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Abstract. Optical fiber links are known for their high bandwidth and
reliable data transmission. However, problems may still arise, affecting
signal quality and network performance. These problems are usually hap-
pening due to external physical extrusion or excessive bending, insuffi-
cient transmission power, damaged connectors causing signal loss; or
failures of splice tray connector. In response to increasing optical fiber
link problems transparency and interpetability, various attempts have
been made to bring explainability in Artificial Intelligence (AI) decision-
making and reasoning processes. This paper tackles a crucial and timely
topic, i.e., understand the various factors contributing to optical link
problems by explaining opaque AI models with two goals: (i) either pro-
viding instance explanations for a given decision by using a local and
model agnostic approach; or (ii) providing global explanations able to
describe the overall logic assuming knowledge of the black box model or
its internals. The scientific contribution of this paper entails novel ex-
plainable AT (XAI) models harvesting data from optical fiber link events
to first derive local explanations, and then apply a hierarchical approach
to educe global explanations from the local ones. The proposed approach
shows that we can efficiently tackle both explanation complexity and fi-
delity to reason about the causes that have resulted in optical fiber link
problems.

Keywords: Explainable AI - SHAP - Reasoning - Optical Fiber Links
- Fault Interpretation

1 Introduction

Optical fibers have emerged as the most commonly used transmission medium
in telecommunications. Service Providers depend on optical fibers to reliably
transport a continuously growing amount of data traffic, thanks to the medium
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huge bandwidth and low attenuation. These key attributes make fiber the pre-
dominant choice for multiple communication applications ranging from telecom-
munication backbone infrastructure to metro aggregation segments down to the
access network serving fixed users and mobile access infrastructure (e.g. 5G Ra-
dio Access Network).

The electronic process miniaturisation paired with the advent of photonic
integration has allowed the manufacturing of high-rate optical transceivers (cur-
rently up to 800 Gbps) in small pluggable formats (e.g. Small Form-factor Plug-
gable (SFP) or Quad Small Form-Factor Pluggable (QSFP) [19] standardised
by the SFF committee [18]) directly interconnected by optical fibers. Many of
these transceivers can be housed in a single telecommunication or data centre
equipment allowing scaling of capacity provisioning as requested by the traffic
demand trends. The huge capacity transported by these optical links requires
great attention to the telecommunication infrastructure monitoring to prevent
faults when possible and provide fast and reliable diagnostics when an optical
link goes down. Long traffic disruptions and cumbersome troubleshooting and
repair procedures would cause high operational costs for a Service Provider. Op-
tical cables damage is one of the major issues: underground and overhead cables
are exposed to numerous threats, as they traverse urban environments or travel
long distances across remote sites. Construction works is, for example, a relevant
cause for fiber cuts. Fiber issues, however, are not the only ones that can impact
an optical link connection. For instance, optical link loss can be caused by op-
tical disconnections at the optical distributor frames by operation personnel or
by malicious actions in a cabinet, optical transceiver disconnections in a central
office, or power failures either in the transceiver itself or in the hosting equip-
ment or on-site. The classification of the root cause for a fiber link fault due to
a Loss-of-Signal (LOS) is the first step in the troubleshooting of a network out-
age. The more rapid is the classification the faster the network operator can fix
the issue or put in place further investigation actions. Current level of informa-
tion to the operator is a binary information, i.e., loss-of-signal reports an alarm
on/off. At current state-of-the-art, different tools exist in order to check the
root-cause, but they are complex and require dedicated and expensive solutions
at the central office, as well as at remote sides, i.e., Remote Fiber Monitoring
System (RFTS). However, a data-driven approach can offer simpler solutions
providing more precise information for a first estimation of the root cause to-
gether with the basic alarm information. To this respect, transceivers support
standard Digital Diagnostics Monitoring (DDM) functions [13]. This capability
allows monitoring of the transceiver operating parameters in real-time. Param-
eters include optical output power, optical input power, temperature, laser bias
current, and transceiver supply voltage, and many other. This data is sampled
by the transceiver internal sensors and made available through standardised dig-
ital interfaces to the host equipment and then, to any software application that
can exploit them for diagnostic purposes. The refresh rate of this parameters
is typically of several milliseconds, allowing for fast variation detections. Magri
et al. [23] have shown that the received optical power from a transceiver is a



On Explaining and Reasoning about Optical Fiber Link Problems 3

precious source of data to help the root cause analysis of an optical link fault.
In particular, they have shown that different types of fault induce a different
transient behavior of the received power from its steady state normal operation
value to its loss due to the link disruption. In other words, each root cause leaves
a different fingerprint in terms of optical power drop transient than can be cap-
tured in the form of a time series when the onset of a disruption is detected. The
time series of samples can be fed to a Machine Learning (ML) classifier trained
to distinguish between the different root causes. Figure 1 depicts the different
optical link fault root causes and the relevant operational actions. The classi-
fication performance has been proven to be very satisfactory in distinguishing
between four classes of issues (but the concept can be further generalised to
other source of disruptions):

