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Abstract: Artificial intelligence (AI) is increasingly applied in a wide range of healthcare
and Intensive Care Unit (ICU) areas to serve—among others—as a tool for disease detection
and prediction, as well as for healthcare resources’ management. Since sepsis is a high
mortality and rapidly developing organ dysfunction disease afflicting millions in ICUs and
costing huge amounts to treat, the area can benefit from the use of AI tools for early and
informed diagnosis and antibiotic administration. Additionally, resource allocation plays a
crucial role when patient flow is increased, and resources are limited. At the same time,
sensitive data use raises the need for ethical guidelines and reflective datasets. Additionally,
explainable AI is applied to handle AI opaqueness. This study aims to present existing
clinical approaches for infection assessment in terms of scoring systems and diagnostic
biomarkers, along with their limitations, and an extensive overview of AI applications in
healthcare and ICUs in terms of (a) sepsis detection/prediction and sepsis mortality pre-
diction, (b) length of ICU/hospital stay prediction, and (c) ICU admission/hospitalization
prediction after Emergency Department admission, each constituting an important factor
towards either prompt interventions and improved patient wellbeing or efficient resource
management. Challenges of AI applications in ICU are addressed, along with useful rec-
ommendations to mitigate them. Explainable AI applications in ICU are described, and
their value in validating, and translating predictions in the clinical setting is highlighted.
The most important findings and future directions including multimodal data use and
Transformer-based models are discussed. The goal is to make research in AI advances in
ICU and particularly sepsis prediction more accessible and provide useful directions on
future work.
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1. Introduction
Hospitals and Intensive Care Units (ICUs) continuously manage large volumes of

multimodal data. As data are becoming bigger and heterogeneous, dealing with diseases in
a timely and informed manner becomes much more complex, especially in the ICU context,
where the health status of vulnerable patients can deteriorate rapidly and significantly. The
increased complexity associated with disease detection, risk assessment, and personalized
treatment according to patient characteristics, can result in suboptimal treatment, yield-
ing delays and complications, which in turn increase length of ICU/hospital stay. The
consequences extend beyond the unique treatment plan and outcomes of a single patient,
dramatically increasing healthcare expenditures and thus affecting healthcare management
and impacting the society economically [1].

Machine Learning (ML) and Artificial intelligence (AI) methods support the devel-
opment of personalized healthcare systems. Personalized AI algorithm predictions in
healthcare refer to the probability of developing a disease, detecting a yet undiagnosed
disease, and predicting the prognosis of a current treatment, all considering the patient’s
unique characteristics towards selecting the optimum treatment plan. This enables the
algorithms to predict outcomes for new patients with different clinical characteristics and
demographics [2]. Validated algorithms can eventually be used by healthcare professionals,
assisting them in decision-making regarding treatment interventions. As a result, increased
quality of care and reduced length of stay and rehospitalizations can benefit society so-
cially with increased Quality Adjusted Life Year(s) (QALY), as well as economically, due to
decreased healthcare expenditures.

At the same time, healthcare research involves vulnerable populations and is suscep-
tible to potential biases, causing ethical issues and data transparency challenges. These
issues are entailed in the AI Clinical Decision Support Systems (CDSS) and highlight the
necessity for communicating critical information to the user (the doctor and then, the
patient). Explainability or the area of Explainable Artificial Intelligence (XAI) [3,4] aims to
achieve confidence, trustworthiness, accessibility, causality, and transferability in predic-
tions, so that health professionals can understand and correlate the results with the clinical
practice [5,6].

AI is increasingly used in healthcare in the investigation of sicknesses that are hard
to diagnose [7], including cancer, diabetes, cardiovascular diseases, COVID-19, etc., by
identifying the most important factors for patients’ risk prediction and/or diagnosis. AI
predictions can affect several facets of cancer therapy, including drug discovery, devel-
opment, and clinical validation. Moreover, studies use AI for predicting a diverse set of
pathologies, such as the diagnosis of ovarian tumors [8] and the survival of patients with
ovarian cancer [9], early breast cancer prediction and diagnosis [10,11], dermatological
cancer recognition [12], and lung cancer diagnosis [13]. Additionally, AI methods are
cost-effective for reducing ophthalmic complications and preventable blindness associated
with diabetes [14]. Studies have further applied AI for the classification of patients into
diabetic or non-diabetic [15,16], the risk prediction of developing type 2 diabetes [17,18],
diabetes diagnosis [19], and blood glucose level predictions [20]. Regarding cardiovascular
diseases, AI has been used to assess the risk of developing a cardiovascular disease [21–27]
and identify heart rate severity [28,29]. ML techniques have been used to predict whether
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patients are infected by COVID-19 [30], identify its spread [31,32], predict the number of
discharged patients and deaths [33], and predict COVID-19 mortality [34,35] to prioritize
triage and hospitalization [35]. In any healthcare outcome, the goal is early interventions to-
wards disease prevention or treatment, and, thus, improved patient wellbeing and reduced
healthcare costs.

The research community is showing an increasing interest in investigating the effect
of AI models in healthcare and ICU and adopted AI systems are already revolutionizing
healthcare practice. While similar review studies exist, they focus on a single ICU out-
come [36–43], explore studies that use a single type of data [36,38,42], do not elaborate on
clinical approaches used in ICU [36–44], and/or do not significantly guide towards future
work [36,37,43].

This paper aims to present an overview of clinical approaches for disease assessment
(Section 2), and the main applications of ML and DL in healthcare and ICU focusing
on predominant clinical outcomes (Section 3). Specifically, the study is focused on AI
applications for (a) sepsis prediction/detection and sepsis mortality prediction, as sepsis is
a high mortality and high morbidity disease, (b) length of ICU/hospital stay predictions as
an indicator of disease severity but also a burden on (human) resource management, and
(c) ICU admission/hospitalization probability after emergency department (ED) admission
for optimal triage and resource planning. Importantly, critical challenges of AI applications
in ICU (Section 4) and the role of XAI (Section 5) are also described. Future work guidance
is given in Section 6 and conclusions are made in Section 7.

The main contributions of the study are:

• A holistic overview of existing clinical approaches and AI approaches, both appli-
cable to sepsis prediction and mortality due to sepsis, along with a comparison of
their performance,

• An overview of AI approaches in predicting length of ICU/hospital stay and ICU
admission/hospitalization probability after ED admission,

• A summary of the most critical challenges of AI applications in ICU with important
suggestions on how to address them,

• A summary of Explainable AI methods and an overview of their current applications
in healthcare and ICU research,

• Future guidance in healthcare/ICU research based on findings of the study and
associate AI advances.

2. Clinical Approaches
This section provides an overview of existing widely used clinical approaches in

ICU, in terms of (a) diagnostic biomarkers for infection and sepsis detection, and (b)
scoring systems for organ dysfunction detection (that leads to sepsis), mortality prediction
including sepsis mortality, and length of stay in the ICU for disease severity assessment.

2.1. Diagnostic Biomarkers

Biomarkers can provide important diagnostic information associated with inflamma-
tion and/or infection. To avoid clinical biases applied to the diagnosis of infection as part of
‘clinical gestalt’ [45–48], biomarkers such as C-Reactive Protein (CRP), Interleukin-6 (IL-6),
Lactate Dehydrogenase (LDH), Procalcitonin (PCT) and White Blood Cell Count (WBC)
are commonly used in clinical practice. Table 1 summarizes how these biomarkers are
used as for infection detection, their usage, associations, and their corresponding diagnosis
thresholds according to the literature [49–83]. In what follows, we summarize findings for
the most important biomarkers.
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C-Reactive Protein (CRP) is used as a biomarker for Systemic Inflammatory Response
Syndrome (SIRS), infection and sepsis [49], for the diagnosis of neonatal sepsis [50], and
for the differential diagnosis of bacterial versus viral infections [56,57] and their early
identification [58,59]. It is a component of the International Patient Summary (IPS) [51,52]
and of ICU prognostic blood tests [53]. CRP has been proven to be a predictor of ICU
mortality when more than 62.8 mg/L [55] and of severe COVID-19 in patients below 50
years old [49]. CRP can be used as a valuable tool to monitor progress as it responds
to therapy against inflammation [54]. It is associated with ICU-acquired infection [51],
hospital readmission in patients with heart failure [60], ICU readmission, unexpected
mortality after ICU discharge [61–63], as well as ICU mortality [55] and ICU mortality
of COVID-19 patients [67]. CRP is also associated with non-infection related aspects,
like allergic complications [54], specific drug overdoses [54], obesity, smoking, diabetes
mellitus, lack of exercise, hormonal therapy [64], and some hematological therapies [65]. It
is also associated with therapeutic interventions (CT-scan, ultrasonography) and flexible
endoscopy or (re) laparotomy/thoracotomy in the ICU general surgical population [66].
Higher values of CRP are associated with age below 50 years for predicting COVID-19 [49].
In healthy individuals, the median CRP has been proven to be 0.8 mg/L [69]. A series of
studies have identified informative CRP thresholds, as depicted in Figure 1.

Interleukin-6 (IL-6) is used as an inflammation biomarker in septic and non-septic
patients [74] and as a predictor of disease severity [75]. Compared to CRP, it is proven
that IL-6 can better predict disease severity [75] and it is more associated with organ
dysfunction and the need for organ support therapies, like vasopressors/inotropes and/or
Renal Replacement Therapy (RRT) [74]. It is also associated with the ability of Simplified
Acute Physiologic Score (SAPS) II and Sequential (Sepsis-related) Organ Failure Score
(SOFA) to predict 90-day mortality of critically ill patients, with or without sepsis [74]. In
healthy individuals, IL-6 ranges from 0 to 7 pg/mL [76], while IL-6 of more than 1 µg/mL
is indicative of septic shock [76]. For COVID-19 patients, IL-6 of ≥74.98 pg/mL on ICU
admission is a predictor of in-hospital mortality [73] (see Figure 1).

Lactate dehydrogenase (LDH) is a marker of COVID-19 virus for all ages [49] and a
predictor of severe COVID-19 in patients above 50 years when combined with CRP [49].
However, it is associated with COVID-19 irrespective of age and gender [49], and with
severe lung infections [77].

Procalcitonin (PCT) is used as a test for early identification of infections [58,59] and
identification of infections in ICU patients [78]. It is also considered a better mortality
predictor than CRP [78]. It is associated with both infection and inflammation [48], viral
and bacterial infections, and sepsis [79], as well as with the severity of infection and risk of
death [78]. When PCT is more than 2 ng/mL, the diagnostic specificity is improved and
confirmation of treatment requirement for extracellular bacterial infection is aided [80].
A PCT equal or above 0.56 ng/mL on ICU admission can be a predictor of in-hospital
mortality for COVID-19 patients [73] (see Figure 1).

White Blood Cell Count (WBC) can also be used as a Biomarker of infection [48] and is
associated with immature granulocytes [81], Neutrophil-Lymphocyte Ratio (NLR) [82,83],
non-infectious mimics, drugs, and comorbidities [48].
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Table 1. Biomarkers for Infection Detection.

