorch-grad-cam
https://www.kaggle.com/datasets/phylake1337/fire-dataset
https://www.kaggle.com/datasets/phylake1337/fire-dataset
https://www.kaggle.com/datasets/atulyakumar98/test-dataset


Fig. 1. Training Data (i.e., normal fire object = 0; attacked fire object = 1)
Training sample data

classes, fire (benign) and attacked fire, and a clear discrimi-
nation between the two classes with the criteria of the attacks.
The dataset consists of a balanced number of images from both
categories (i.e., normal and attacked) to ensure fair evaluation.
Table I provides a summary of the dataset statistics.

TABLE I
DATASET STATISTICS

Category Training Set Test Set
Fire Images 3527 150
Adversarial Attack Images 3527 150
Total Number 7054 300

IV. LOGICAL MODULES AND ADVERSARIAL
EXPLANATIONS ARCHITECTURE

The Adversarial Explanations Architecture and its logical
modules are shown in Figure 2, and include (i) Data Collection
using a camera embedded in a drone; (ii) Preprocessing and
Analytics Module which is responsible for image curation,
cleaning, and performs resizing, and filtering; (iii) Training
and Evaluation of a CNN Model which serves as the baseline
for the classifier to be used for the initialization of the Attacks;
(iv) Adversarial Imagery Examples Generation through the
CNN-Attacked Detector which takes as input the preprocessed
images, passes them through the initialized evasion attacks
using the ART library to modify them for generating adver-
sarial imagery examples; and (v) Adversarial Examples usage;
for the Benchmarking, and Validation through informed and
interpretable XAI Features and Confidence Scores. Specific

Fig. 2. Adversarial Explanations Architecture

information necessary for reproducing the results of this study
is provided in this paper regarding the datasets collected
and used, the AI Models and their dimensions, the hardware
specifications, and the statistical analysis. More details can be
also provided upon targeted requests via email to the authors.
The following sections present the logical modules in detail.

A. Data Collection

The first logical module is about the collection of the data
after being recorded and streamed over a camera embedded in
a drone. After steaming the data via a streaming media server,
we store the data for local processing and training in the cloud.

B. Preprocessing Module

The preprocessing module ensures that the features of
the collected images are suitable for a situational awareness
scenario tackling wildfires and environmental monitoring. In
this step, the images are resized, reshaped, or filtered to ensure
abundant feature extraction. The preprocessing module uses
Keras and skimage. After performing visual data exploration,
we then apply filtering, resizing, and data normalization under
a specific numeric range, i.e., [0-1]. We then prepare and split
the images to perform multiclass or binary classification. The
multiclass classification aims to predict the image category
and report if the AI system has been attacked, while the
binary classification only distinguishes between attacked (i.e.,
malicious) and non-attacked (i.e., normal) images. The images
are transformed into arrays using Keras. Next, we apply, as
detailed below, filtering methods to clean and make the dataset
features more visible. More specifically, we use the Simple
Linear Iterative Clustering (SLIC), which is a K-Means-
based image segmentation method to achieve higher model
performance results. This algorithm performs K-means in the
5D space of color information and image location.

C. Training and Evaluation of a CNN Model

We then train and evaluate a CNN Model on the prepro-
cessed data which is later used as the baseline classifier for
the initialization of a given attack method.

https://adversarial-robustness-toolbox.readthedocs.io/en/latest/
https://keras.io/
https://scikit-image.org/
https://keras.io/
https://docs.gimp.org/2.10/ja/gimp-filter-slic.html
https://docs.gimp.org/2.10/ja/gimp-filter-slic.html


The training and evaluation of the CNN Model facilities
to build a model that serves as the baseline to investigate
its robustness measured through accuracy under two concrete
conditions: (i) after applying the evasion Projected Gradient
Descent (PGD) attack of ART library; and (ii) after performing
adversarial training to quantify at which percentage the accu-
racy of the CNN Model can recover from the attack as shown
in V. To generate the Adversarial Imagery Examples, we use
the classifier of the previously trained CNN Model to initiate
informed (i.e., labeled) PGD attack. The data augmented with
labels is then used as the Adversarial Imagery Examples
for Experimentation and Evaluation with XAI Features and
Confidence Scores. During the AI model training, we adhere
to a standard methodology by partitioning the dataset into
distinct training (70%) and test sets (30%) to rigorously assess
the performance accuracy of our model. Furthermore, to build
the CNN Model, we use different Keras layers, including
Sequential, Dense, Flatten, Conv2D, MaxPooling2D, Activa-
tion, and Dropout. The activation functions are different for
multiclass and binary classification according to the supported
learning objective, and thus training task. More details for the
configuration parameters of the CNN model can be found in
Table II. The accuracy of the CNN Model is evaluated using
the test set and classification reports.