1. Fiber stress or cut: in this case the problem is on the deployed fiber and
proper personnel must be sent to check the fiber with proper dedicated inves-
tigation instrumentation like Optical Time Domain Reflectometer (OTDR);

2. Connector disconnection: this may highlight that some personnel or mali-
cious intruder is operating in part of the installation where distributor frames
or patch panels are present;

3. SFP connector: this is the case when someone is disconnecting the fiber
directly on the optical transceiver on the host equipment; and

4. Shutdown: in this case the issue is cause by the loss of power supply to
the host equipment or within the host equipment causing the transceiver to
shutdown. Dedicated personnel should then check directly in the equipment
room to verify the power supply.

Summarising, each identified root cause would trigger a different intervention
to solve the issue. Leveraging ML simplifies the personnel trouble-shooting task
allowing for less skilled personnel to take a proper action much faster with great
cost saving for the infrastructure owner. A typical scenario where this ML-driven
fault classification is valuable is the radio access network for mobile communica-
tion (e.g. 5G). In this scenario, for example troubleshooting may require climbing
an antenna tower with very high costs and this should be avoided if the problem
is elsewhere. Besides the fault classification itself induced by ML, it is indeed
important to add explanatory information to support the decision-making pro-
cess and select the proper fixing or investigating actions since the classification
explanation can complement the root cause feedback with the necessary relia-
bility, trust and transparency required to reduce the risk of misinterpretation.
In the following section, we investigate how to add Artificial Intelligence derived
explanations (XAI) and feedback to the optical link fault classification problem.
The proposed approach shows how XAI can be interpreted to highlight relevant
features of the time series or time dependent behavior of the receiver power
samples that had contributed to drive an ML model towards the determined
class.

The reference dataset has been collected in a dedicated laboratory experi-
mental setup. An optical link based on SFP pluggable transceivers is hosted on
a commercial transponder equipment. The link includes fiber patch-cords and
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optical connectors to provide means to emulate real optical link faults. Figure 1
illustrates the laboratory experimental setup for the collection of the dataset.

FH6620 Node
SFP

Transmitting port . ‘ iy

L Receiving port | SFP
CPU

Fig. 1: Laboratory Setup for Dataset Collection.

Four possible faults have been reproduced and repeated hundreds of times in
various manners. The received optical power time series have been sampled by
the host node micro-controller reading the relevant information from the module
memory map, stored and labelled with the corresponding fault class:

— Connector: the loss of signal is caused by the disconnection of one of the
connectors between patch-cords;

— SFPConnector: the loss of signal is caused by unplugging the optical con-
nector of the SFP module on the transmitting side;

— Shutdown: the SFP module on the transmitting side has powered off; and

— Stress: the fiber patch-cord manually stressed and broken in random ways
by different persons.

This paper investigates how data collected from the laboratory experimental
setup can be used to explain and reason about different aspects that cause prob-
lems to optical fiber links. The goal of this work is to harvest data from optical
fiber link events to first derive local explanations, and then apply a hierarchical
approach to derive global explanations from the local ones. The contributions of
this paper are, as follows:

— Harvests information from events occurring within fiber optic links. These
events indicate Loss-of-Signal (LOS) occurrences caused by disconnections,
unplugging, normal shutdowns and stress;
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— Analyse the collected data to derive local explanations for each event to
identify the root cause of the issue;

— Apply a hierarchical approach towards deriving global explanations after
interpreting individual events to identify broader patterns and trends across
end-to-end network cases; and

— Tackle both explanation complexity and fidelity via XAI methods within
an ML pipeline to gain insights into how the ML models arrive at their
conclusion and reason about the causes that have resulted in optical fiber
link problems.

The rest of the paper is organised, as follows: Section 2 provides the current
literature review around innovative applications of Al for proactive and precise
optical link fault detection in optical communications. Section 3 offers a detailed
overview of the dataset. Section 4 presents the technical architecture of the
explanations pipeline. Section 5 discusses our first experimental results, and
Section 6 concludes the paper and provides insights to be pursued in the near
future.

2 Literature Review

Numerous studies have delved into innovative applications of Al for fault detec-
tion in optical communications. Among the notable contributions, researchers
have explored advanced Al techniques such as ML algorithms, Deep Learning
(DL) models, and hybrid approaches combining AI with signal processing meth-
ods. These efforts have resulted in significant advancements in fault detection
accuracy, response time, and robustness. The breadth of research underpins the
importance of leveraging Al technologies to mitigate failures or errors in opti-
cal communication systems and improve the reliability and resilience of optical
networks.