Usage Associations Thresholds

CRP

- SIRS, infection, sepsis
biomarker [49]
- Neonatal sepsis diagnosis [50]
- Diagnosis of bacterial versus
viral infections [56,57]
- CRP test for early identification
of infections [58,59]
- IPS component [51]
- ICU prognostic blood test
component [53]
- ICU mortality prediction when
combined with APACHE II [55]
- Predictor of severe COVID-19
when increased in patients below
50 years [49]
- Responds to therapy against
inflammation [54]

- SIRS, infection, sepsis [49]
- Neonatal sepsis [50]
- ICU-acquired infection [51]
- Hospital readmission in patients with heart
failure [60]
- Increased risk of ICU readmission [61–63]
- Unexpected mortality after ICU discharge [61–63]
- Increased ICU mortality risk [55]
- ICU mortality of COVID-19 patients [67]
- Age below 50 years of COVID-19 patients [49]
- Allergic complications of infections, necrosis,
trauma, malignancy conditions [54]
- Specific drug overdoses [54]
- Obesity, smoking, diabetes mellitus, lack of
exercise, hormonal therapy [64]
- Some hematological therapies [65]
- Therapeutic interventions (CT-scan,
ultrasonography) and flexible endoscopy or (re)
laparotomy/thoracotomy in the ICU general
surgical population [66]

- Healthy: 0.8 mg/L (median) [68]
- Inadequate or inappropriate therapy:
22 mg/L [69,70]
- Increased risk of ICU readmission,
unexpected mortality after ICU discharge:
>100 mg/L on the day of discharge [61–63]
- Sepsis in patients with trauma three days
after trauma: >200 mg/L [71]
- Increased probability of ICU mortality:
CRP > 62.8 mg/L at ICU admission [55]
- Increased risk of ICU readmission and
in-hospital mortality in patients with a LOS
in ICU of >48 h: CRP ≥ 75 mg/L within 24 h
before ICU discharge [72]
- Diagnosis of bacterial versus viral
infections in ICU patients: increase of
>41 mg/L from previous days [56,57]
- In-hospital mortality predictor of
COVID-19 patients: CRP ≥ 81 mg/L on ICU
admission [73]

IL-6

- Inflammation biomarker in
septic and non-septic patients [74]
- Predictor of disease severity
(better compared to CRP) [75]

- Inflammation in septic and non-septic
patients [74]
- Ability of SAPS-II or SOFA to predict 90-day
mortality in critically ill patients (both septic and
non-septic) [74]
- Organ dysfunction and need for organ-support
therapies, like vasopressors/inotropes and/or RRT
(higher association than CRP) [74]

- Healthy: 0 to 7 pg/mL [76]
- Septic shock: more than 1 µg/mL [76]
- In-hospital mortality predictor of
COVID-19 patients: ≥74.98 pg/mL on ICU
admission [73]

LDH

- Marker of COVID-19 for all
ages [49]
- Predictor of severe COVID-19 in
patients above 50 years when
combined with CRP [49]

- Severe lung infections [77]
- COVID-19 irrespective of age and gender [49]

PCT

- PCT test for early identification
of infections [58,59]
- Used in ICUs to identify
infection in patients [78]
- Mortality predictor (better than
CRP) [78]

- Infection and inflammation [48]
- Viral and bacterial infections, sepsis [79]
- Severity of infection and risk of death [78]

- Treatment requirement for extracellular
bacterial infection: >2 ng/mL [80]
- In-hospital mortality predictor of
COVID-19 patients: ≥0.56 ng/mL on ICU
admission [73]

WBC - Biomarker of infection [48]

- Immature granulocytes [81]
- NLR [82,83]
- Non-infectious mimics, drugs, and
comorbidities [48]

Refer to Glossary section for acronyms.

Figure 1. Diagnostic biomarker thresholds according to literature [61–63,68–73,76,80].
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2.2. Scoring Systems

Healthcare professionals use predictive scoring systems that describe, assess, and
compare the severity of a disease [84], usually as a numerical score, by predicting outcomes
like length of stay and mortality rates in patients mainly in ICUs [85]. They are also used
to evaluate therapeutic interventions in patients with acute respiratory distress syndrome
or sepsis [86,87], and for benchmarking of ICU performance and improvement of quality
of care [84]. Commonly used models include the Acute Physiologic and Chronic Health
Evaluation (APACHE), the Sequential (Sepsis-related) Organ Failure Score (SOFA), the
Simplified Acute Physiologic Score (SAPS) and the Mortality Predictive Model (MPM). An
overview of these scoring systems is presented in Table 2.

APACHE is used to assess mortality risk and length of ICU stay. It has the advantage of
being widely validated which makes it reproducible and it includes the location of treatment
variable not found in other scoring systems. However, it cannot handle comorbidities
and includes dynamic parameters that can easily change. Additionally, APACHE III can
be applied anytime during ICU stay, while the latest version, APACHE IV, is disease
specific considering 115 diseases. The complexity of APACHE IV raises the requirement
for additional software and increased costs. APACHE IV is also validated only in the US.
Additionally, APACHE II excludes patients below or at the age of 16 years old, and those
with burn injuries, coronary artery disease, or a history of cardiac surgery [85,88–95].

SOFA was originally used to understand and describe organ disfunction and the
complications caused by it in critically ill patients with sepsis [88,96]. Later it had been
validated for use in critically ill patients with non-sepsis related organ disfunction and as a
method for predicting mortality rate [88,96]. It is also used in the definition of sepsis [97],
while its ‘derivative’, namely Quick-SOFA, is used as a screening tool to identify sepsis in
patients [84]. It does not consider chronic illnesses [84–86,88,96–100].

SAPS assesses mortality risk and can be used to compare resources amongst ICUs.
SAPS II was validated only in North America and Europe and excluded patients below or
at the age of 16 years old, as well as those with burn injuries, coronary artery disease, or
a history of cardiac surgery [84,85,88,94,101–103]. The latest version, SAPS III, is widely
validated. SAPS III considers diagnoses, and reflects early severity.

MPM assesses mortality in the form of a probability instead of a score like other
scoring systems and it requires less physiological data compared to other scoring systems.
However, it excludes cardiac surgery and myocardial infraction patients and MPM II also
excludes patients below or at the age of 16 years old, and those with burn injuries and
coronary artery disease [57,88,104].
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Table 2. Main ICU Scoring Systems Overview.

Scoring
System Outcome Version Variables (Obs.

Window) Score Advantages Disadvantages

APACHE
[85,88–95]

- Mortality
- ICU LOS

II

13 + medical history
+ surgical

requirements (first
24 h in ICU)

0–71
- Repro-
ducible/widely
validated
- More than
1 outcome
- Includes location of
treatment variable
- APACHE III:
Applied anytime
during ICU stay
- APACHE IV:
Disease specific
(115 diseases)

- Cannot handle
comorbidities
- Includes dynamic
parameters that can
be affected
- APACHE II:
Excludes patients
≤ 16 years old, those
with burn injuries,
coronary artery
disease, or a history
of cardiac surgery
- APACHE IV:
Complex, Requires
software, Added
costs, Validated only
in the US

III 17 (applied anytime
in ICU) 0–299

IV
142 + 115 disease

groups
(first 24 h in ICU)

0–286

SOFA
[84–86,88,96–100]

- Organ
Disfunction (both
septic and
non-septic
patients)
- Sepsis
Mortality

- 6 (applied anytime
in ICU) 0–4 for each

- Can be used to
monitor response to
therapy
- Used in sepsis
definition
- Derivative:
Quick-SOFA
screening tool for
sepsis

- Does not consider
chronic illnesses

SAPS
[84,85,88,94,101–103]

-Mortality

II 17 (first 24 h in ICU) 0–163
- Can be used to
compare resources
amongst ICUs
- SAPS III: Repro-
ducible/widely
validated, considers
diagnoses, reflects
early severity

- SAPS II: Validated
only in North
America and Europe
- SAPS II: Excludes
patients ≤ 16 years
old, those with burn
injuries, coronary
artery disease, or a
history of cardiac
surgery

III 20 (first hour in ICU) 0–217

MPM
[57,88,104]

-Mortality

II 13 (on admission,
first 24 h in ICU) -

- Less physiological
data required
compared to other
scoring systems

- Cardiac surgery
and myocardial
infraction patients
are excluded
- MPM II: Excludes
patients ≤ 16 years
old, those with burn
injuries, coronary
artery disease

III

13 (preceding 24 h of
first

48 h/first 72 h in
ICU)

-

Refer to Glossary section for acronyms.

3. AI Approaches in Healthcare and ICU
This section presents an extensive literature review on how AI is applied to predict (a)

sepsis and mortality due to sepsis, (b) length of stay, and (c) hospitalization/ICU admission
after ED admission. Studies within each outcome are analyzed in terms of (1) prediction
objective, (2) dataset and features, and (3) modelling and evaluation. A comparison of
clinical and AI approaches for predicting sepsis and mortality due to sepsis is presented
within the first outcome review. An overview of the selection process of the studies is
depicted in Appendix A Figure A1.

3.1. Sepsis Prediction & Sepsis Mortality Prediction

AI can be used to predict sepsis. Sepsis is a life-threatening disease affecting up to
30% of ICU patients. Up to 50% of ICU mortality is due to sepsis [104]. Worldwide, an
estimated 30 million people are diagnosed with sepsis in ICUs and 6 million people die
from sepsis every year. In addition, the hospital’s treatment costs increase every year.
The study of Nemati et al. (2018) discusses that if the antibiotic treatment is delayed, the
mortality is increased every hour [105]. In this context, early recognition of risk factors
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and immediate clinical intervention, before any sign of clinical symptoms, are crucial for
reducing mortality rates.

Early identification and immediate intervention are keys to sepsis treatment; while
scoring systems and diagnostic biomarkers can be insufficient to detect or predict the
response to infection and are accompanied by limitations (see Table 2; [48,104,106–109]).
While bacterial infections are the most common cause of sepsis, any type of infection, includ-
ing viral (e.g., influenza, COVID-19), fungal (e.g., candidiasis), and parasitic infections (e.g.,
malaria), can lead to sepsis. AI models can specifically differentiate between these types
of infections by considering critical variations in different vital signs (e.g., temperature,
respiratory rate) and lab values (e.g., CRP, PCT). We present a significant body of literature
concerning the development of diagnostic and prognostic methods of sepsis through ML
and DL methods. These methods intend to enable early identification of patients with
any type of sepsis, so that clinicians undertake the most appropriate treatment strategy,
confidently, enhancing patient prognosis [105].

An extensive literature review has been performed using GoogleScholar to search for
studies published between 2019 and 2024 targeting sepsis and septic shock detection or
prediction and sepsis mortality prediction by ML or DL methods. We excluded studies that
were published before 2019 (6), that involved patients under 18 years old (2) or were review
papers (3). An overview of the 34 final identified studies is presented in Tables 3–6. A
technical supplement with open-source code for sepsis prediction is also available in [110]
https://github.com/mariehane/ai-gone-astray (accessed on 19 July 2024). Another open-
source pipeline that uses a range of databases to predict various clinical outcomes including
sepsis is in [111] https://github.com/rvandewater/YAIB (accessed on 19 July 2024).

In what follows, we will provide detailed summaries with links to the literature. We
believe our statistical summaries can serve as guides to where most of the research has
been focused and for which areas remain under-researched.

3.1.1. Prediction Objective

We define sepsis based on the Sepsis-3 definition given in [98]. Most studies (19; 56%)
[112–129] use the Sepsis-3 definition [98]. Most studies (21; 62%) [111,115,117–121,125,128–140]
target sepsis prediction. We found that 5 studies (15%) [116,122,124,141,142] target sepsis
detection (no prediction window), 4 studies (12%) [113,114,126,127] target sepsis mortality
prediction, 3 studies (9%) [123,128,143] target septic shock prediction, while [144,145] target
sepsis associated Acute Respiratory Distress Syndrome (ARDS) prediction and septic shock
detection, respectively.

Out of 29 prediction tasks, the most frequent (6; 21%) prediction window used is
6 h [118–120,138–140]. Two studies [133,143] conclude that a shorter prediction window
increases performance. A study concludes that a longer observation window increases
model performance [133].

3.1.2. Dataset & Features

Most of the studies (22; 65%) [110–113,115–122,128–130,133,134,137–140,142,144–146] use
data of patients in ICU. The Medical Information Mart for Intensive Care-III (MIMIC-III)
[147], is the most common dataset, used by 9 (26%) studies [113–115,121,126,129,133,136,143],
followed by the PhysioNet Computing in Cardiology 2019 Challenge dataset [36] used by
6 (18%) studies [118–120,122,134,138]. We note that a freely accessible pipeline for processing
EHRs specifically from MIMIC-IV is provided in [148] https://github.com/eyeshoe/cop-e-cat
(accessed on 19 July 2024).

In terms of features included, it is shown that kinematics features [122], free-text
data [130,141] and a combination of hematological parameters [142] improve performance.

https://github.com/mariehane/ai-gone-astray
https://github.com/rvandewater/YAIB
https://github.com/eyeshoe/cop-e-cat
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The most important features according to built-in model importance are usually vital signs
(e.g., heart rate, respiratory rate) [112,123,135,136,141] and laboratory values (e.g., Platelets,
lactate) [112,113,117,119,124,126,141,142,145].

Table 3. Sepsis Detection & Septic Shock Detection.

Task Ref. Def. Ward Dataset,
Samples a Preprocessing Feats b Obs.

Window c
Pred.

Window c
Best

Model
Final

Remarks

Sepsis
Detection

[116] Sepsis-3 ICU TED-ICU, 1588 HMV, N, FS, FE 106 12 h -
XGB
AUC:
0.89

XGB outperforms SOFA score.

[122] Sepsis-3 ICU PNCC, 15,515 FS, FE, HMV,
ST, N 8 48 h -

LSTM
AUC:
0.835

Kinematics features models show
higher performance than vital

sign models.

[141] HSSC ED
Admission

CHED,
1,059,386 PCA, CB, VI NM First 12 h in

ED -

NLP-
XGB
AUC:
0.97

Free-text data improves
performance. IF: vital signs,

clinical notes, lab values.