D. Adversarial Imagery Examples Generation

Adversarial Machine Learning (AML) by definition, is a
class of data manipulation techniques that cause alterations
in the behavior of Artificial Intelligence (AI) systems while
going unnoticed by humans. These alterations can cause
serious vulnerabilities to mission-critical applications, such as
civilian or environmental monitoring applications, attacks on
autonomous vehicle navigation systems, surveillance systems,
and more. While the adversarial examples are useful for
augmenting benign datasets, there is an imminent need for
end-to-end frameworks that enable the exploration of realistic
adversarial attacks with varying threat models. For instance,
in our case, we launch realistic attacks for image detection
and classification tasks. This enables early adversary detection
before people or public places are in danger due to attacks or
other harmful situations. Attacks on the AI system may come
in at different stages, however, in this scenario, we assume
that the data are being modified by the adversary at the early
stage of the collection or processing of the data.

1) Evasion Attacks: In this study, we consider adversaries,
under the notion of evasion attacks, that cause an AI system to
inaccurately identify the characteristics of the data. Through
the application of augmentation, perturbations, and noise, we
managed to strengthen a detection system. In this context, the
adversary tries to puzzle the AI system during the inference
mode by manipulating the data. For instance, the adversary
may exploit a vulnerability in the drone’s camera and compro-
mise the integrity of the captured data by maliciously crafting
it. We proceed by further augmenting our dataset with noise
and using PGD attack method to evaluate its robustness under
adversarial setups and defense (e.g., TotalVarMin, Jpeg-

Compression, and SpatialSmoothing) algorithms for recovery.
Benchmarking over the defense algorithms was performed, but
the recovery rate did not exceed 20% and thus it was not in-
cluded in our experimental evaluation. The augmented dataset
results in generating adversarial imagery examples using the
ART library. As previously mentioned for the initialization of
the attacks, we used a pre-trained CNN Model for baseline.

The generation of the Adversarial Imagery Examples using
PGD attack, is depicted in Figure 3 and Figure 4.

Fig. 3. Preprocessing Module

Fig. 4. Preprocessing Module with SLIC filter

E. Experimentation and Evaluation through XAI Features and
Confidence Scores

To benchmark the adversarial robustness with explanations,
we use the adversarial imagery examples to train and evaluate
a Deep Neural Network (DNN). The evaluation of the DNN
model is essential for this task, to establish the performance,
efficiency, and robustness of the DNN. The usage of the
adversarial examples is crucial and in combination with the
experimentation and evaluation through abundant XAI Fea-
tures and Confidence Scores can give significant results for the
performance and the robustification of the DNN Models. Last,
after performing the evaluation, the DNN model both trained
on labeled adversarial and non-adversarial data, is ready to
harvest images and classify them correctly. Once the end user
(e.g., an officer, an administrator, etc.) receives the predicted
score of an image is then able to take informed actions.

In 5 the overall methodology of the paper is presented.
At first level, is the adversarial generation that is used to
for generating attacked images instances that will be used

https://adversarial-robustness-toolbox.readthedocs.io/en/latest/
https://openreview.net/forum?id=SyJ7ClWCb
 https://arxiv.org/abs/1608.00853
 https://arxiv.org/abs/1608.00853
 https://arxiv.org/abs/1704.01155
https://adversarial-robustness-toolbox.readthedocs.io/en/latest/


to complete the dataset containing both the benign and the
attacked images as discussed above. Using this new dataset
(benign and attacked images) YOLOv8, and a CNN-based
Classifier is built, training on two classes of data, ’fire’ (
denoting the normal instances) and ’attacked fire’ (denoting
the adverasial examples). In the CNN classifier Grad-CAM is
used to get the saliency pixel importance map.