Fan, Z et al. [15] focus on the crucial role of optical networks in modern infor-
mation society, where approximately 50% of optical service faults originate from
errors in the optical transmission system links, monitored through frame over-
heads. Current maintenance methods often fail to accurately predict these errors,
leading to potential disruptions in network services. To tackle this challenge, the
study introduces a Gini importance-based feature selection approach and a max-
imum likelihood-based logistic regression algorithm for predicting performance
degradation in optical transmission system links. Moreover, the study proposes
a Network AI (NAI) three-level intelligent architecture to facilitate real-world
application, culminating in the development of an optical transmission perfor-
mance degradation prediction system based on this architecture. Experimental
results from network experiments validate the effectiveness of the proposed per-
formance degradation model and the NAI-based system.

Li X. et al [16] address the critical need for fiber fault detection in optical
communication systems, particularly within established optical access networks
facing challenges such as increased insertion loss. Traditional fault-detection
methods struggle to capture fault echoes effectively under these circumstances.
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To overcome these limitations, the paper introduces a modulation-enhanced
external-cavity-resonant-frequency method utilising a laser for fault echo recep-
tion, offering superior sensitivity compared to photo-detector-based methods.
While previous studies focused on sensitivity and spatial resolution, this re-
search develops a practical model based on Lang—Kobayashi rate equations and
validates it through experiments, identifying optimal detection performance as-
sociated with specific modulation parameters, including a modulation depth of
0.048, a frequency sweeping range of 0.6 times the laser relaxation oscillation fre-
quency, and a sweeping step of 0.1 times the external cavity resonant frequency.
The conclusion highlights the practical analysis of this high-sensitive fiber fault
detection method, emphasising the optimal frequency-sweeping approach while
considering various practical factors, recommending specific parameter settings
crucial for high-sensitivity fiber fault detection and serving as a foundation for
practical prototype development.

Liu, P. et al [17] introduce a customized AI module integrated into an Op-
tical Time Domain Reflectometer (OTDR) device, along with an optical power
monitoring module, to establish an Al-assisted optical network fault location
mechanism tailored for high-density data center interconnections. This mecha-
nism optimally utilizes optical link data by leveraging the AT module to predict
potential link failures, subsequently monitored by the optical power module for
rapid fault localization and response. Experimental testing demonstrates a sig-
nificant improvement in link fault detection efficiency, with the AI model enhanc-
ing average fault detection efficiency by 98.41%, which is a significant increase
in failure detection and localization within data centers.

Karandin, Oleg et al [21] demonstrate the application of XAI in fault lo-
calization within optical networks, showcasing how it enhances the comprehen-
sibility of ML-driven decisions. Specifically, it compares the performance and
interpretability of ML models trained on Optical Signal-to-Noise Ratio (OSNR)
measurements collected from a single receiver monitor versus multiple monitors
distributed along the network path. The conclusion drawn from the analysis high-
lights the stark difference in explainability between the two scenarios. While the
model utilizing telemetry from a single monitor successfully identifies faults, its
reasoning remains opaque due to the intricate nature of OSNR statistics. Con-
versely, deploying additional monitors improves both fault-localization accuracy
and model explainability, albeit at increased cost. The study suggests that while
comprehensive monitoring may be impractical for expansive networks, a judi-
cious deployment of additional monitors enhances both the trustworthiness and
utility of ML-based fault management tools.

Ayoub, Omran et al [22] focus on the application of XAI, particularly
Shapley Additive Explanations (SHAP), in the context of light-path Quality-
of-Transmission (QoT) estimation. It provides an overview of XAI and SHAP,
discusses their benefits in networking, and surveys existing studies employing
XATI in networking tasks. The study formulates the QoT estimation problem as
a supervised binary classification task and develops an ML model using eXtreme
Gradient Boosting (XGB). Through the application of SHAP, the paper demon-
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strates how insights into the model’s behavior can be extracted and misclassi-
fications inspected, thereby enhancing transparency and trustworthiness. The
conclusion highlights the efficacy of SHAP in providing explanations for model
decisions and its utility in feature selection to improve model efficiency. Addi-
tionally, it underscores the importance of scrutinizing dataset biases to mitigate
inconsistencies in model behavior. Overall, the study underscores the significance
of XAI in enhancing the interpretability and trustworthiness of ML models.

However, the practical application of Al on a large scale necessitates the
ability to understand the predictions and decisions made by ML or DL models.
This requirement underpins the pivotal role of explainable AT (XAI) in foster-
ing trust between AI systems and human actors. By providing transparency
and clarity in the decision-making process, XAI bridges the gap between the
complex algorithms employed by AI and the understanding of end users. This
transparency cultivates trust and confidence to Al systems, thereby facilitat-
ing their widespread adoption and integration into various domains with high
and safe guarantees. In essence, the ability of Al to offer interpretable explana-
tions for its decisions is paramount for realising its full potential and ensuring
harmonious collaboration between humans and machines.