[124] Sepsis-3 ED
Admission CMT, 8296 FS, VI 34 - -

XGB
AUC:
0.86

XGB outperforms scoring
systems. IF: CRP, Sodium,

Lymphocytes (%)

[142] ICD-10 ICU
YUSH, 7743

(patients with
fever)

FS (SWT, TT,
SFS, T-SNE,
WL), HMV

17 - -
LR

AUC:
0.86

LR outperforms scoring systems.
Combination of hematological

parameters increases SEN.

Septic
Shock

Detection
[145] CMS,

Billing ICU
GIRB, 45,425

(sepsis
patients)

FE, FS, EDA,
HMV, HTS, HO,

CB (ENN,
SMOTE, RU),

FE, VI

15 6 h -
RF

AUC:
0.9483

Models based on CMS
outperform models based on

Billing definition. IF: Lactic acid

a Final cohort (training & test set), b Final number of features of best model (after feature selection, before feature
engineering), c Of best model. Refer to Glossary section for acronyms.

Table 4. Sepsis Prediction.

Task Ref. Def. Ward Dataset,
Samples a Preprocessing Feats b Obs.

Window c

Pred.
Win-

dow c
Best Model Final

Remarks

Sepsis
Prediction

[130] ICD-10 ICU SH, 327 CB (SMOTE) 100 - 12 h NLP-EM
AUC: 0.94 Clinical notes improve accuracy.

[112] Sepsis-3 ICU ICUUS, 3596 FEX, HO, HTS,
HMV, FE, S, VI 40 NM 4–48 h NN

AUC: 0.953

Online hourly prediction based
on alarm. IF: Temperature, WBC,

HR

[115] Sepsis-3 ICU MIMIC-III, 7833 HMV, HTS, FS 20 At least 4 h 3 h CNN
AUC: 0.84

CNN outperforms clinical
scoring systems.

[117] Sepsis-3 ICU ZUH, 4449 FEX, FS, VI 55 NM NM RF
AUC: 0.91

IF: neutrophils%, D-dimer,
neutrophils.

[118] Sepsis-3 ICU PNCC, 40,336 HMV 40 NM 6 h TCN
AUC: 0.91 Per time-step AUC: 0.98

[119] Sepsis-3 ICU PNCC, 23,711 HMV, CB, FS,
FE, VI, SHAP 25 2, 12, 24 h 6 h LGBM

AUC: 0.979 IF: PTT, WBC, platelets.

[133] Sepsis-2 ICU MIMIC-III,
31,575 FEX, HTS, HMV 101 20 h 3 h RNN

AUC: 0.81

Performance increases with
increasing observation window

and decreasing prediction
window.

[134] NM ICU PNCC, NM CB, HMV, FS, N
CNN:11
RNN:

40

CNN: Up
to 5 h

RNN: Up
to 11 h

12 h
EM (CNN,

RNN)
AUC: 0.964

Hourly/real time predictions.

[121] Sepsis-3 ICU MIMIC-III, 6188 FS, CB, HMV 44 Up to 41 h 7 h DTW-KNN
APR: 0.40

Irregularly sampled multivariate
time series.

[120] Sepsis-3 ICU
Admission PNCC, 40,336

FEX, HMV, N,
CB (SMOTE), FS

(Z-test, CAn)
6 - 6 h XGB

AUC: 0.98 Only vital signs used.

[131] CMS ED
Admission QAH, 42,979 NM 86 Hourly

prediction 4 h MGP-RNN
AUC: 0.882

MGP-RNN outperforms scoring
systems.

a Final cohort (training & test set), b Final number of features of best model (after feature selection, before feature
engineering), c Of best model. Refer to Glossary section for acronyms.
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3.1.3. Modelling & Evaluation

Regarding proposed models, 19 (56%) studies use a DL model, and 15 (44%) studies
use a ML model as the best performing one. Most of the ML models are tree-based
ones like Extreme Gradient Boosting (XGB) [113,116,120,124,125,141], Random Forest (RF)
[117,129,145], Gradient Boosting (GB) [114], Light Gradient Boosting Machine (LGBM) [119],
and AdaBoost [144]. DL models proposed are usually temporal ones, like the Long Short
Term Memory (LSTM) [122,127,135,143], the Recurrent Neural Network (RNN) [131,133],
the Convolutional Neural Network (CNN) [115,140], the Temporal Convolutional Network
(TCN) [118], or combinations of them [132,134].

Table 5. Sepsis Prediction & Sepsis Associated ARDS Prediction.

Task Ref. Def. Ward Dataset,
Samples a Preprocessing Feats b Obs.

Window c
Pred.

Window c
Best

Model
Final

Remarks

Sepsis
Prediction

[132] Sepsis-2
Depart
out of
ICU

DMM, 3126 HTS, HMV,
OHE, S, FE, CB 5030

Up until
prediction

time
3 h

LSTM-
CNN
AUC:
0.856

High SEN in departments
where sepsis is not common.

Representations from raw event
sequence used. Patients had not
initiated intravenous antibiotics

or blood culture at the time of
early detection.

[128] Sepsis-3 ICU PNUYH,
21,957

HO, HMV, HTS,
FS, N, SHAP 24 24 h 24 h

NN
AUC:
0.7888

NN outperforms scoring
systems.

[135] Sepsis-2 ED DIIC,
186,575 HMV, HTS, VI 111 NM 4 h

Proposed
LSTM-
based
AUC:
0.892

LSTM outperforms scoring
systems. Interpretable. Handles
irregular time intervals. IF: RR,

pulse, GCS.

[136] ICD-9 &
SIRS GW MIMIC-III,

48,632 HMV, HTS, VI 10 5 h 3 h
NN

AUC:
0.86

IF: WBC, RR, DBP.

[137] Sepsis-2 ICU
Proprietary

EHR,
40,000

OHE, EMB 29 48 h 4 h
PAVE
AUC:
0.780

No need to HMV because of
EMB. Interpretable.

[138] SIRS ICU PNCC,
40,336

FEX, FS (RF,
AENN, CAn),
HMV, CB, FE

15 NM 6 h
LR

AUC:
0.614

Anomaly detection
semi-supervised framework.

[129] Sepsis-3 ICU MIMIC-III,
685,110

CB (SMOTE),
HMV, LE, OHE,

HO, VI
31 NM NM

RF
AUC:
0.918

IF: ICU LOS, hospital-to-ICU
admission time, O2 saturation.

[139] Sepsis-2 ICU ICUS, 282 HMV, HTS, FE 30 - 6 h
DFSP
AUC:
0.92

DFSP outperforms scoring
systems.

[140] Sepsis-2 ICU 3 hospitals,
40,336

HMV, HTS, HO,
S, FE 34 2 h 6 h

ACNN
ACC:
0.9318

Classification of features as
‘high’ or ‘low’.

[125] ICD-9 &
Sepsis-3

Hosp,
ED

DAD,
270,438

FEX, HTS, HMV,
FE, CB 7 NM 48 h

XGB
AUC:
0.827

XGB outperforms scoring
systems.

Sepsis
associated

ARDS
Prediction

[144] ICD-9 ICU

eICU,
19,249
(sepsis

patients)

HMV, FEX, FS,
FE 14 First 24 h in

ICU NM
AdaBoost

AUC:
0.895

3 phenotypes with different
therapeutic responses are

clustered.

a Final cohort (training & test set), b Final number of features of best model (after feature selection, before feature
engineering), c Of best model. Refer to Glossary section for acronyms.
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Table 6. Septic Shock Prediction & Sepsis Mortality Prediction.

Task Ref. Def. Ward Dataset,
Samples a Preprocessing Feats b Obs.

Window c
Pred.

Window c
Best

Model
Final

Remarks

Septic
Shock

Prediction

[143] Sepsis-2 Hosp
Admission

MIMIC-III,
NM

FEX, HO,
HMV, S 30 NM 48 h LSTM

AUC: 0.8306
Performance increases with
smaller prediction window.

[123] Sepsis-3 ED
Admission

THC, 604
(AP

patients
with sepsis)

N, PCA, PCC, FS
(KW, ANOVA,
RFE, R), CB, VI

11 First 24 h in
ED

Up to
28 days

AE
AUC: 0.879

AE with PCC and RFE
outperforms scoring systems.
IF: Disease duration, HR, RR.

[128] Sepsis-3 ICU

PNUYH,
23,189

(sepsis &
non-sepsis
patients)

HO, HMV, HTS,
FS, N, SHAP 24 24 h 24 h NN

AUC: 0.8494
NN outperforms scoring

systems.

Sepsis
Mortality
Prediction

[113] Sepsis-3 ICU
MIMIC-III,
4559 (sepsis

patients)

HMV, FS (KST,
STT, ANOVA,

MWU, KW, χ2,
FET, AIC),

FE, VI

11 First 24 h in
ICU 30 days XGB

AUC: 0.857

XGB outperforms SAPS-II. IF:
urine output, lactate-min,

BUN-mean

[114] Sepsis-3 Hosp

MIMIC-III,
16,688
(sepsis

patients)

HMV, FEX,
FS, FE 86 First 24 h in

ICU NM GB
AUC: 0.829

SAPS-II has the poorest
calibration

[126] Sepsis-3 Hosp
MIMIC-III,
9432 (sepsis

patients)

FEX, HMV, FS,
FE, CB

(SMOTE),
VI (XGB)

30 NM NM
NN-
GCN

ACC: 0.8278
IF: Bicarbonate, age, PH

[127]
HTDV

criteria &
Sepsis-3

Hosp
HTDV, 40

(sepsis
patients)

FEX, N, HTS,
FE, LIME 5

First 24 h
after

hospitalization

Time to
discharge

(avg
2 weeks)

LSTM
APR: 0.83

Models trained on wearable
data outperform models trained

on bedside monitor data.

a Final cohort (training & test set), b Final number of features of best model (after feature selection, before feature
engineering), c Of best model. Refer to Glossary section for acronyms.

Among the 6 sepsis/septic shock detection papers (see Table 3), 5 (83%)
[116,124,141,142,145] of them used a ML model with AUC ranging from 0.86 to 0.97, while
just 1 study [122] uses a DL model with an AUC of 0.835. The observation window ranges
from 0 to 12 h for the ML models, while the DL model uses LSTM components for detecting
sepsis using 48 h of data. Overall, for sepsis detection and septic shock detection, ML
models are found to be sufficient.

Among the 29 prediction models, 19 (66%) [112,115,118,123,126–128,130–137,139,140,143]
used a DL model with AUC ranging from 0.78 to 0.964, and 10 (34%) [113,114,117,119–121,
125,129,138,144] used a ML model with AUC ranging from 0.614 to 0.98. Overall, for sepsis
prediction, septic shock prediction and sepsis mortality prediction ML and DL models have
been proven equally promising. Specifically, for mortality prediction, 2 studies used a ML
model and 2 studies used a DL model with similar performance (AUC 0.8278–0.857). While
mortality prediction models did not achieve as high AUC as some sepsis prediction models,
their performance interpretation regarding disease severity can be as indicative considering
the mortality outcome.

In summary, we differentiate between models used for detecting sepsis presence
versus the prediction of sepsis at a future time. Models for detections tend to be much
simpler than models used for prediction of sepsis at a future time.

Studies that compare their best performing algorithm with a clinical approach show
the superiority of AI in detecting/predicting infection. Performance comparison with at
least one clinical scoring system (see Section 2.2) takes place in 11 (32%) of the studies
[113,115,116,123–125,128,131,135,139,142], where they are always outperformed by the pro-
posed algorithm. Some studies [132] confirm that some AI methods predicted sepsis before
any antibiotics or blood cultures were initiated. This finding suggests that integrating lab
values in algorithms, rather than using them based on standalone thresholds (see diagnostic
biomarkers in Table 1), leads to early predictions that may help initiate earlier treatment,
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potentially preventing sepsis. Clearly, careful clinical studies would have to be performed
before initiating a change in clinical practice.

3.2. Length of ICU/Hospital Stay Prediction

Length Of Stay (LOS) prediction of hospitalized patients and ICU patients targeting
the duration from ICU/hospital admission to discharge, constitutes an important model
outcome for both doctors, management staff and, thus, patients.

It can be used by doctors as a measure of patient acuity indicating illness severity
and helping them to avoid overmedication or undertreatment. It also indicates recovery
speed, the need for closer monitoring or adjusted treatment plans, minimizing the risk
of early discharge and readmission. In addition, predicting LOS of existing admissions
helps in resource allocation and management, like ensuring there are enough beds for new
admissions. Patient prioritization for discharge and overall scheduling are also handled
based on expected LOS for current patients.

