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Achieving Higher Level of Assurance in Privacy
Preserving Identity Wallets

Abstract—Recent advances in decentralized digital identity
based on Verifiable Credentials utilize identity wallets to ensure
that the identity data control remains with the user. However, they
still lack higher Level of Assurance guarantees, restricting their
full potential. In this paper, we design and showcase DOOR, a
scheme that enables identity wallets to utilize a hardware root of
trust and bring them in alignment with emerging regulations and
standards that require higher level of assurances for services (e.g.
eIDAS). At the same time, we make sure that privacy-enhancing
properties like selective-disclosure are fully supported, in order to
make the wallet compliant with privacy regulations (e.g. GDPR).
To achieve all these we have designed an enhanced variant of
DAA-A crypto protocol to offer anonymity, unlinkability, and
unforgeability, while being the first to offer strong guarantees on
the Wallet’s integrity when constructing attribute attestations. We
formally prove the security properties of DOOR and evaluate
the performance of its implementation for every phase of the
credential management.

Index Terms—selective disclosure, anonymous credentials,
identity wallet, trusted computing

I. INTRODUCTION

Currently, there is an increasing shift to decentralized digital
identity models, where there is no single governing organiza-
tion that has control over identity data origination. Instead,
participants produce and manage their own identifiers and
credentials without deference or permission from any other
administrative organization. The World Wide Web Consor-
tium (W3C) is currently developing two new standards to
realize this emerging model, namely, Decentralized Identifiers
(DIDs) [1] and Verifiable Credentials (VCs) [2].

In the ecosystem of Verifiable Credentials, the Issuer issues
a credential containing a set of claims on a Subject and
transfers it to a Holder, who is typically the same entity. The
Holder stores the VCs in a storage called the Identity Wallet.
In response to a request from the Verifier, the Holder retrieves
one or more stored VCs from her Wallet and presents them to
the Verifier. Alternatively, the Holder can construct Verifiable
Presentations (VPs), i.e. a collection of claims that a Holder
can contract from different VCs issued by varying entities.
Then, a Holder can prove to a Verifier that it owns a VC or
VP with certain attributes. This is usually achieved through a
unique identifier (e.g., public key), owned by the Holder that
enables her to generate proof of possession on specific claims
(e.g., a digital signature with the corresponding private key).

VCs can be combined with anonymous credentials [3], [4] to
enable the Holder to manage her privacy by choosing the level
of information disclosure. That is, the Holder can select only
some of the attributes in the credentials she owns and prove
that they are certified by a trusted Issuer, without revealing any
further information; i.e., a signature from the Holder’s unique

identifier or other remaining attributes. This property is called
selective disclosure.

One core challenge is the verification of the integrity and
origin of the presented VCs or VPs: How can someone be
sure that they really belong to the claimed entity? On a
technical level, this translates into Holders having control of
their own VCs and DIDs through their Wallets, which can
ensure that credentials and (private) keys can only become
available to this specific Holder as the actual owner of the
issued wallet credentials. Since it is only the Holder (as the
Identity Owner) that knows the (private) key associated with a
DID, the level of control and credential management assurance
relies solely on possessing and controlling the private key,
which in current designs is a software-based key. However, the
use of a software keystore introduces many security risks and
raises trustworthiness issues [5], [6]. So the above challenge
translates into the more technical question: How can a Verifier
be sure that the respective key of the Holder presenting a VC
remains under her control, and cannot be used by any other
unauthorized entity?

This question is particularly important because it relates
to the requirement towards achieving a certain Level of
Assurance (LoA) behind credential management [7]. The
LoA characterizes the degree of confidence in the electronic
identification means, thus providing assurance that the person
claiming a particular identity is, in fact, the intended recipient
to which that identity is assigned. For example, in the case of
Europe, the eIDAS regulation [8] clearly defines the require-
ment for multiple authentication factors to achieve an LoA
classified as “substantial” (e.g., fingerprints and secret key).
Bare proof-of-possession of a SW-based (private) key does
not achieve even the lowest LoA in eIDAS, since it involves
only a single authentication factor.