Jacovi et al. [8] address the critical role of trust in human-Al interactions,
particularly within the XAl contexts, aiming to provide clarity and structure to
the concept of trust. They introduce a model of trust inspired by interpersonal
trust but tailored for AI interactions, emphasising the user’s vulnerability and
the anticipation of Al decisions. The study advocates for explicit contracts be-
tween users and Al models to foster warranted trust, highlighting the importance
of assessing risk and distinguishing between warranted and unwarranted trust.
It asserts the necessity of evaluating whether trust is warranted and identifies
explanation as a key factor in fostering intrinsic trust. They conclude by offer-
ing guidelines for designing trustworthy Al and emphasise the need for further
research in evaluating warranted trust in human-Al interactions.

Adadi, Amina et al. [9] explore the emerging field of XAT in the context of
the rapidly evolving landscape of Al applications. Recognising the critical need
for transparency and trust in Al systems, the study provides a comprehensive
overview of existing research on XAI, addressing fundamental questions such
as what, who, when, why, where, and how. Through an interdisciplinary lens,
the survey examines various approaches to XAI and identifies key trends and
challenges. While acknowledging the significant impact of XAI across diverse
domains, the paper also highlights the lack of formalism in problem formulation
and the need for more thorough exploration of human involvement in explain-
ability approaches.

Ribeiro et al. [12] introduce the Local Interpretable Model-Agnostic Expla-
nations (LIME), a method for explaining the predictions of ML models in an
interpretable and trustworthy manner. By learning an interpretable model lo-
cally around each prediction, LIME provides insights into the reasons behind
model predictions, crucial for assessing trust in decision-making scenarios. Ad-
ditionally, the paper proposes SP-LIME, a method for selecting representative
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and non-redundant predictions to offer a global view of the model’s behavior.
Through experiments in text and image classification domains, involving both
expert and non-expert users, they demonstrate the utility of explanations in var-
ious trust-related tasks, such as choosing between models, assessing trust, and
improving untrustworthy models.

Lundberg et al. [10] introduce SHapley Additive exPlanations (SHAP), a
unified framework for interpreting predictions, aiming to address the tension
between accuracy and interpretability in complex models like ensemble or DL
models. SHAP assigns importance values to each feature for a given prediction,
offering a novel class of additive feature importance measures with desirable
properties. By unifying six existing methods, SHAP provides insights for im-
proved computational performance and better consistency with human intuition.
The framework demonstrates a promising step towards reconciling the accuracy-
interpretability trade-off in model predictions, offering a foundation for future
development of interpretation methods.

Existing works are limited either by only addressing the supervised or unsu-
pervised learning aspects of optical links failure detection, or by not leveraging
the strengths of XAI to derive interpretable cause-effect insights. Compared to
the above-mentioned approaches, the scientific contribution of this work is the
combinatorial approach towards optical links fault detection and XAlI-fuelled
interpretation of the detected faults to derive more informed decisions. The dif-
ferentiation of the proposed approach results in faster root cause identification,
by understanding the underlying reasons behind the optical link fault detec-
tion. It also contributes to reduced downtime and minimises service disruptions,
specifically in critical applications. Last, by analysing trends and patterns in ex-
planations across different events, recurring problems within the optical network
infrastructure can support proactive maintenance and reasoning about potential
causes to be considered before failures occur.

3 Dataset Overview

The dataset utilized for the analysis in this paper stems from a dedicated test
setup, owned by Ericsson, designed to investigate LOS events within optical
networks. At the receiving side of the setup, the CPU samples the received
optical power at a rate of approximately 5 milliseconds. These sampled readings
are then stored in a memory buffer, capable of holding up to 1000 samples. As a
consequence, each data instance within the dataset constitutes a time series of
the received optical power with a maximum length of 1000 timestamps.

The time series stored within the dataset underwent a rigorous filtering pro-
cess to ensure data quality and relevance for subsequent analyses. Among a larger
pool of files, specific selection criteria were applied within the optical domain to
identify and retain time series that meet stringent validation standards.

Firstly, the mean time delta, represented by the first column of the file, was
scrutinized to ensure adherence to the nominal value of 5 milliseconds, with a
tolerance of +50%. This criterion ensures that the temporal resolution of the time
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series aligns closely with the intended sampling rate, maintaining consistency and
accuracy in capturing temporal dynamics.

Furthermore, additional criteria were applied to the optical power readings
within the time series. The minimum value of the time series was required to
fall below the low threshold of -30 dBm, indicative of sufficient sensitivity to
detect low-power signals. Conversely, the maximum value of the time series was
mandated to surpass the high threshold of -17 dBm, ensuring that the dataset
encompasses a diverse range of power levels encountered within optical networks.

Moreover, each retained time series was required to exhibit at least one
recorded power drop, signifying a transition from a maximum value to a min-
imum value. This criterion ensures that the dataset captures instances of sig-
nificant signal attenuation, characteristic of loss of signal events within optical
networks.