Fig. 5. Overall Methodology of this work

V. YOLO & XAI IMPLEMENTATION

The Adversarial Imagery Examples are used to investigate
the behavior of XAI-DNN models (i.e., in this case, a YOLO
Model, and a CNN with Grad-CAM) on a fire image detec-
tion and segmentation scenario for environmental situational
awareness.

In this section, we present two approaches to extract expla-
nations of visual data, both with YOLO bounding boxes and
Grad-CAM feature importance heatmaps.

A. YOLOv8 Model

YOLOv8 [15] builds on the foundational principles of its
predecessor model but introduces several architectural im-
provements to enhance both accuracy and efficiency. One of
the key enhancements in YOLOv8 is the incorporation of
a more sophisticated backbone network, designed to better
capture intricate features from input images. This backbone
employs a combination of residual blocks, cross-stage par-
tial networks (CSPNet), and an enhanced path aggregation
network (PANet), which both contribute to improving feature
extraction and multi-scale feature fusion. These advancements
enable YOLOv8, depicted in Figure 6, to handle complex
detection tasks with higher precision, particularly in scenarios
involving small or overlapping objects.

YOLOv8 in our case serves as a strong detector and
classifier, and at the same time provides explanations through
its bounding boxes prediction that surround the detected object
and class, reporting a Confidence Score.

Another significant feature of YOLOv8 is its optimized
head architecture, which refines the prediction process for
bounding boxes, object scores, and class probabilities. The
model integrates advanced techniques such as anchor-free

Fig. 6. YOLOv8 Architecture via Wikimedia Commons

detection and dynamic convolution, which reduce computa-
tional complexity while maintaining high detection accuracy.
Additionally, YOLOv8 leverages an efficient neck structure
that enhances the flow of information between the backbone
and the head, further boosting performance. Furthermore,
YOLOv8 is available in different sizes, i.e., nano, small,
medium, large, and extra-large, allowing users to select a
model that best fits their specific requirements in terms of
speed, memory, and computational resources. The difference
between these models is in the number of layers and neurons
of each layer. Figure 6 presents an abstract architecture of
the YOLOv8 model, consisting of its main components, the
backbone, and the head.

In this scenario, the YOLO data and configuration file con-
sists of two classes in which the YOLO is trained. The ”fire”
class which corresponds to the normal/benign images with
fire along the coordinates of the bounding boxes surrounding
fires. So there is a clear distinction between images that have
normal fire and images that have been attacked and altered.
The ”attack fire” class corresponds to the images with fire that
has been attacked along the coordinates of the bounding boxes
surrounding these ”attacked” fires. Thus the model receives
the data mentioned above(benign fire images & attacked fire
images) and can predict either fire (benign) or attacked fire as
seen in the figures 7 and 8.

B. Grad-CAM on a CNN-based Classifier

1) Grad-CAM Overview: Grad-CAM [16] is a visualization
technique that highlights the regions in an input image that
is most influential in CNN’s decision-making process. By
utilizing the gradients of the target class flowing into the
final convolutional layer, Grad-CAM produces a heatmap that
emphasizes the important regions for predicting the class.

2) Application to Fire Images and Adversarial Fire Clas-
sification Tasks: The primary objective of our CNN-based
classifier is to accurately identify images containing fire or fire
under adversarial attack. To understand the model’s reasoning
and robustness against such attacks, we employ Grad-CAM
to visualize the decision-making process for both original fire
images and adversarially attacked fire images.

3) Implementation Details: We use Grad-CAM by follow-
ing the steps below:

https://goo.gl/VLCRBB


1) Train a CNN classifier to classify between benign fire
and attacked fire. The classifier builds on ResNet-50 [17]
and uses an additional layer of neural network to per-
form the classification.

2) Pass the input images through the CNN to obtain feature
maps from the last convolutional layer.

3) Compute the gradients of the target class score to these
feature maps.

4) Average the gradients over all spatial locations to obtain
the neuron importance weights.

5) Perform a weighted combination of forward activation
maps, followed by a ReLU activation, to produce the
Grad-CAM heatmap.

The resulting heatmaps are superimposed on the original
images to provide intuitive visual explanations, highlighting
the critical regions influencing the classifier’s decisions to the
detected class.