However, over-reliance on such models can lead to inadequate monitoring of pa-
tients and hence deterioration or readmission, if the model underestimates the length of
stay/discharge time. Conversely, an overestimation of the length of stay/discharge time
can lead to a waste of allocated resources and inefficient patient prioritization.

A second literature review has been performed using GoogleScholar to identify papers
published between 2019 and 2024 predicting patient LOS. We excluded studies that were
published before 2019 (3), involved patients under 18 years old (4) or did not use ML/AI
modelling (2). An overview of the 39 studies is presented in Tables 7–9. Two downloadable
pipelines that predict LOS, among other clinical outcomes, using a range of models and
databases are given in [111] https://github.com/rvandewater/YAIB (accessed on 19 July 2024)
and [146] https://github.com/yzhao062/PyHealth (accessed on 19 July 2024) which can
handle multimodal data.

3.2.1. Prediction Objective

Papers found are split in 3 LOS outcome categories: (i) a continuous outcome in
hours/days [149–167] (19, 49%), (ii) a binary outcome of LOS > X days [151,159,168–179]
(14, 36%), and (iii) a multiclass outcome of LOS > X days [152,163,180–185] (8, 21%). The
first category involves most papers identified for this prediction task. Regarding the
second category, there is evidence that in the clinical decision-making the general cut-off
point of LOS is 4–5 days [168], while for general ICU patients in the United States the
average is 3 days [186]. According to this study, a prespecified value is sometimes used
as a threshold [169], while in other cases it is identified based on either the mean [170],
median [151,168], 75th percentile [171,172] of the study population outcome, previous
studies [173], or clinical importance [174]. Most papers refer to ICU LOS (29, 74%), while
the rest refer to hospital LOS (10, 26%).

https://github.com/rvandewater/YAIB
https://github.com/yzhao062/PyHealth
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Table 7. Hospital/ICU Length of Stay Prediction: Continuous.

Ref. Task Location Dataset,
Samples a Preprocessing Feats b Obs.

Window c Best Model Final
Remarks

[149] hours ICU MIMIC-
III, 6927

FS, HMV, HO,
HUM, FE 28 First 24 h in

ICU
GA

MSE: 43,828

Dispersion tendency statistics (min,
max, range), are more suitable for LOS

prediction than other FE statistics.

[150] hours ICU
HiRID,
21.54

million

HTS, HMV,
OHE, S, FE -

1 week,
throughout

stay
(continuous

learning)

LGBM
MAE: 56.9

Benchmark result for proposed
pipeline. Label distributions contribute
to low scores. LGBM-based methods
outperform DL methods. FE does not

help.
https://github.com/ratschlab/

HIRID-ICU-Benchmark/ (accessed on
19 July 2024)

[152] days ICU MIMIC-
III, 42,276 HTS, HUM 17 Data since ICU

admission
LSTM

CWK: 0.433 Hourly predictions.

[153] days ICU eICU,
73,389

HMV, HTS, FS,
EMB 20 - BiLSTM

R2: 0.643 Positive impact of EMB.

[154] days ICU

HHTCM
ICU, 17

(COVID-19
survivors)

FS, HO, FE 10 - LASSO-LNR
MAE: 0.723

Prediction achieved before ICU
admission.

[151] days ICU MIMIC-
III, 44,626

HO, HMV, FE,
N 33 First 24 h in

ICU
SVM

MAE: 2.810 FE improves performance.

[155] days ICU eICU,
89,123

FE, FS, HO,
HMV, HTS 38 First 24 h in

ICU
LSTM-MPNN

MAD: 1.86

Combining LSTM and GNNs improves
performance. GNNs provide context

for rarer patters of diseases.

[156] days ICU eICU,
89,127

FE, FS, HO,
HMV, HTS, CR 38 First 24 h in

ICU
GRU (FL-SRC)

MAE: 2.21

CR based on local output distribution
and local sample size improves FL

performance and runtime.

[157] days Hospital UTMB,
805

HMV, FS (LF),
FE, OHE, N 59 NM CoxL

RMSE: 5.4834 Censored clinical data are included.

[158] days Hospital YCDTSH,
154

FS (SBFCM),
LE, CAn 11 NM NN

MAE: 2.03
Feature selection framework is

proposed.

[159] days ICU TRDGU,
23,830 VI 15 - LNR

MAE: 5.0 IF: Ventilation, number of injuries.

[160] days Hospital THI, 5363 FEX, HMV, FS
(PFI), FE, N, LE 60 - SVR

MAE: 1.85
Hierarchical Bayesian model
outperforms best ML model.

[161] days Hospital

MIMIC-
IV, 511,741
subjects,
170,934
images

FEX, FS, OHE,
HMV, FE, HO,

IR, T

52
(tabular

data)
NM

DF-Mdl (CNN,
LSTM,

Att-1DCNN)
MAE: 3.8682

Multimodal data (lab results, images,
clinical notes, etc.) used.

[162] days ICU MIMIC-
IV, 48,367 FEX, IE 30 NM BT

RMSE: 2.863

Uniform incomplete data across all
racial features favors performance. No

significant impact of imputation
method. Small negative impact of

missing data quantity for prediction
performance.

[163] days ICU

ASSIST,
1642

(CHD
patients

after
surgery)

FS, HMV, S,
SHAP 93 - LGBM

RMSE: 15.2

Mechanical Ventilation time, patient
weight on surgery day: most influential

predictors.

[164] days Hospital
DHHS,
2.3 mil-
lion+

HMV, FS (CAn,
EDA), VI 34 NM RF

MSE: 5

Patients with diagnoses related to birth
complications spent more days in

hospital than other diseases. IF: total
costs, diagnosis.

[165] days Hospital
TMUGH,
168 (FNF
patients)

FEX, HMV, IE,
OHE, N 38 NM PCR

MAE: 1.525

Postoperative calcium level &
lymphocyte%, intraoperative bleeding,

glucose & Sodium chloride infusion
after surgery, CCI, BMI: most

significant predictors

[166] days Hospital

ACS-
NSQIP,
302,300
(TKA

patients)

HMV, N, HO,
OHE, IE, S 32 NM MLP

MSE: 0.690

Conventional and deep learning
models performed better than mean

regressors.

[167] days Hospital

SRPH,
4376

(T2DM
and HTN
patients)

FEX, BCT, FS
(IG, ReliefF) 73 NM RF

MAE: 0.935

Patients with primary diseases such as
T2DM or HTN may have comorbidities

that can prolong inpatient LOS.

a Final cohort (training & test set), b Final number of features of best model (after feature selection, before feature
engineering), c Of best model. Refer to Glossary section for acronyms.

https://github.com/ratschlab/HIRID-ICU-Benchmark/
https://github.com/ratschlab/HIRID-ICU-Benchmark/
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3.2.2. Dataset & Features

MIMIC-III [147], is the most common dataset, used by 6 (15%) studies
[149,151,152,173,176,184], followed by MIMIC-IV [187] used by 4 (10%) studies
[161,162,175,178], and eICU [188] used by 4 (10%) studies [153,155,156,169]. Most
of the studies (9, 23%) use the first 24 h in hospital/ICU as an observation win-
dow [149,151,155,156,169,174–176,184]. Regarding feature preprocessing, we note that
feature engineering [151] and particularly engineering using dispersion statistics [149],
as well as embedding [153] can improve performance. The most important features ac-
cording to built-in model feature importance frequently appear to be vital signs and lab
values [165,169,171,174,182].

3.2.3. Modelling & Evaluation

Most studies (26, 67%) are based on a ML model compared to 13 (33%) studies based
on DL models. Most ML models are tree-based, and mainly RF [151,164,167,168,173,
174,176,178,180–182], XGB [170,172], and LGBM [150,163]. DL models are mostly LSTM-
based [152,153,155,161,175].

Within the 14 binary prediction tasks, 2 (14%) [171,175] use a DL model with AUC of
0.76 and 0.915, respectively, while 12 [151,159,168–170,172–174,176–179] use a ML model
with AUC ranging from 0.587 to 1.00. It is observed that performance within this binary
category is overall increased with increasing classification threshold of length of stay,
probably because more days in hospital/ICU can imply disease severity benefiting model
discrimination ability. Overall, ML models are more frequently proposed than DL models
for LOS prediction, with RF and LSTM-based models being used the most. ML models
performed just as well as DL models.

Table 8. Hospital/ICU Length of Stay Prediction: Binary.

Ref. Task Location Dataset,
Samples a Preprocessing Feats b Obs.

Window c Best Model Final Remarks

[151] LOS > 2.64 days ICU MIMIC-
III, 44,626

HO, HMV,
FE, N 33 First 24 h in

ICU
RF

AUC: 0.70 FE improves performance.

[175] LOS > 3 days ICU MIMIC-
IV v1.0

ICDC, CA, FS,
HUM, HO,
HMV, HTS

NM First 24 h in
ICU

LSTM-H
AUC: 0.76

Benchmark result for proposed
pipeline.

https:
//github.com/healthylaife/

MIMIC-IV-Data-Pipeline
(accessed on 19 July 2024)

[176] LOS > 3 days ICU MIMIC-
III, 34,472

FS, FE, HUM,
HO, HTS, CA,

N, HMV
114 First 24 h in

ICU
RF

AUC: 0.736

Benchmark result for proposed
pipeline.

https://github.com/
MLforHealth/MIMIC_Extract

(accessed on 19 July 2024)

[169] LOS > 3 days ICU eICU,
117,306 FE, HMV, VI 17 First 24 h in

ICU
GB

AUC: 0.742 IF: Pao2/Fio2 ratio, GCS, SUN.

[178] LOS > 3 days-2nd
admission ICU MIMIC-

IV, 18,572
FEX, FS (LF),

FE, N, VI 220 - RF
AUC: 0.716

IF: LOS of 1st admission, age,
Phytonadione and Metoprolol

Succinate XL.

[179] LOS > 3 days ICU CCM,
24,876

FS, CB
(SMOTE) NM NM

EM (GBM,
SVM, LR)

AUC: 0.587
EM outperforms baseline models.

[168] LOS > 6 days ICU PUMCH
ICU, 2224

FS, N, HMV,
CB, TT 26 First 6 h in ICU RF

AUC: 0.76 RF outperforms SOFA score.

[176] LOS > 7 days ICU MIMIC-
III, 34,472

FS, FE, HUM,
HO, HTS, CA,

N, HMV
114 First 24 h in

ICU
RF

AUC: 0.764

Benchmark result for proposed
pipeline.

https://github.com/
MLforHealth/MIMIC_Extract

(accessed on 19 July 2024)

[170] LOS > 7 days ICU
IHICU, 77
(COVID-19
survivors)

HMV, CB,
FS, VI 4 - XGB

AUC: 0.795 IF: Hematocrit and ESR.

https://github.com/healthylaife/MIMIC-IV-Data-Pipeline
https://github.com/healthylaife/MIMIC-IV-Data-Pipeline
https://github.com/healthylaife/MIMIC-IV-Data-Pipeline
https://github.com/MLforHealth/MIMIC_Extract
https://github.com/MLforHealth/MIMIC_Extract
https://github.com/MLforHealth/MIMIC_Extract
https://github.com/MLforHealth/MIMIC_Extract
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Table 8. Cont.

[173] LOS > 7 days ICU

MIMIC-
III, NM
(lung
cancer

patients)

FEX, HMV,
D, FS (CS,
RFE), CB

(ADASYN),
SHAP

60 - RF
AUC: 1.00

ADASYN outperforms other
CB techniques.

[174] LOS > 7 days ICU CUHICU,
12,133 HMV, FS, VI 91 First 24 h in

ICU
RF

AUC: 0.881 IF: HR, LDH

[159] LOS > 7 days ICU TRDGU,
108,178 VI 10 - LR

AUC: 0.903
IF: Injury severity, intubation,

pre-trauma condition.

[172] LOS > 9.08
days ICU

WUHICU,
365 (HT
patients)

HMV, FS
(ML, CAn,

LASSO,
PLS-DA), CB,

SHAP, VI

6 - XGB
AUC: 0.88 IF: ECMO

[174] LOS > 14 days ICU CUHICU,
12,133 HMV, FS, VI 91 First 24 h in

ICU
RF

AUC: 0.889 IF: HR, LDH

[177] LOS > 14 days ICU

YH, 75
(COVID-

19
patients)

HMV, FS (TT,
RST, χ2, FET,

AIC)
5 - LR

AUC: 0.848

Elevated PCT significantly
associated with hospital LOS

> 14 days.

[171] LOS > 23 days ICU

THMC,
1417
(TBI

patients)

HMV, FS (χ2,
TT), VI 20 -

NN
AUC: 0.915

(LOS > 23 days)
IF: Age, initial SBP in ED, ISS

a Final cohort (training & test set), b Final number of features of best model (after feature selection, before feature
engineering), c Of best model. Refer to Glossary section for acronyms.