The received optical power readings are expressed in decibels relative to one
milliwatt (dBm), offering a standardized metric for power levels. To facilitate
diverse analyses and interpretations, the dBm readings can be readily converted
to milliwatts (mW) utilizing the formula illustrated below. This conversion allows
for a seamless integration of the dataset with various analytical methodologies
and tools, ensuring its usability across different research contexts.

PiBm )

Pyw = 10< 10 (1)

During a LOS event within optical networks, the received optical power un-
dergoes a significant drop from its maximum level to a "no-power” state. The
precise detection of LOS events is governed by the specific module data-sheet,
which outlines parameters such as assert and de-assert thresholds, as well as the
relevant hysteresis range. For instance, the Ericsson SFP+ specification provides
an example of such thresholds and ranges.

It is important to note that the LOS detection logic embedded within the SFP
module may introduce a certain latency with respect to the actual diagnostic
reading of received power. Consequently, in this project, a deliberate decision
was made to utilize diagnostic values that are not synchronized by the LOS
alarm. This approach ensures that the dataset captures the raw received power
readings, unaffected by any potential detection delays or logic within the SFP
module.

The storage of the received power file is initiated by the sampling software it-
self, triggered by the sampling interval configured within the experimental setup.
This ensures that the dataset accurately reflects the temporal dynamics of re-
ceived power, enabling detailed analyses of LOS events and their associated
characteristics.

For a visual representation of the described process, refer to Figure 2, which
provides an illustrative explanation of the sequence of events involved in LOS
detection and dataset generation. This figure aids in understanding how the re-
ceived power readings are captured, stored, and utilized for subsequent analyses
within the project framework.
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Fig.2: LOS Event.

Overall, the dataset comprises a total of 3235 individual time series, each
documenting the received power readings from an SFP module during a LOS
event. Furthermore, each time series is associated with one of four fault categories
under examination as shown in Figure 1. For a detailed breakdown of the dataset
regarding the specific fault categories, refer to Table 1.

Fault category|Occurrences|% of Occurrences
Connector 906 28%
SFPConnector|833 26%

Shutdown 1190 37%

Stress 306 9%

Table 1: Time Series Breakdown per Fault Category.

This dataset serves as a valuable resource for analyzing LOS events within op-
tical networks, providing insights into the temporal patterns and characteristics
associated with different fault categories. Through leveraging this dataset, re-
searchers can gain a deeper understanding of LOS phenomena and develop more
effective strategies for network monitoring, fault detection, and mitigation.
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4 Explanations Pipeline Architecture

An essential part of learning over the collected data is the Explanations Pipeline
Architecture. In this section, we provide the pipeline and the data preparation
steps followed before deriving the explanations. The explanations pipeline serves
two purposes: (i) harvest the optical power loss time-series data to predict the
type of fault that caused it; and (ii) generate explanations that justify the model’s
decision regarding the reason and type of fault.

End-to-end Pipeline

. 100 Explanations
Oppcal PQ‘aﬂ'er 1010 Global XAI
Timeseries Q4

©e

Fig. 3: Explanations Pipeline.

The explanations cultivate trust and transparency to humans and allow for
their widespread adoption. As it is depicted in Figure 3, we harvest the optical
power loss time-series data by first cleansing, then extracting window-based fea-
tures in time and finally feeding the data to various ML models to learn patterns
about each fault category. Last but not least, SHAP is employed through the
Explainer Dashboard [11] to provide meaningful explanations about how models
have made their classifications and thus decisions. As shown in the Algorithm 1,
the pipeline first performs Data Aggregation (line 3) to create a unified dataset
of all optical power time-series. Then, Data Cleansing and Normalization takes
place (lines 4-5), followed by Data Transformation (line 6). ML Training is the
next thing in the pipeline (line 7). Finally, local and global explanations are
derived to explain the model (lines 9-10).

4.1 Data Aggregation

For data aggregation, we consolidate all time-series data pertaining to various
fault categories into a unified data structure. This consolidation process en-
ables seamless integration and organisation of diverse fault-related information,
ensuring a comprehensive analysis of the system’s behaviour. Additionally, we
introduce a new column within this unified dataset to denote the specific type
of fault associated with each observation. This additional attribute serves as a
crucial label for a set of analyses conducted in Section 5, as part of our exper-
imentation. By categorising faults within a structured framework, our pipeline
facilitates systematic and targeted investigations into the distinct characteristics
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Algorithm 1: Explainable AI Pipeline

Input: Optical power values OP in time-series T
Output: Local and Global Explanations on Al Model about Faults X Alr; and XAlpg,

1 begin

2 foreach (OP € T;) do

3 OP «+ Aggregation(OP)

a OP «+ Cleansing(OP)

5 OP + Normalization(OP)
6 OP < Transformation(OP)
7 OP < MLrraining(OP)

8

end
9 XAlpy + ExplainLocal(OP)
10 XAlpg <+ EzplainGlobal(OP)
11 end

and behaviors of different fault types, ultimately enhancing the interpretability
and efficacy of the proposed explanability approach.