VI. EXPERIMENTAL RESULTS

This section describes the experimental results of the ad-
versarial explanations approach to derive informed decisions
and ground them with a real application scenario coming
from an environmental situational awareness application, i.e.,
a case study on wildfires. It is critical to have the capacity to
evaluate the decisions of an AI Model specifically in the case
of wildfires and life protection.

The experiments were conducted on local machines
equipped with 15.4GB of memory and 12 CPUs, each op-
erating at 2.60 GHz.

The preprocessing phase took approximately ˜15 minutes,
while training of the CNN model - baseline classifier required
around ˜40 minutes for the entire dataset. Moreover, the
generation of adversarial examples consumed ˜20 minutes and
finally, the adversarial training of the CNN lasted about ˜170
minutes.

The training of the YOLOv8 took ˜6 hours to achieve
the reported results and the CNN-ResNet50-Classifier training
took ˜2.5 hours.

TABLE II
CNN CONFIGURATION PARAMETERS

Num of Epochs 20
Batch Size 15
Input Layer (400, 500)

units:8
kernel size: (3,3)

activation function: relu
max pool size: (2,2)

dropout: 0.25
Output Layer activation function: softmax
Optimizer adam
Crossentropy Loss sparse categorical crossentropy

Table IV presents the configuration parameters of the CNN
and YOLO models.

TABLE III
YOLO CONFIGURATION PARAMETERS

n parameters layer arguments
0 928 Conv2D [3, 32, 3, 2]
1 18560 Conv2D [32, 64, 3, 2]
2 29056 BottleneckCSP [64, 64, 1, True]
3 73984 Conv2D [64, 128, 3, 2]
4 197632 BottleneckCSP [128, 128, 2, True]
5 295424 Conv2D [128, 256, 3, 2]
6 788480 BottleneckCSP [256, 256, 2, True]
7 1180672 Conv2D [256, 512, 3, 2]
8 1838080 BottleneckCSP [512, 512, 1, True]
9 656896 SPPF [512, 512, 5]

10 0 Upsample [None, 2, ’nearest’]
11 0 Concat [1]
12 591360 BottleneckCSP [768, 256, 1]
13 0 Upsample [None, 2, ’nearest’]
14 0 Concat [1]
15 148224 BottleneckCSP [384, 128, 1]
16 147712 Conv2D [128, 128, 3, 2]
17 0 Concat [1]
18 493056 BottleneckCSP [384, 256, 1]
19 590336 Conv2D [256, 256, 3, 2]
20 0 Concat [1]
21 1969152 BottleneckCSP [768, 512, 1]

A. Adversarial Training Evaluation

Evasion attacks on AI / ML models are essential to build a
robust system that not only can identify the class of the data
but also estimate if the data is being attacked or manipulated
by an external factor. Table V gives a summary of the results
of the Adversarial Imagery Examples evaluation regarding the
accuracy of the baseline CNN Model. We have used the K-
fold cross-validation method in all experiments. This method
enables the model’s accuracy measurement in different data
samples and avoids overfitting the data over the model before
the dataset is split into different training and test sets. As is
shown, the performance of the baseline CNN Model has an
average of 0.87 accuracy in 5-folds. On the other hand, the
PGD attack method has imposed a major influence on the
model’s accuracy, with a significant accuracy degradation of
0.108. In addition, as reported in V, the robustified CNN has
an average of 0.864 in 5-folds, which means that adversarial
training seems to be an effective way to recover the overall
model robustness. In this paper we only use PGD for our
experimentation, however we plan to evaluate our experiments
with multiple attacks in the future.

B. YOLOv8 Evaluation

The YOLOv8 Model has been evaluated using several
key metrics that measure its performance in object detection
tasks. These metrics differ from the metrics in standard image
classification since object detection includes the bounding box
predictors besides the classes. These metrics help to quantify
the accuracy, precision, and overall effectiveness of the model
in identifying and localizing objects, including fire, within
images. Among these metrics, mean Average Precision (mAP)
is one of the most important, and is used in this work for
the YOLOv8 experiments. Along these metrics, we further
use standard ML metrics, such as accuracy and precision to



TABLE IV
CNN-RESNET50-CLASSIFIER CONFIGURATION PARAMETERS.