Table 9. Hospital/ICU Length of Stay Prediction: Multiclass.

Ref. Task Location Dataset,
Samples a Preprocessing Feats b Obs.

Window c Best Model Final Remarks

[181] 3 classes in days ICU SCUSH ICU,
233

HMV, HO, D,
N, FS, FE 31 Data on ICU

admission

RF
ACC: 0.9199

PR: 0.38

Early resource management and
decision making.

[184] 3 classes in days Hospital MIMIC-III,
47,796

CB (SMOTE),
EMB, VI NM First 24 h in

Hospital
HAN

AUC: 0.82

ARF, CAD, severe sepsis are the
highest attention weighted ICD9

diagnosis codes.

[185] 3 classes in days Hospital NHCRD,
318,438

FEX, FS, HMV,
HR, LE, N, D,

SHAP
31 NM SVM

AUC: 0.95

Admission accuracy score and
patient history: most significant

predictors.

[180] 4 classes in days ICU

GPCICU,
353 (patients
with acute

type A aortic
dissection)

HMV, FS
(KCC) 12 - RF

AUC: 0.991

[182] 10 classes in days ICU

KFUH ICU,
895

(COVID-19
patients)

HMV, CB, VI 47 Data on ICU
admission

RF
ACC: 0.9416

Age, CRP, NOS days: top features
related to ICU admission & ICU

LOS.

[152] 10 classes in days ICU MIMIC-III,
42,276 HTS, HUM 17 Data since ICU

admission
LSTM-C-DS
CWK: 0.451

Hourly prediction. C and DS
improve LSTM performance.

[183] 11 classes in days Hospital AVHHA,
455,495 HMV, N, IE 12 NM NN

ACC: 0.408

[163] 3 classes in days ICU

ASSIST, 1642
(CHD

patients after
surgery)

FS, HMV, S,
SHAP 93 - CatBoost

AUC: 0.8559

Mechanical Ventilation time,
preoperative arterial O2

saturation, VIS: most influential
predictors.

a Final cohort (training & test set), b Final number of features of best model (after feature selection, before feature
engineering), c Of best model. Refer to Glossary section for acronyms.

3.3. ICU Admission/Hospitalization Prediction After Emergency Department Admission

Comprehensive hospitalization management in Emergency Departments (EDs) is a
key indicator of efficient triage and resource prediction/utilization. EDs are continually
dealing with large streams in patient traffic and increasing resource demands, making
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hospitalization decisions a pivotal factor affecting patient outcomes and the judicious
allocation of resources [189]. ML techniques have emerged as effective for ED triage
prediction of hospitalization models, achieving high accuracy [190,191]. A popular goal is to
identify high-risk patients for hospitalization/ICU admission to help prioritize allocations
of medical resources (e.g., beds, staff), both in the unit of transfer and the ED. This ensures
smooth and efficient triage flow, avoiding overcrowding in the ED and optimally delivering
better quality care both in the hospital/ICU and the ED. Such models, however, should
not be over-relied on, but complement triage decision making, as positive predictions for
transfers can waste valuable resources. Conversely, negative predictions for transfers can
lead to undertreatment, worse patient outcomes and overcrowding in the ED.

A literature review has been performed using Google Scholar to identify papers that
predict ICU admission/hospitalization after emergency department admission published
between 2018–2024. We excluded 2 studies that included young patients (under 18 years
old) and 2 studies predicting ICU admission/hospitalization from departments other than
the ED. An overview of the 18 identified papers is presented in Table 10.

3.3.1. Prediction Objective

Most studies (15, 83%) make predictions at triage [191–205], whereas some make
predictions at 30 min [206], 1 h [198], 2 h [206,207] and hourly [208] after patient arrival
at ED. Most studies (13, 72%) predict hospitalization, while 6 studies (33%) predict ICU
admission after ED admission.

Table 10. ICU Admission/Hospitalization Prediction After Emergency Department Admission.

Ref. Dataset,
Samples a Location Preprocessing Feats b Prediction

Time Best Model Final Remarks

[191] NHAMCS,
135,470 Hospital HMV 11 At triage NN, GB

AUC:0.82 Algorithms outperform ESI.

[198] EDCUS, 11,105 Hospital VI 11 At triage, at
60 min

AutoML
AUC: 0.914
(at triage)

AUC:0.942
(at 60 min)

IF: previous visit outcomes, triage
information.

[192] NHAMCS, 52,037 Hospital HMV, VI 13 At triage GB, NN
AUC: 0.8

Higher SPE for all ML models
compared to conventional methods.

IF: ambulance use, oxygen
saturation.

[206] NEED, 159,499 Hospital FE, HMV, VI 18 At 30 min, at
2 h

GB
AUC: 0.86

Prediction at 30 min after ED
admission has similar performances

to 2 h one.

[193] interrail, 2274 Hospital
FS (V), HTS,

S, HMV,
OHE

723 At triage GB
AUC: 0.8 IF: IVT

[194] TTH, 282,971 Hospital HMV, FS 10 At triage NN
AUC: 0.8004

Model performed better in the
nontraumatic adult & environmental

emergency subgroups.

[208] DUHS, 418,167 Hospital,
ICU

FS, S, HO, N,
FE, HMV,
OHE, VI

723
Hourly

throughout
ED stay

LGBM
AUC: 0.873

(hospitalization prediction)
AUC: 0.951 (ICU admission

pred)

Good external validation and
online/live performance as well. IF:

age, hematocrit, WBC.

[195] USMH, 42,530 Hospital VI 8 At triage XGB
AUC: 0.86

XGB is comparatively fast. XGB
performance increases with

increased data.

[196] NIH, 107,545 Hospital
FS (χ2,

ANOVA),
FE, HMV

14 At triage XGB
AUC: 0.859

LR should be considered for
interpretability.

[197] MUSH, 453,664 Hospital HMV, N, IE,
FS, FE, VI 17 At triage T-ADAB

AUC: 0.954

Optimized models outperform ones.
IF: O2 Saturation. Accuracy of model
does not change with increased data.
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Table 10. Cont.

Ref. Dataset,
Samples a Location Preprocessing Feats b Prediction

Time Best Model Final Remarks

[207] THS, 610 ICU FEX, HTS,
FE, FS (BE) 2 At 5 min

up to 2 h
GLMM

AUC: 0.947

Heart rate variability data used,
easily obtained from ECG and

PPG sensors.

[199]
MIMIC-IV,
30,206 (AF
patients)

ICU
FEX, FS
(SHAP,

RF), HMV
8 At triage

RF-derived scoring
system

AUC: 0.737

5 vital signs, ED length of stay,
age and arrival transport were

used.

[200]

NTUH, 268,716
(retrospective),

1294
(prospective)

Hospital

FEX, HMV,
CB

(SMOTE,
TL)

24 At triage TabNet, MacBERT
ACC: 0.82

Structured and unstructured
data included. Interpretability

(TabNet, BertViz).

[201]

AMCUS,
19,155

(COVID-19
patients)

ICU

FEX, HMV,
N, CB

(SMOTE),
FS (RFE,

SFM, SKB),
VI

10 At triage XGB-SA
AUC: 0.892 IF: AKI, age, ARDS

[202] EDHS, 49,266 Hospital

FEX, IE,
FE, FS (V),
HMV, N, T,

WFC,
TF-IDF,
SHAP

82 At triage XGB
AUC: 0.922

Including text data improves
performance.

[203]
SRHM, 1004
(COVID-19

patients)
ICU

FEX, FS, N,
FE, HMV,

CB
(SMOTE),

SHAP

22 At triage SVM
AUC: 0.85

Just 2 demographic features
and the CBC test results are
required. Low lymphocytes
values and high neutrophils

values predictive of ICU
admission.

[204]
MGB, 3597
(COVID-19

patients)
ICU

FEX, FS,
HMV, CB

(RU),
SHAP, VI

54 At triage RF
AUC: 0.88

IF: CRP, oxygen saturation, and
LDH.

[205] TMUSH,
167,058 Hospital TP, S, OHE,

T, CB 9 At triage BlueBERT
AUC: 0.9014

Translating clinical notes into
English and textualizing

numerical data into categorical
representations improved

performance.

a Final cohort (training & test set), b Final number of features of best model (after feature selection, before feature
engineering). Refer to Glossary section for acronyms.

3.3.2. Dataset & Features

Datasets used vary with the National Hospital and Ambulatory Medical Care Survey
(NHAMCS) dataset being used twice (11%) [191,192]. Text data are often included [200,202,205],
with a study suggesting that the use of text can improve performance [202]. Important features
deduced also vary with oxygen saturation [192,197,204] and age [199,201,208] appearing 3 times
(17%) each. Other important features are previous visit outcomes [198], ambulance use [192],
intravenous therapy (IVT) [193], and different lab values [203,204,208].

3.3.3. Modelling & Evaluation

Most of the studies (15, 83%) propose a ML model achieving AUC in the range of
0.8 to 0.954, while 5 studies (28%) [191,192,194,200,205] propose a DL models achieving
AUC performance ranging from 0.80 to 0.9014. Some studies suggest that ML and DL
models perform similarly [191,192]. Most of the ML models are tree-based and mainly
GB [191–193,206], XGB [195,196,201,202], RF [199,204], LGBM [208], and AdaBoost [197].
A study [191] focused on an improved algorithm for Emergency Severity Index (ESI). For
AdaBoost, ref. [197] found that performance did not increase by using a larger dataset. Yet,
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for XGB, ref. [195] found that performance did improve by using a larger dataset. Overall,
ML and DL models performed similarly.

4. Challenges of AI Applications in ICUs
Despite promising study results in handling ICU outcomes using AI, there are many

challenges that are determinant to its successful adoption and impact. We split them into
4 categories: Healthcare Data, Modelling, Clinical Applicability, Ethical Use of Healthcare
Data, and we recommend solutions regarding each challenge. If carefully developed,
sufficiently validated, and seamlessly integrated, AI can truly improve patient outcomes in
clinical settings.

4.1. Healthcare Data

Data flow in ICUs can be diverse due to different patient conditions and machines,
leading to signal interruptions and varied granularity. These raise the challenges of irregular
time intervals and missing data. They appear in almost all considered papers and are
commonly handled with resampling (e.g., averaging values in hourly bins) and imputation
(e.g., linear interpolation, last value carried forward approach).

When dealing with disease prediction or mortality prediction, datasets are of-
ten imbalanced, with the positive class constituting a minor percentage of the whole
data. Oversampling or down sampling data using different class balancing approaches
(e.g., SMOTE [120,126,129,130,145], ADASYN [173]) on the training set, are a common
preprocessing part, ensuring the model learns to detect both classes.

A high dimensional set of features, that are not easily obtained, as input to an AI
model, will challenge its translational potential in the clinical setting. Recurrent Feature
Elimination (RFE) [123,173] and statistical tests [113,120,123,142,171,177,180,193,196] are
commonly used for feature selection. The most important features for the outcomes of
this review based on built-in model importance are usually vital signs and laboratory
values. Vital signs and laboratory values, as well as medications and previous medical
history, are critical data sources for other medical outcomes, like organ support (such as
vasopressors or renal replacement therapy) prediction. Feature selection plays a major role
in preprocessing and deploying the models. The lower the number of features, the less
complex and the more parsimonious the model, which yields easier implementation in a
clinical setting, where a variety of measures exist, and decisions must be timely.

A common challenge of developing AI models for ICU is generalizability. Insufficient
data size can lead to overfitting and biased outcomes towards a specific group of patients.
In addition, using a single type or modality in AI models can yield insufficient outcomes,
lower performance, and inappropriate interventions. Making sure the models are trained
on a dataset reflective of the population and of sufficient size (instead of one of specific
diseases) and is not overfitted on training data, are all crucial in ensuring validation of
predictions in different ICUs. Ideally, ICU data across different institutions must be collected
to create a large and diverse data set, following appropriate data sharing guidelines.

Different ways of documenting and sharing data like medications, procedures or vital
signs can make them incompatible for an AI model hindering research. In order to allow for
more data to be collected efficiently, standardization procedures and interoperability profiles
like ICD [209] and FIHR [210] are essential. In addition, integration of multimodal data like
text-based clinical notes, time series data, and imaging data means heterogeneous formats that
require sophisticated and more complex data preprocessing, as highlighted in the European
Health Data Space (EHDS) regulation [211], for the secondary use of health data.