4.2 Data Cleansing and Normalisation

In the data cleansing phase, a crucial step involves pruning each optical power
time-series up to the initial point in time when optical power loss is detected.
This approach is adopted because only the data preceding the optical power loss
event holds relevance in analysing the underlying reasons leading to the outage.
By focusing exclusively on the data preceding the optical power loss, the explana-
tions pipeline ensures that the subsequent analysis is centered on identifying the
root causes and contributing factors associated with signal power disruptions.
This meticulous data pruning strategy not only streamlines the dataset but also
facilitates a more targeted and insightful examination of the events leading up to
optical power losses, thereby enhancing the overall effectiveness of the proposed
architecture.

4.3 Data Transformation

In this step, we adopt a systematic approach where each generated feature en-
capsulates the average optical received power value within a predefined time
window. These time windows are constructed from the precise moment when
the optical power loss event is triggered, extending backward over a specified
number of time steps. Overall, 15 features are constructed ranging from a win-
dow of just the last 5 timestamps to the last 500 timestamps, see the table 5
at the Appendix. By adopting this strategy, our pipeline effectively captures
the dynamic evolution of optical power values across short-term, medium-term,
and long-term perspectives towards a signal disruption. In essence, our feature
extraction process is tailored to encode the nuanced impact of optical power fluc-
tuations leading up to and during the optical power loss event, thereby providing
a comprehensive representation of the underlying dynamics within the system.
This feature engineering not only enhances the granularity of our analysis but
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also empowers our Al models to discern intricate patterns and correlations em-
bedded within the data, facilitating more accurate and insightful predictions.

In addition to facilitating predictive accuracy, our Al pipeline prioritises the
interpretability of the generated models. To achieve this, the features represent-
ing the average optical power values within specified time windows are trans-
formed into categorical features, each assigned one of six possible values based
on their quantile representation. This feature encoding scheme, see Table 2, en-
hances the interpretability of the features by simplifying their representation
while preserving essential information about their distribution. By categorising
the features in this manner, our pipeline enhances the transparency of the Al
models’ decision-making process, enabling end users to better understand the
insights provided.

Quantile Value|Encoding
0%-25% 0
25%-50% 1
50%-75% 2
75%-85% 3

4

5

85%-95%
95%-100%

Table 2: Feature Encoding Scheme.

4.4 ML Training

During ML training, we adhere to a standard methodology by partitioning the
dataset into distinct training (80%) and test sets (20%) to rigorously assess the
performance accuracy of our models. Our objective is to detect the type of op-
tical power fault based on the received power time-series data. To accomplish
this task, we deploy several conventional ML models, including Random Forest,
AdaBoost, KNN, and Light Gradient Boost. The selection of standard ML mod-
els is deliberate, as we prioritise interpretability and explainability, necessitating
the use of ML algorithms for which features are directly provided and not in-
herently constructed as it happens with Deep Learning (DL) algorithms. In that
way, clear understanding of how the features impact the model’s decisions both
at a local and global level is achieved. By employing conventional ML techniques,
we ensure that our models remain transparent and interpretable, enabling stake-
holders to derive actionable insights from their outputs. Through comprehensive
evaluation and analysis, we achieve to develop robust and effective Al solutions
capable of accurately detecting the 4 distinct optical fault types while providing
meaningful explanations for their predictions.
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4.5 Al Explainability

Towards Al explainability, our focus shifts to leveraging the Explainer Dash-
board to extract valuable insights and understand the predictions made by these
models. Powered by the SHAP TreeExplainer, the Explainer Dashboard facili-
tates an in-depth analysis of model behavior by offering a comprehensive view
of how each feature contributes to the model predictions, enabling stakeholders
to interpret model decisions with clarity and confidence both on a per case sce-
nario as well as on a global level. Through this transparent and interpretable
approach towards Al explainability, our pipeline ensures that stakeholders can
extract actionable insights while fostering trust in the predictive capabilities of
our models.

5 Experimental Results

This section presents the experimental results on the ML models performance
regarding their precision, recall, f1 score and PR-AUC. We also evaluate the
explainability of the ML models using local and then progressing to derive global
explanations.

5.1 Model Performance

We conducted experiments with a variety of ML models to compare between
models performance and explainability insights. Specifically, we trained four dis-
tinct traditional ML models using the time-series dataset. To evaluate the per-
formance of these models, we computed key metrics such as precision, recall,
F1-score, and PR-AUC [20]. The results, presented in Table 3 below, provide
insights into the effectiveness of each model in capturing the nuances of the data
and achieving the desired classification outcomes. Since, we deal with a four-
class classification problem, the weighted average has been used to calculate the
performance metrics.