Layer Type Arguments
Conv2d (3, 64, kernel size=7, stride=2, padding=3)

BatchNorm2d (64)
ReLU (inplace=True)

MaxPool2d (kernel size=3, stride=2, padding=1)
Layer 1 (Bottleneck Blocks)

Conv2d (64, 64, kernel size=1, stride=1)
BatchNorm2d (64)

Conv2d (64, 64, kernel size=3, stride=1, padding=1)
BatchNorm2d (64)

Conv2d (64, 256, kernel size=1, stride=1)
BatchNorm2d (256)
Downsample Conv2d (64, 256, kernel size=1, stride=1)

Layer 2 (Bottleneck Blocks)
Conv2d (256, 128, kernel size=1, stride=2)

BatchNorm2d (128)
Conv2d (128, 128, kernel size=3, stride=2, padding=1)

BatchNorm2d (128)
Conv2d (128, 512, kernel size=1, stride=1)

BatchNorm2d (512)
Downsample Conv2d (256, 512, kernel size=1, stride=2)

Layer 3 (Bottleneck Blocks)
Conv2d (512, 256, kernel size=1, stride=2)

BatchNorm2d (256)
Conv2d (256, 256, kernel size=3, stride=2, padding=1)

BatchNorm2d (256)
Conv2d (256, 1024, kernel size=1, stride=1)

BatchNorm2d (1024)
Downsample Conv2d (512, 1024, kernel size=1, stride=2)

Layer 4 (Bottleneck Blocks)
Conv2d (1024, 512, kernel size=1, stride=2)

BatchNorm2d (512)
Conv2d (512, 512, kernel size=3, stride=2, padding=1)

BatchNorm2d (512)
Conv2d (512, 2048, kernel size=1, stride=1)

BatchNorm2d (2048)
Downsample Conv2d (1024, 2048, kernel size=1, stride=2)

AdaptiveAvgPool2d (output size=1)
Linear (2048, 2)
Loss Crossentropy loss

Optimizer adam

TABLE V
CNN ADVERSARIAL TRAINING RESULTS

CNN Training CNN Attacked - PGD Robustified CNN
k-fold Accuracy
1 0.87 0.13 0.85
2 0.90 0.10 0.89
3 0.87 0.10 0.89
4 0.84 0.11 0.90
5 0.87 0.10 0.79
Avg 5-fold 0.87 0.108 0.864

evaluate the performance of YOLOv8, as an object detection
classifier, and for the baseline CNN-based classifier where
Grad-CAM was used.

1) Mean Average Precision (mAP): The mAP metric is
widely used to evaluate the performance of object detection
models. It combines precision and recall across different
threshold levels (e.g., confidence) to provide a single per-
formance score. Precision measures the proportion of true
positive detections (correctly identified fires) out of all positive
detections made by the model (including false positives).

Recall measures the proportion of true positive detections out
of all actual instances of the object in the dataset (including
false negatives). The mAP is calculated by taking the average
of the Average Precision (AP) for each class. AP is determined
by plotting the precision-recall curve for each class and calcu-
lating the Area Under the Curve (AUC). In the fire detection
context, a high mAP score indicates that the YOLO model
effectively identifies and localizes fires and humans with few
false positives and false negatives.

An important clarification on Precision and mAP, and on
how we used them in this paper. Precision is calculated for
both CNN and YOLO based solely if a class is detected or
not. It does not take into consideration the IoU (Intersection
over Union). So, in case of YOLO if the there is a detection
of a class(even for one object), we count it as True Positive
(TP) regardless of the predicted box coordinates.

We present some baselines, from some of the algorithms
used in this work, on general benchmarks, that can be used to
compare the performance of our models. Table VI shows the
metrics of the Res-Net50 on CIFAR-100 dataset, and YOLO-
v8 on the COCO dataset.

Table VII summarizes the metrics values used to evaluate
the models. Both kind of models the YOLOv8 large model
and the CNN-ResNet50, achieved an impressive accuracy
of 0.95 and 1.0 respectively. Accuracy is a crucial metric
that indicates the correctly predicted instances out of the total
instances. A high accuracy value signifies the model’s effec-
tiveness in correctly identifying objects within the dataset. The
YOLOv8 small model achieved an accuracy of 0.925, which
is slightly lower than the large model. In terms, of accuracy,
the CNN-based classifier outperforms YOLO, scoring 1.00 in
accuracy.