Inconsistency in data storage form poses a risk of loss of information and inadequate
data input for the models, potentially leading to inappropriate interventions. Consistency
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in electronic and paper storage of data will aid organization and complete integration with
AI models.

4.2. Modelling

Apart from limited data, model learning parameters may contribute to overfitting.
Evidently, tree-based ML models and temporal DL models are frequently used in sepsis
prediction/detection, sepsis mortality prediction, LOS prediction and hospitalization/ICU
admission prediction after ED admission. This might be attributed to the ensembling
nature, sequential form (GB-based models) and regularization options of tree-based models
to avoid overfitting and enhance generalizability. Proposed temporal DL models, like RNN
and its variations (e.g., LSTM), are high-performing, probably due to their ability to handle
temporal dependencies and the dynamic nature of vital signs and lab values. Importantly,
external validation should also take place to verify generalizability of the model.

Detecting diseases early through AI models, even before clinical symptoms appear, is
crucial for timely interventions and positive prognosis. Key to the early detection is the
size of time series windows. As expected, for sepsis prediction, several studies suggest
that a longer observation window [133] and a shorter prediction window [133,143] increase
model performance. Unfortunately, a longer observation window could delay treatment
intervention or hospitalization. A shorter prediction window may not provide early
informative predictions, and/or make interventions less impactful. Optimally, the shorter
the observation window and the larger the prediction window, the earlier the detection
and intervention. Models should be trained sufficiently to capture the relationship of a
relatively short observation window to the clinical outcome.

However, using a model once time series data reaches an observation-window-length
in ICU, may not be so informative, delaying predictions and interventions. Some stud-
ies [112,134,152] provide real-time predictions, considering data on an hourly basis (hourly
labels), within a fixed observation window, providing per-timestep evaluation. Specifically,
hourly sepsis predictions enable the model to learn changes in variables like vital signs
and lab values by hour. Thus, implementation of such models will hourly capture spikes
or falls during the system’s response to infection, assessing patient state regularly, and
enabling more informed and earlier interventions. Ideally, AI’s contribution will lie in its
ability to also update in real-time and organize the constantly incoming and changing data
to generate an accurate outcome.

Although a large prediction window is crucial for early interventions and survival,
before severe symptoms arise, administering antibiotics too early (or too frequently) can
be risky and may contribute to antimicrobial resistance (AMR). Premature or unnecessary
use of antibiotics, before the causative pathogen of infection is confirmed, can lead to
inappropriate broad-spectrum antibiotics administration. Overuse of these antibiotics can
also accelerate the development of resistant bacteria and disrupt the body’s natural micro-
biome, killing beneficial bacteria and creating an environment where resistant pathogens
can thrive. Balancing timing, correct use and dosage is important for mitigating AMR,
undertreatment and overtreatment risks. Ideally, once sepsis is predicted, AI models can
be used for its management, by optimizing appropriate antibiotic selection and effective
dosage schedules, based on patient data like medical history, vital signs and lab results.
They can also predict how a patient will respond to an antibiotic based on factors like age,
comorbidities, and severity of infection, ultimately minimizing side effects.

In predicting the onset of a life-threatening disease, like sepsis, or mortality, datasets
whose negative class majorly outnumbers the positive one are used, posing a challenge
on model evaluation. Wrongly evaluating models on imbalanced test data, can lead to
misinterpretation of algorithm performance, causing misinformed or delayed interventions



Mach. Learn. Knowl. Extr. 2025, 7, 6 20 of 42

and adverse effects for the patients. This evaluation leads to a trade-off between sensitivity
and specificity of a list of classification thresholds (cut-points). Sensitivity and specificity
values that balance this trade-off are the ones corresponding to the optimal threshold. The
threshold is ‘optimal’ when it classifies most of the individuals correctly [212], ensuring
maximum sensitivity and specificity. There are different ways for identifying the optimal
threshold [213]. A commonly used one is the Youden index (J) method [214]. This method
defines the optimal threshold as the point maximizing the Youden function which is the
difference between true positive rate (Sensitivity) and false positive rate (1-Specificity)
out of all possible thresholds [215]. Evaluation metrics summarizing the performance of
the model across all possible thresholds are the AUC and Average Precision. However,
depending on the context, emphasis can be placed on recall or specificity, according to
how strictly the model is assessed for missing true positives or true negatives, respectively.
Higher sensitivity than specificity might be required for a model used for early sepsis
diagnosis or mortality prediction, ensuring that most of true positives are identified and
interventions begin on time for best outcomes. This is relative to the use case of the
algorithm and should possibly be assessed in collaboration with healthcare professionals.

During a public health crisis, applying AI to predict length of stay or hospitaliza-
tion/ICU admission after ED admission for resource management, or directly predicting
resource consumption, poses significant challenges. With overwhelming patient flow in
healthcare systems, collected data may be incomplete or inaccurate, while AI models re-
quire high-quality, real-time data. Data from different hospitals may also be fragmented
making interoperability a challenge. In addition, AI models trained on non-crisis data may
not generalize well to novel conditions without retraining or fine-tuning, due to different
severity and type of cases in an epidemic. With a disease prevalent in more than 10% of
the population and its uncontrollable evolvement, ICU resource demand can be difficult
to predict with existing models. New models should be able to adapt to new treatment
protocols, variations in disease progression, and shifting resource needs (e.g., ventilators,
beds, staff). Furthermore, in critical situations, it is important for healthcare professionals
to trust the model’s recommendations, so lack of interpretability of AI models would not
be helpful. In order for the models to adapt to changing conditions amidst an epidemic,
regular retraining with new data from the ongoing epidemic will be essential to capture
evolving patterns in patient outcomes and resource usage. Online incremental learning
will allow the model to adapt in real-time to shifting patient demographics and treatment
protocols. Alternatively, pre-trained models can be fine-tuned on new, epidemic-specific
data to adjust to the specific context of the crisis without requiring training from scratch.
Finally, ensemble models can help handle uncertainty and improve robustness during the
fluctuating epidemic conditions.

4.3. Clinical Applicability

Most of the studies use retrospective data to develop AI models that lack testing in
complete real-world scenarios, carrying a high risk of bias. Controlled clinical trials with
adequate human comparators are required, to assess the short- and long-term consequences
thoroughly, as well as validation of models using prospective data.

Additionally, clinicians lack the skills to use and integrate these algorithms in their
everyday job, something that will require time and money. Extensive training on how
to run these algorithms and on AI applications in healthcare are required for clinicians
and students, respectively. Collaboration between AI experts and clinicians in training
and considering the appropriate infrastructure requirements are vital in ensuring smooth
clinical applicability of the algorithms.
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Moreover, integrating AI models with existing ICU scoring systems (Table 2) presents
challenges due to differences in the way traditional scoring systems and AI models function.
ICU scoring systems rely on specific, often manually recorded and manually standardized
data, which may sometimes be incomplete, inconsistent, inaccurate, require subjective
assessment (e.g., Glasgow Coma Scale), or be measured at irregular timesteps (e.g., vital
signs). They are also often calculated based on data at a single time point, often at ICU
admission, failing to capture the dynamic nature of critical illness. ICU scoring systems
are validated in specific settings and populations and for specific diseases limiting their
generalizability. They also do not always account for patient-specific characteristics such
as genetic factors, comorbidities, or rare conditions, as they are based on a few specific
variables. However, AI has the potential to handle time series data, in any given time
in the ICU, impute missing values, standardize, resample time series and be trained on
various disease data, of different sources and modalities to provide accurate personalized
predictions. Therefore, AI will complement existing clinical scores and clinical knowledge.

This difference in the way AI and scoring systems function makes AI-driven sep-
sis prediction considerably faster and more timely than traditional clinical decision-
making processes, like scoring systems. AI-driven sepsis diagnosis is also evidently
[113,115,116,123–125,128,131,135,139,142] more accurate compared to scoring systems di-
agnosis. However, this increased accuracy comes with a risk of false positives. An elevated
false positive rate can lead to false interventions and a waste of resources like medica-
tion, as well as increased length of stay for the patient. In the case of sepsis prediction,
this can also encourage antimicrobial resistance, if antibiotics are administered in falsely
detected patients.

The variability in sepsis (and any disease) definitions between hospitals also poses
a significant challenge in developing standardized and globally applicable AI models for
sepsis detection. Different sepsis definitions imply different protocols and interpretations
of what constitutes sepsis in various healthcare settings, and thus different data and patient
labels are involved. Global AI sepsis detection models will potentially be able to handle
these variations when different institutions collaborate for a consistent use of a standardized
sepsis definition (e.g., Sepsis-3). Additionally, training models using data that simulate
different definitions of sepsis, from multiple hospitals, can aid model generalizability.
Validating models developed on a single sepsis definition on data from different institutions
and sepsis definitions can assess applicability to different clinical settings and potentially
lead to mitigation of any bias related to local sepsis criteria variability. Furthermore, due
to often using time series data, like vital signs and lab values, for the detection of sepsis,
models can also adapt to changing sepsis definitions through online updates, using data
and labels that comply with different sepsis detection criteria, in real time.

Personalized treatment plans in ICUs are facilitated using a range of data sources,
like vital signs, lab results, radiology imaging, genetic variables, patient history of diag-
noses, rare conditions etc., to ensure all patient factors are considered. Transformer-based
models can ensure maximum and efficient processing of the different data modalities.
Pre-trained transformers can adapt to the ICU data without the need to train models from
scratch. Multimodal Large Language Models (M-LLMs) leverage different data modalities,
ensuring personalized treatment plans output. However, using multimodal data for predic-
tions requires advanced computational resources and complex algorithms due to the large
volumes of diverse data. This can be costly, not supported by healthcare systems infrastruc-
ture, and computationally expensive for real-time processing and inference. Personalized
treatment plans would also require clinical trials for monitoring patient engagement and
plan effectiveness. Additionally, if the AI model is explainable and has been trained with
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correct inclusive data, then it can be trustworthy and followed by the doctor to create a
treatment plan.

AI applications in healthcare and ICUs need to pass rigorous regulatory approvals
(e.g., FDA clearance in the U.S.). This process can be time consuming and costly. Addi-
tionally, the lack of universal standards for validating AI models in healthcare contributes
to uncertainty around their clinical efficacy and safety and delays their deployment and
contribution. Global standards and ethics committees, like the EHDS Regulation [211]
and the AI Act [216], are needed to establish efficient standardized processes for AI model
validation and approval of their implementation in clinical settings.

While AI can assist in decision-making, it should not replace human judgment. Over-
reliance on AI predictions could lead to waste of resources and insufficient delivery of care,
if the models fail to account for all relevant factors, overestimating or underestimating
predictions. Human clinicians are essential for interpreting AI predictions within the full
clinical context and a human-in-the-loop AI approach is ideal.

4.4. Ethical Use of Healthcare Data

With the rapid development of AI, the discussion on ethics shifted towards the ethical
implications of using ML methods for prognosis [217,218]. AI-enabled applications must
adhere to the fundamental rights, societal values, and ethical principles of explicability,
prevention of harm, fairness, and human autonomy [219]. The development of AI models
focuses on helping healthcare professionals better serve those patients at risk, especially for
patients in the ICU.

To regulate the development and use of AI models, the European Commission has
issued several guidelines [219]. Firstly, if patients believe that their privacy is challenged,
they might be hesitant to provide data or trust decisions supported by the AI model. Thus,
acquiring consent from either the patient or their relatives is needed for collecting and
using their data for both training the algorithms and/or as input to the Clinical Decision
Support System (CDSS). Additionally, correctly informing them about privacy regulations,
their right to withdraw their data, as well as the benefits of consenting can be effective
in collecting the data. Obtained sensitive data should strictly follow privacy regulations.
These involve full anonymization of the data and aggregating data into larger datasets.
However, in some cases where an individual has an extremely rare condition, it may not be
too difficult to deidentify. Hence, legal steps have been made, like the EU General Data
Protection Regulation (GDPR) [220], that protects all EU citizens from privacy and data
breaches, the EHDS guidelines [211], and the requirement for consent when data are to be
reused in other contexts or for other purposes. To ensure that the use of data is also morally
acceptable, ethical governance of data is essential. It involves an independent broadly
representative group of participants to convene and develop a public statement about how
the data, which is being held, is used. It also involves complete audit trails of everyone
who has been given access to the data, and the purposes for accessing such data. Limiting
data access is achieved through safe havens or formal agreements on the limitations of data
use, as well as limited physical access to the databases.