Model Precision|Recall|[F1 Score| PRAUC
Random Forest|74% 2% |71% 75%
Ada Boost 49% 53% [49% 45%
LGBM 5% 3% |72% 75%
KNN 74% 2% |71% 1%

Table 3: Performance Metrics of Model Trained with Feature Encoding.

Upon analysing the results presented in the table above, Light Gradient
Boosting Machine (LGBM), a powerful and efficient ensemble learning tech-
nique, stands out as the top-performing model among the trained models. LGBM
leverages gradient boosting to construct decision trees in a sequential manner,
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optimising model performance by focusing on misclassified instances. Its abil-
ity to handle large datasets efficiently and its high scalability make it a pre-
ferred choice for complex classification tasks. Given its exceptional performance
in terms of precision, recall, and F1-score, LGBM emerges as a promising candi-
date for exploring the models’ decision-making processes through Explainable AT
techniques, providing valuable insights into the underlying mechanisms driving
predictive outcomes.

It is worth noting, as mentioned in Section 4 regarding data transformation,
that we made a deliberate decision to discretize the average power values into
six distinct categories based on quantile values to aid in the interpretation of the
results.

In case that we were using the average optical received power without en-
coding then the corresponding ML models performance would be as shown in
Table 4.

Model Precision|Recall|[F1 Score| PRAUC
Random Forest|85% 85% [85% 91%
Ada Boost 54% 33% (23% 55%
LGBM 85% 85% [85% 89%
KNN 83% 83% [83% 83%

Table 4: Performance Metrics of Model Trained without Feature Encoding.

5.2 Model Explainability

We are going to perform the AI Explainability exercise by using the explainer
dashboard. Explainerdashboard is a powerful library designed to swiftly con-
struct interactive dashboards tailored for analyzing and clarifying the predic-
tions and operations of machine learning models compatible with scikit-learn,
including xgboost, catboost, and lightgbm. Explainerdashboard offers access to
a plethora of features, including SHAP values, permutation importances, inter-
action effects, partial dependence plots, various performance metrics, and the
ability to explore individual decision trees within random forests.

In the pursuit of generating comprehensive explanations, the dataset utilized
encompasses both accurately classified time series and those that have been
misclassified. This inclusive approach ensures a thorough examination of the
model’s performance across various scenarios, facilitating a deeper understanding
of its predictive capabilities and potential areas for improvement.

Model Global Explainability sudo service ssh restart In Figure 4, the SHAP
global features importance are depicted, revealing crucial insights into the fac-
tors influencing optical power loss prediction. Notably, the analysis highlights
that events occurring within the last 5 time-steps hold the highest significance,
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Feature Importances
Which features had the biggest impact?

Importances type: Depth:

SHAP values v v

Average impact on predicted label
(mean absolute SHAP value)

Fig.4: SHAP Global Features Importance.

underscoring the substantial impact of short-term power drops on the model’s
decision-making process. Additionally, the second and third most important fea-
tures correspond to events occurring approximately 150 and 100 time-steps be-
fore the optical power loss, indicating that both short-term and longer-term
events play pivotal roles as predictors of future optical power loss occurrences.
This finding underscores the importance of considering both short-term fluctu-
ations and longer-term trends in understanding and predicting power system
dynamics effectively. Furthermore, our analysis delved into the SHAP global
feature importance categorised by fault type within our dataset.

For the Connector fault category, see Figure 5, caused by the disconnection
of one of the connectors between patch-cords, the most critical feature is events
within the last 5 timestamps. Hence, this finding suggests that these faults man-
ifest abruptly and are less influenced by longer-term patterns.

Conversely, the SFP-Connector fault category, see Figure 6, caused by the
direct fiber disconnection on the optical transceiver on the host equipment, ex-
hibits a balanced dependence on both short-term (5 timestamps) and longer-
term (100 timestamps before the power-loss event) features, indicating a more
nuanced relationship between fault occurrence and temporal context.

In contrast, the Stress fault category, see Figure 7, caused by problems on
the deployed fiber, showcases a unique pattern where a mixture of short-term
and longer-term features contributes to its detection. Notably, while the SFP-
Connector category prioritises short-term events within the last 5 timestamps,
features spanning the last 20 to 30 timestamps are more informative for detecting
fiber stress related issues.

Last but not least, the Shutdown fault category, see Figure 8, caused by the
loss of power supply, the most predictive features are primarily concentrated
between 5 and 30 timestamps before the power-loss event, highlighting the sig-
nificance of short-term events in this context.

Our findings suggest that certain fault types exhibit a higher predictability
when considering events immediately preceding the optical power loss event,
emphasising the significance of short-term contextual factors. Conversely, other
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Fig.5: SHAP Global Features Importance for the Connector Fault Type.
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Fig.6: SHAP Global Features Importance for the SFP-Connector Fault Type.
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Class Stress
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Fig. 7: SHAP-driven Global Features Importance for the Stress Fault Type.