Precision, which measures the proportion of true positive
detections among the positive detections (in our case the
attacked fire images), was found to be 1.00 in both YOLO
and the CNN classifier. This indicates that these models had no
false positives in their predictions, showcasing their reliability
in terms of precision, for the attacked images.

The mAP50 value for the YOLOv8 large model is 0.47
and for the YOLOv8 small model is 0.46. While the mAP50
is lower compared to the accuracy and precision values, it
provides insights into the model’s ability to correctly localize
and classify objects under varying thresholds.

Figure 7 depicts the detected fire regions labeled as
fire with Confidence Score 0.81 and 0.72. Figure 8
shows the detection of the model on fire images labeled as
attacked_fire with Confidence Scores 0.86 and 0.87.
From the figures, we can derive that the model successfully,
detects the fire and the attacked fire, with high confidence.

In addition, we produced figures that present the Grad-
CAM heatmaps for the CNN Model detection to showcase
the feature importance of pixels for some specific instances.
Figure 11 depicts the detection of the model on normal fire
images, while Figure 12 highlights the region of attacked fire
images.

https://www.cuemath.com/calculus/area-under-the-curve/


Fig. 7. Detection results on a normal fire image

Fig. 8. Detection results on an attacked fire image

We can see how the inner workings of the classifier work
when detecting fire and attacked fire instances, and we can
conclude that the explanation when detecting normal fire is
accurate since it highlights the area where the fire is. At the
same time, the classifier learns to detect attacked fire by using
pixels that are away from the pixels of the attack fire. This
is a bit expected, since here we lean a classifier that tries
to separate images based on two different categories. So the
model learn to classify ”fire” by using fire pixels in photo, and
”attack-fire” with pixels that are away of that fire pixels.

Based on this assumption, we can say that Grad-CAM
successfully explains the inner workings of the classifier and
how it makes its detections. Since, we have a clear reasoning
flow of how classifier separates the two classes.

Last, we observe that YOLOv8 detects and explains the at-
tack fire pixels, while the Grad-CAM explains the attacked fire
detection differently, by giving importance to pixels that are
not fire pixels. This shows that both AI Models (i.e., YOLOv8
and CNN-based classifier), have very close performance but
their inner workings are different.

TABLE VI
BASELINES YOLOV8 ON COCO DATASET & RESNET50 ON CIFAR-100

Accuracy mAP50
ResNet50 0.67 -

YOLOv8 small - 0.446
YOLOv8 large - 0.478

Fig. 9. Detection results on a normal fire image

Fig. 10. Detection results on an attacked fire image

TABLE VII
RESULTS

Accuracy Precision mAP50
CNN-Res50-Classifier 1.000 1.000 -

YOLOv8 small 0.925 1.000 0.460
YOLOv8 large 0.950 1.000 0.470

VII. CONCLUSIONS

In summary, combating conditions of high physical risk
in cities, forests, and critical infrastructures requires a multi-
faceted approach. The results demonstrate that the adversarial
explanations of YOLOv8 large and the CNN Model excel in
accuracy and precision. The proposed approach for adversarial
explanations with a Confidence Score can be a trustworthy
choice for applications requiring high reliability in object
detection and image classification. However, there is room
for improvement in terms of mAP50, suggesting potential
areas for further enhancement of the model’s localization and
classification capabilities.

In the future, we plan to extend the proposed Adversarial
Explanations Architecture toward simulating how XAI outputs
would change under different input conditions and attacks
of higher complexity; and how more advanced localization
features contribute to deriving more informed decisions.
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Fig. 11. Original image on the left. On the right, the image consists of
the heat map of the Grad-CAM visualizing the feature (pixels) importance.
Furthermore, the second image has the detection class with the Confidence
Score.

Fig. 12. Original image(attacked) on the left. On the right, the image consists
of the heat map of the Grad-CAM visualizing the feature (pixels) importance.
Furthermore, the second image has the detection class with the Confidence
Score.
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