Secondly, non-representative data used in training the algorithms might lead to in-
equities and biases in the prediction that could exacerbate health disparities and lead
to inequitable care. Datasets of clinical or genetic data are determinant in personalizing
predictions of ICU outcomes and should reflect the respective population, ensuring that
model predictions are not less accurate for underrepresented groups and delivery of care
is fair. Thus, to avoid bias, subgroups of certain demographics (e.g., age groups, genders,
ethnicities) should be proportionately represented.
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Thirdly, the opaqueness of ML approaches makes it difficult for people to trust their
outputs and foster accountability of actions. In ICU predictions, healthcare providers
should be able to understand how the system ended up making a prediction, and whether
this should be trusted (Section 4.3). In ICU conditions, where mortality rates are high,
issues of accountability need to be addressed legally and morally. Explainable AI is
gaining momentum in bridging the gap between the black-box nature of advanced AI
algorithms and the necessity for transparent, understandable, and interpretable decision-
making [221]. Explainable AI can justify the model’s predictions by indicating which
variables, at what values and to what extent have influenced predictions. Clinicians’ trust
is therefore enhanced and can adopt AI-based clinical decision support systems more
confidently. Examples of such applications of XAI can be found in Section 5.

Overall, ethical considerations regarding AI in healthcare and ICU are reflected in the
need for patient consent and privacy regulations, inclusive datasets and explainability.

5. Explainable AI
Recently, there is strong growth in the development of explainable AI solutions for medical

decision support [221]. Their taxonomy is multifaceted where the common classification criteria
include (a) Explanation scope, (b) Explanation stage, and (c) Explanation approach.

First, for explanation scope, methods are either global or local. Global methods
(e.g., Shapley Additive Explanations-SHAP [222,223], Feature Importance [224]) are used
to describe the overall functioning of the model. Local methods (e.g., Local Interpretable
Model-agnostic Explanations-LIME [225], Break Down [226], Ceteris Paribus [226]) explain
a single prediction made by the model [221,227].

Second, the explanation stage is concerned with defining the time of the learning
process. Pre-hoc methods explain the data used to develop models [227]. Ante-hoc methods
(e.g., rule-based [228]) apply explainability during the development and design of the
model. Post-hoc methods perform explainability after the development of the model
(e.g., LIME, SHAP, Feature Importance, Break Down, Ceteris Paribus) [221,226,227].

Third, for explanation approach, methods are model-specific or model-agnostic. Model-
specific methods (e.g., Gradient-weighted Class Activation Mapping-Grad-CAM [229], Sensi-
tivity Analysis [230], Heatmaps [221,227], Instance-wise variable selection (INVASE) [231], and
belief rule-based inference methodology [228]) are applied to ML or DL models with a specific
structure or architecture. Model-agnostic methods (e.g., SHAP, LIME, Feature Importance,
Break Down, Ceteris Paribus) can be applied to any ML algorithm no matter how complicated
it is, treating the model as a black box [221,227].

Additional criteria for classifying explainability methods are based on the problem
type (e.g., classification, regression), the input data (e.g., numerical, categorical, pictorial,
textual, time series, vectors), and the schema or the output format of the explanation
(e.g., numerical, rule-based, textual, visual, mixed) [221,227].

According to literature, healthcare model explainability is performed on the tasks this
paper focuses on, i.e., sepsis detection and prediction, septic shock detection and prediction,
sepsis mortality prediction, length of stay assessment, and hospitalization risk after ED
admission, as well as ICU readmission risk, totaling 56 papers.

Several explainable AI methods are applied to sepsis detection and prediction models.
For sepsis prediction, most studies use ML built-in feature importance
[112,117,119,124,129,135,136,141,232,233] and SHAP [119,128,233–236]. Sensitivity anal-
ysis [232,237], LIME [127,238], heatmaps [239] and Grad-CAM [234] are also used. Re-
garding septic shock detection, a study [145] uses built-in feature importance, and to
explain septic shock prediction algorithms studies use built-in feature importance [123]
and SHAP [128]. For sepsis mortality prediction models, built-in feature importance
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[113,240–242], SHAP [240,241,243–246], LIME [127,245,247], Break Down [241], Ceteris
Paribus [241], and INVASE [242] are the explainable AI techniques used in literature.

For length of stay prediction explainability, model built-in feature importance
[159,164,169–172,174,178,182,184] and SHAP [163,173,185] are applied on the best perform-
ing models. In explaining hospitalization/ICU admission predictions after ED admission,
according to studies found in this paper, built-in feature importance [192,195,197,198,201,
204,206,208] and SHAP [202–204] are applied.

Explainability is also performed for ICU readmission prediction. Specifically, studies
use SHAP [248,249], LIME [248], and an extended belief rule-based (EBRB) system [250].

Overall, XAI has been applied for ICU readmission, ICU LOS, sepsis onset, mortality,
and sepsis mortality predictions. The applied algorithms were mainly post-hoc including
model-specific and model-agnostic methods. Most of the studies use model-agnostic
methods, like Feature Importance (35, 63%), and SHAP (22, 39%), with some studies
using more than one. Appropriate explanations should be considered, as they can lead to
confidence and trustworthiness of predictions by healthcare professionals and the ability to
translate algorithms in the clinical setting.

6. Future Directions
This overview aims to summarize studies that target reduced sepsis infections and

sepsis mortality and improved resource allocation. Hence, guidance from a data science
perspective can be deduced to achieve maximum model performance, improved patient
care and reduced healthcare cost.

Data size and type play an important role in model performance. Data are get-
ting larger as interoperability increases, more countries and clinical sites share their
data [159,188], and dataset(s) are being updated [147,187]. The number of modalities
keeps increasing [146,200]. They include text (doctor’s notes), images (e.g., X-rays, MRIs,
ultrasounds), and video (e.g., echocardiogram, electrocardiogram, electroencephalogram).
In this way, a holistic approach to a patient’s condition is offered, capturing diverse factors
that influence the clinical outcome, potentially leading to more accurate predictions and
earlier interventions. Additionally, there is strong interest in using Generative AI [251,252]
to generate data for rare disease patients or for cases where text, image, and/or video data
are limited. Adopting more and higher-modality data for sepsis patients should improve
performance and help identify relevant disease patterns.

Healthcare professionals’ input in features included in models should also be priori-
tized. As comorbidities are common in patients, special approaches, procedures, and/or
measurements might be required to manage the disease. Cohorts of patients with multiple
diagnoses could be used for predicting multiple conditions, taking into account the doctors’
recommendations for optimal study designs/cohort treatment.

Data stratified by initial diagnosis can provide more accurate predictions. As different
diseases might require different treatment and length of stay, predicting LOS based on event
on admission (e.g., stroke, sepsis) can improve predictions. Sepsis prognosis is associated
with different diseases, age groups and time of onset (see Table 1), which make these groups
possible cohorts for predictions.

Deep learning techniques also follow an evolution. More commonly used Convo-
lutional Neural Networks, either for time series, image, or video data, are now substi-
tuted/complemented by Transformer-based models [202]. They can handle bigger volumes
of data and different modalities or combinations of modalities, capturing more complex
patterns more efficiently. Transformers excel at capturing long-range dependencies in
sequential data, using a self-attention mechanism to consider all parts of the input data
at once, allowing for parallelization and significantly faster training times, especially on
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GPUs. This makes transformers more scalable and efficient in handling large datasets.
Transformers often generalize better compared to traditional models, especially when
fine-tuned on domain-specific data. Open access pretrained transformer models can be
fine-tuned on smaller datasets, resulting in high performance with fewer training samples
compared to traditional methods. This is advantageous when labelled data are limited.
This ability to use transfer learning in healthcare allows for quicker deployment and more
efficient use of computational resources. Text transformers can be used for NLP, vision
transformers (ViTs) can be used for image classification, while time-series transformers are
effective for predicting sequential patterns. Their positional encoding mechanism allows
them to work with any type of sequence data and retain the relative order of elements,
which is not always possible with traditional models. Transformers are used in M-LLMs to
handle combinations of different types of data input and analyse, interpret, and generate
clinical reports, personalized treatment plans, medical images and videos. In the case of
sepsis prediction, transformer-based models can use image data, genomic data, longer
and/or higher granularity time series data and clinical notes to explore more dependencies
within variables efficiently. Some popular transformer-based models trained specifically
on healthcare data are BioBERT [253], MedBERT [254], BEHRT [255], BioGPT [256], Med-
Palm [257], Foresight [258], and Gemini [259]. All these models, apart from Med-Palm and
Gemini, are open access models.

7. Conclusions
AI capabilities can handle big, heterogeneous, multimodal, and irregularly sampled

healthcare and ICU data, providing early predictions for disease prevention and inter-
ventions, hugely benefiting patient wellbeing, the society, and the economy at large. A
literature overview in predicting sepsis, length of stay and hospitalization/ICU admission
after ED arrival is provided to guide new researchers in the area. Critical challenges faced
when using healthcare data, developing AI models, and integrating them in clinical settings
while considering ethical aspects, are further documented. Explainable AI methods can
have a transformative impact on the adoption of AI methods in medicine. To improve
model performance, future work is expected to investigate sepsis prediction and other clin-
ical outcomes using multimodal data, Transformer-based models, specific disease cohorts,
and be informed and driven by clinical knowledge.
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3LSCG Three-Level Sequential Cascade Generalization
ACC Accuracy
ACNN Adaptive Convolutional Neural Network
ACS-NSQIP American College of Surgeons National Surgical Quality Improvement Program
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AdaBoost Adaptive Boosting
ADASYN Adaptive Synthetic sampling approach for imbalanced learning
AE Auto-Encoder
AF Atrial Fibrillation
AIC Akaike Information Criterion
AKI Acute Kidney Infection
AMCUS Academic Medical Center in the US
ANOVA Analysis of Variance test
APACHE Acute Physiologic and Chronic Health Evaluation,
APR Area under Precision-Recall curve
ARDS Acute Respiratory Distress Syndrome
ARF Acute Respiratory Failure
Att-1DCNN Attention-Embedded 1-Dimention Convolutional Neural Network
AUC Area Under receiver operating characteristic Curve
AVHHA Analytics Vidhya Hackathon about Healthcare Analytics
BCT Box Cox Transformation
BE Backward Elimination
BertViz Interactive tool that can visualize attention in transformer language models
BiLSTM Bidirectional Long Short Term Memory

BlueBERT
Biomedical Language Understanding Evaluation Bidirectional Encoder
Representations from Transformers

BMI Body Mass Index
BT Bagged Tree
BUN Blood Urea Nitrogen,
C Channel-wise
CA Clinical Aggregates
CAD Coronary Artery Disease
CAn Correlation Analysis
CB Class Balancing,
CBC Complete Blood Count
CCI Charlson Comorbidity Index
CCM Clinical Center in Madrid
CHD Congenital Heart Defects
CHED 4 clinically heterogeneous academically affiliated emergency departments
CMS Centers for Medicare & Medicaid Services criteria
CMT Chi-Mei medical center in southern Taiwan
CNN Convolutional Neural Network
CR Client Recruitment
CRP C-Reactive Protein
CS Clinical Significance
CT Computer Tomography
CUHICU Chiba University Hospital ICU in Japan
CWK Cohen’s Weighted Kappa
D Discretization
DAD Dascena Analysis Dataset
DBP Diastolic Blood Pressure
DF-Mdl: Data Fusion Model
DFSP Double Fusion Sepsis Predictor
DHHS Department of Health & Human Services in the US
DIIC DII Challenge 2019
DL Deep Learning
DMM Danish Municipality Multi-center data outside ICU
DS Deep Supervision
DTW-KNN Dynamic Time Warping-K-Nearest Neighbors
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DUHS Duke University Health System
ECG Electrocardiography
ECMO Use of extracorporeal membrane oxygenation
ED Emergency Department,
EDA Exploratory Data Analysis
EDCUS 5 Emergency Departments in Colorado US
EDHS Emergency Department Hospital in Seoul in South Korea
EHR Electronic Health Record
eICU Collaborative Research Database
ELS Ensemble Learning Strategy
EM Ensembling Model
EMB Embedding
ENN Edited Nearest Neighbours
ESI Emergency Severity Index
ESR Erythrocyte Sedimentation Rate
FE Feature Engineering
FET Fisher’s Exact Test,
FEX Feature Extraction
FL Federated Learning

FL-SRC
Federated Learning-recruited clients make up the federation, 10% of which
partake in each training round