Class Shutdown
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Fig.8: SHAP-driven Global Features Importance for the Shutdown Fault Type.
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fault categories demonstrate a stronger correlation with longer-term optical
power level information, highlighting the importance of incorporating longer-
term data to capture underlying trends and patterns. By understanding these
distinctions in global feature importance across fault categories, we can enhance
the accuracy and reliability of our fault prediction models tailored to specific
scenarios.

Model Local Explainability Furthermore, in addition to analysing the SHAP
global features importance, an equally crucial aspect of explainability in Al is
justifying individual predictions, often referred to as local feature importance.
The explainer dashboard offers a valuable tool to inspect the most influential
features for individual predictions.

Prediction
Index:
1692 X -
label probability
Connector 323%
SFPConnector* 67.5%
Shutdown 0.1%
Stress 0.0%

* indicates observed label

Fig.9: Model’s Individual Prediction.

For instance, in the Figure 9 the model confidently predicts the class as
SFPConnector with 67.5% probability. Upon examination Figure 10, we find that
this figure depicts the model’s features contributions, showing green the positive
contributors and red the negative ones. The yellow bar on the left shows the
averaged out probability out of all classes in the dataset and the blue bar on the
right is the final contribution of all the features to the model’s decision. However,
even more interestingly, the most significant contributing features to the specific
prediction are the events occurring within the last 30, 20 and 10 time-steps.
This level of granularity in understanding the model’s decision-making process
enhances transparency and trust in Al systems, enabling stakeholders to gain
deeper insights into the rationale behind specific predictions and improve the
model interpretability.

The utilization of Explainable AT (XAI) techniques, such as the Explainer
Dashboard and SHAP (SHapley Additive exPlanations), holds immense poten-
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Contributions Plot
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tial for enhancing the practical application of artificial intelligence in optical
networks. By providing transparent insights into the predictive behavior of ma-
chine learning models, stakeholders within the optical networking domain can
make informed decisions with greater confidence and precision. The ability to
interpret model decisions at both a global and local level empowers network op-
erators and engineers to understand the underlying factors driving predictions,
thereby facilitating proactive maintenance, optimization, and troubleshooting of
optical network infrastructure.

Furthermore, the adoption of XAI methodologies can significantly improve
the reliability and efficiency of fault management systems in optical networks. By
leveraging advanced visualization techniques and interpretable feature analysis,
network operators can identify potential fault patterns, anomalies, and degra-
dation trends with greater accuracy and timeliness. This proactive approach
enables preemptive measures to be taken to mitigate network disruptions, opti-
mize resource allocation, and enhance overall network resilience. Ultimately, the
integration of XAl into optical network management processes can lead to a more
robust and adaptive infrastructure, capable of meeting the evolving demands of
modern telecommunications while minimizing downtime and maximizing oper-
ational efficiency.

6 Conclusion

This paper presents an innovative approach to leveraging state-of-the-art ex-
plainable AI techniques for understanding the predictions generated by an ML
model designed to detect faults in optical fiber links. We described a compre-
hensive comparison of four different traditional ML models and found that Light
Gradient Boosting Machine (LGBM) outperforms the others. Furthermore, we
explored the application of explainable Al in enhancing the model’s interpretabil-
ity, revealing that each type of fault is characterised by a distinct set of features
that significantly contribute to explaining the occurrence of the fault. This re-
search sheds light on the importance of transparency and interpretability of Al
models deployed in critical infrastructures monitoring and fault detection sys-
tems related to optical fiber links.

In the future, we plan to extend the proposed Explanations Pipeline Ar-
chitecture towards simulating how XAI outputs would change under different
input conditions, aiding in better understanding the reasoning of ML models
and deriving counterfactual explanations.
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A Appendix A

Feature

Description

average_power_last_5_timestamps
average_power_last_10_timestamps
average_power_last_20_timestamps
average_power_last_30_timestamps
average_power_last_40_timestamps
average_power_last_50_timestamps
average_power_last_100_timestamps
average_power_last_150_timestamps
average_power_last_200_timestamps
average_power_last_250_timestamps
average_power_last_300_timestamps
average_power_last_350_timestamps
average_power _last_400_timestamps
average_power_last_450_timestamps
average_power_last_500_timestamps

Last 5 timestamps prior to the LOS event
Last 10 timestamps prior to the LOS event
Last 20 timestamps prior to the LOS event
Last 30 timestamps prior to the LOS event
Last 40 timestamps prior to the LOS event
Last 50 timestamps prior to the LOS event
Last 100 timestamps prior to the LOS event
Last 150 timestamps prior to the LOS event
Last 200 timestamps prior to the LOS event
Last 250 timestamps prior to the LOS event
Last 300 timestamps prior to the LOS event
Last 350 timestamps prior to the LOS event
Last 400 timestamps prior to the LOS event
Last 450 timestamps prior to the LOS event
Last 500 timestamps prior to the LOS event

Table 5: List of features used to represent the average optical received power
over the different time windows