FNF Femoral Neck Fracture
FS Feature Selection
GA Genetic Algorithm
GB Gradient Boosting
GCS Glasgow Comma Score
GIRB Geisinger Institutional Review Board,
GLMM Generalized Linear Mixed Model
GNN Graph Neural Network
GPCICU Guangdong Provincial Cardiovascular Institute ICU
GRU Gated Recurrent Unit
GW General Ward
HAN Hierarchical Attention Network
HHTCM Huangpi Hospital of Traditional Chinese Medicine
HiRID High time-Resolution ICU Dataset
HMV Handling Missing Values
HO Handling Outliers
HR Heart Rate
HSSC Health System Sepsis Committee criteria
HTDV Hospital for Tropical Diseases in Vietnam
HTN Hypertension
HTS Handling Time Series
HUM Handling Units of Measurement
ICD International Classification of Diseases
ICDC ICD code Conversion
ICU Intensive Care Unit
ICUS Intensive Care Unit department in Shanghai hospital
ICUUS ICU Department of Hospital in US
IE Integer Encoding
IF Important Features
IG Information Gain
IHICU Iranian local Hospitals ICU
IL-6 Interleukin-6
IPS International Patient Summary
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IR Image Resizing
ISS Injury Severity Score
IVT Intravenous Therapy ordered or scheduled prior to emergency department visit
KCC Kendall Correlation Coefficient
KFSH&RC King Faisal Specialist Hospital & Research Centre hospital in Saudi Arabia
KFUH: King Fahad University Hospital
KST Kolmogorov–Smirnov Test
KW Kruskal–Wallis test
LASSO-LNR Least Absolute Shrinkage and Selection Operator Linear Regression
LDH Lactate Dehydrogenase
LE Label Encoding
LF Removal of features of Low Frequency
LGBM Light Gradient Boosting Machine
LIME Local Interpretable Model-Agnostic Explanation
LNR Linear Regression
LOS Length Of Stay
LR Logistic Regression
LSTM Long Short-Term Memory
LSTM-C-DS Long Short Term Memory Channel-wise with Deep Supervision
LSTM-H Long Short Term Memory-Hybrid
LSTM-MPNN Long Short Term Memory-Message Passing Neural Networks

MacBERT
Chinese version of bidirectional encoder representations
from transformers (BERT),

MAD MAD: Mean Absolute Difference
MAE Mean Absolute Error
MGB Mass General Brigham Healthcare database
MGP-RNN Multi-output Gaussian Processes and Recurrent Neural Networks
MIMIC Medical Information Mart for Intensive Care
ML Machine Learning
MPM Mortality Predictive Mode
MSE Mean Squared Error
MUSH Midwest Hospital in US
MWU Mann–Whitney U test
N Normalization
NEED Netherlands Emergency Department Evaluation Database
NHAMCS National Hospital and Ambulatory Medical Care Survey
NHCRD National Hospital Care Research Database
NIH 2 major acute Northern Ireland Hospitals
NLP Natural Language Processing
NLR Neutrophil-Lymphocyte Ratio
NM Not Mentioned
NN Neural Network
NN-GCN Neural Network combined with Graph Convolutional Network
NOS Nasal Oxygen Support
NTUH National Taiwan University Hospital
OHE One Hot Encoding
PAVE Pattern Attention model with Value Embedding
PCA Principal Component Analysis
PCC Pearson’s Correlation Coefficient
PCR Principal Component Regression
PCT Procalcitonin
PFI Permutation Feature Importance
PNCC PhysioNet Computing in Cardiology 2019 Challenge
PNUYH Pusan National University Yangsan Hospital ICU
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PPG Photoplethysmography
PR Precision
PTT Partial Thromboplastin Time
PUMCH Peking Union Medical College Hospital
QAH Quaternary Academic Hospital
R Relief
R2 Coefficient of determination
RF Random Forest
RFE Recursive Feature Elimination
RNN Recurrent Neural Network
RR Respiratory Rate
RRT Renal Replacement Therapy
RST Rank Sum Test
RU Random Undersampling
S Standardization
SA Simulated Annealing
SAPS Simplified Acute Physiologic Score
SBFCM Statistical-Based Fuzzy Cognitive Maps
SBP Systolic Blood Pressure
SCUSH Suez Canal University Specialized Hospital
SEN Sensitivity
SFM Selection From Model
SFS Stepwise-Forward Selection
SH Singapore government-based Hospital
SHAP Shapley Additive Explanations
SIRS Systemic Inflammatory Response Syndrome
SKB Selection of K-Best
SMOTE Synthetic Minority Over Sampling Technique
SOFA Sequential (Sepsis-related) Organ Failure Score
SPE Specificity
SRHM San Rafaele Hospital Emergency Department in Milan
SRPH Dr Soekardjo Regional Public Hospital in Indonesia
ST Smoothing Time series
STT Student’s t test
SUN Serum Urea Nitrogen level
SVM Support Vector Machine
SVR Support Vector Regression
SWT Shapiro-Wilk’s Test
T Tokenization
T2DM Type 2 Diabetes Mellitus
TabNet Existing encoder
T-ADAB Adaboost integrated with Tabu Search
TCN Temporal Convolutional Network
TED-ICU Taipei Medical University Hospital Electronic Medical Record System
TF-IDF Term Frequency-Inverse Document Frequency
THC 3 Tertiary care Hospital Eds in China
THI Tabba Heart Institute in Pakistan
THMC Trauma center of Hamad Medical Corporation
THS Tertiary Hospital in Seoul in South Korea
TKA Total Knee Arthroplasty
TL Tomek Links algorithm
TMUGH Tianjin Medical University General Hospital
TMUSH Taipei Medical University-Shuang Ho Hospital
TP Text Processing
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TRDGU TraumaRegister of the German Trauma Society
T-SNE t-distributed Stochastic Neighbor Embedding
TT t-test
TTH Teaching Hospital in Tainan Taiwan
USMH Metropolitan-area Hospital in US
UTMB University of Texas Medical Branch at Galveston
V Keeping features according to their Variance
VI Variable Importance
VIS Vasoactive Inotropic Score in surgery
WBC White Blood Cell count
WFC Word Frequency Counting
WL Wilks’s Lambda
WUHICU Wuhan Union Hospital ICU
XGB Extreme Gradient Boosting
YCDTSH Yedikule Chest Diseases and Thoracic Surgery Training & Research Hospital
YH Hospital in Yueqing China
YUSH Yonsei University Severance Hospital in Rep. of Korea
ZUH First Affiliated Hospital ICU of Zhengzhou University
χ2 chi-squared test

Appendix A

Figure A1. Flow Diagram of inclusion of studies.

References
1. Alexandropoulou, C.-A.; Panagiotopoulos, I.; Kleanthous, S.; Dimitrakopoulos, G.; Constantinou, I.; Politi, E.; Ntalaperas, D.;

Papageorgiou, X.; Stylianides, C.; Ioannides, N.; et al. AI-Enabled Solutions, Explainability and Ethical Concerns for Predicting
Sepsis in ICUs: A Systematic Review. In Proceedings of the 2023 IEEE 19th International Conference on e-Science (e-Science),
Limassol, Cyprus, 9–13 October 2023; pp. 1–9.

2. Panayides, A.S.; Amini, A.; Filipovic, N.D.; Sharma, A.; Tsaftaris, S.A.; Young, A.A.; Foran, D.J.; Do, N.V.; Golemati, S.; Kurc, T.; et al.
AI in Medical Imaging Informatics: Current Challenges and Future Directions. IEEE J. Biomed. Health Inform. 2020, 24, 1837–1857.
[CrossRef] [PubMed]

3. Doshi-Velez, F.; Kim, B. Towards a rigorous science of interpretable machine learning. arXiv 2017, arXiv:1702.08608.
4. Haque, A.B.; Islam, A.N.; Mikalef, P. Explainable Artificial Intelligence (XAI) from a user perspective: A synthesis of prior

literature and problematizing avenues for future research. Technol. Forecast. Soc. Change 2022, 186 Pt A, 122120. [CrossRef]

https://doi.org/10.1109/JBHI.2020.2991043
https://www.ncbi.nlm.nih.gov/pubmed/32609615
https://doi.org/10.1016/j.techfore.2022.122120


Mach. Learn. Knowl. Extr. 2025, 7, 6 32 of 42

5. Arrieta, A.B.; Díaz-Rodríguez, N.; Del Ser, J.; Bennetot, A.; Tabik, S.; Barbado, A.; Garcia, S.; Gil-Lopez, S.; Molina, D.; Benjamins,
R.; et al. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI.
Inf. Fusion 2020, 58, 82–115. [CrossRef]

6. Holzinger, A.; Biemann, C.; Pattichis, C.S.; Kell, D.B. What do we need to build explainable AI systems for the medical domain?
arXiv 2017, arXiv:1712.09923.

7. Memon, M.; Li, J.; Haq, A.; Memon, M. Breast cancer detection in the Iot health environment using modified recursive feature
selection. Wirel. Commun. Mob. 2019, 2019, 5176705. [CrossRef]

8. Akazawa, M.; Hashimoto, K. Artificial Intelligence in Ovarian Cancer Diagnosis. Anticancer Res. 2020, 40, 4795–4800. [CrossRef]
9. Azar, A.S.; Rikan, S.B.; Naemi, A.; Mohasefi, J.B.; Pirnejad, H.; Mohasefi, M.B.; Wiil, U.K. Application of machine learning

techniques for predicting survival in ovarian cancer. BMC Med. Inform. Decis. Mak. 2022, 22, 234. [CrossRef]
10. Khourdifi, Y.; Bahaj, M. Applying Best Machine Learning Algorithms for Breast Cancer Prediction and Classification.

In Proceedings of the 2018 International Conference on Electronics, Control, Optimization and Computer Science (ICECOCS),
Kenitra, Morocco, 5–6 December 2018; pp. 1–5.

11. Naji, M.A.; El Filali, S.; Aarika, K.; Benlahmar, E.H.; Abdelouhahid, R.A.; Debauche, O. Machine Learning Algorithms For Breast
Cancer Prediction And Diagnosis. Procedia Comput. Sci. 2021, 191, 487–492. [CrossRef]

12. Vijayalakshmi, M.M. Melanoma Skin Cancer Detection using Image Processing and Machine Learning. Int.-Natl. J. Trend Sci. Res.
Dev. (Ijtsrd) 2019, 3, 780–784.

13. Sun, W.; Zheng, B.; Qian, W. Computer aided lung cancer diagnosis with deep learning algorithms. In Proceedings of the Medical
Imaging 2016: Computer-Aided Diagnosis, San Diego, CA, USA, 27 February–3 March 2016; SPIE: Bellingham, WA, USA, 2016;
Volume 9785. [CrossRef]

14. Chaki, J.; Ganesh, S.T.; Cidham, S.K.; Theertan, S.A. Machine learning and artificial intelligence based diabetes mellitus detection
and self-management: A systematic review. J. King Saud Univ. Comput. Inf. Sci. 2020, 34, 3204–3225. [CrossRef]

15. Kaur, H.; Kumari, V. Predictive modelling and analytics for diabetes using a machine learning approach. Appl. Comput. Inform.
2022, 18, 90–100. [CrossRef]

16. Maniruzzaman; Rahman, J.; Ahammed, B.; Abedin, M. Classification and prediction of diabetes disease using machine learning
paradigm. Health Inf. Sci. Syst. 2020, 8, 7. [CrossRef] [PubMed] [PubMed Central]

17. Xiong, X.-L.; Zhang, R.-X.; Bi, Y.; Zhou, W.-H.; Yu, Y.; Zhu, D.-L. Machine Learning Models in Type 2 Diabetes Risk Prediction:
Results from a Cross-sectional Retrospective Study in Chinese Adults. Curr. Med. Sci. 2019, 39, 582–588. [CrossRef] [PubMed]

18. Deberneh, H.M.; Kim, I. Prediction of Type 2 Diabetes Based on Machine Learning Algorithm. Int. J. Environ. Res. Public Health
2021, 18, 3317. [CrossRef]

19. Xie, Z.; Nikolayeva, O.; Luo, J.; Li, D. Building Risk Prediction Models for Type 2 Diabetes Using Machine Learning Techniques.
Prev. Chronic Dis. 2019, 16, E130. [CrossRef] [PubMed] [PubMed Central]

20. Woldaregay, A.Z.; Årsand, E.; Walderhaug, S.; Albers, D.; Mamykina, L.; Botsis, T.; Hartvigsen, G. Data-driven modeling and
prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes. Artif. Intell. Med. 2019, 98, 109–134.
[CrossRef] [PubMed]

21. Narin, A.; Isler, Y.; Ozer, M. Early prediction of Paroxysmal Atrial Fibrillation using frequency domain measures of heart rate variability.
In Proceedings of the 2016 Medical Technologies National Congress (TIPTEKNO), Antalya, Turkey, 27–29 October 2016. [CrossRef]

22. Hasan, N.; Bao, Y. Comparing different feature selection algorithms for cardiovascular disease prediction. Health Technol. 2020, 11, 49–62.
[CrossRef]
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