One of the necessary measures to solve such security gaps,
and reach a “high” LoA, is to isolate the keys from the
Holder while still being stored in the user’s domain. There are
several types of isolation defined in the literature that can be
achieved through the incorporation of trusted computing tech-
nologies [9], i.e., Hardware Secure Module (HSM), Trusted
Platform Module (TPM), or Trusted Execution Environment
(TEE). All such trusted components provide reliable, tamper-
evident, and secure processing units (including support for
crypto operations, key storage, and authentication) that offer
a higher level of trust for the executed applications.

Another requirement to achieve LoA ”high” is the binding
of identity data to the Holder (Holder Binding). This binding
is based on a unique identifier representing the Holder, i.e.,
a secret key. One way to have high confidence is to make
sure that the secret key is bound to the Wallet managing the
identity data. For instance, DIF defines this property as Device
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Binding, that is, “a building block that enables a differential
credential security model by anchoring a hardware-generated
key (e.g., TPM Key) to the credential.” [10]. This sets the chal-
lenge ahead: How can we achieve both requirements for higher
LoA while empowering the user to control the level of her
privacy by selectively disclosing only those attributes needed,
for accessing a service, in a verifiable manner? This requires
the Wallet to not only be equipped with a HW-based Root-
of-Trust but to use this trust anchor for securely managing
attribute keys and creating attribute attestations that provide
proof-of-possession about the unique Holder identifiers, but
without disclosing any further information, thus, enabling the
property of selective disclosure.

To this end, if we want to consider the core feature of selec-
tive disclosure, we have to be able to use zero-knowledge (ZK)
proofs for each attribute separately. This essentially boils down
in been able to represent each attribute with a separate key and
present the necessary commitments as proof-of-possession.
However, this further aggravates the problem of assurance
since such schemes require the use of additional software-
based keys resulting into a difficulty to achieve balance
between safeguarding user privacy (anonymity and selective
disclosure) while guaranteeing integrity and unforgeability of
the produced ZK attribute attestations.

All in all, the challenge of building a solution facilitating
hardware-based keys becomes more pressing and extends to
not only binding a credential to the Wallet but also binding
each Holder identifying attribute to the credential and, in turn,
to the host Wallet, thus, achieving a “chain-of-trust” when pre-
senting verifiable attribute attestations. What is needed are new
mechanisms and security controls for managing attribute-based
credentials, safeguarded through HW-based keys, providing
an efficient way to disclose a Holder’s personal attributes,
while minimizing risk of sensitive data revelation and thus
granting anonymity, unforgeability and unlinkability. Indeed,
the privacy at the attribute level has been investigated by other
approaches [11], [12], but combining this with the device bind-
ing of attribute keys, thus, enabling hardware-bound attribute-
based credentials, has never been studied before.

Contribution: To solve this open problem, this paper is
the first to propose a protocol leveraging an enhanced variant
of Direct Anonymous Attestation (DAA) [13] where each
one of the attributes can be represented as a key, bound
to the Holder’s unique identifier, which in turn is bound
to the underlying trusted component. This allows the user
to create privacy-preserving attribute claims (disclosing only
those attributes needed to be checked against service access
control policies) with strong trust guarantees on the correctness
and origin of the attributes. More specifically, we propose
DOOR, a new scheme that showcases how hardware-based
keys can achieve the envisioned property of higher LoA for
credential management, while enabling privacy preservation
via selective disclosure. DOOR proposes an enhanced vari-
ant of an anonymous signature scheme, namely Attribute-
based DAA (DAA-A) [14], to achieve this. It enables the
construction of VPs with selective disclosure to satisfy legal
requirements of privacy protection (e.g., GDPR). DAA-A is a
strong privacy-preserving authentication scheme that enables

the representation of attributes as keys, hence enabling the
encoding of complex attribute structures as key hierarchies.
This, in turn, allows arbitrary policies to be checked against
individual attributes without complicating or overwhelming the
credential. Verifiers can dynamically define policies, as high-
level programs, that can be verifiably executed by Holders for
constructing the necessary VPs as claims anchored to their
credentials.

To overcome the current limitation of traditional crypto
schemes that do not consider VC/VP linkability issues leading
to Holder profiling, we have designed an enhanced variant
of DAA-A with “credential blinding” capabilities. It ensures
Holder anonymity and VC/VP unlinkability, and unforgeability
while being the first to offer strong guarantees on the Wallet’s
integrity when constructing attribute attestations. DOOR also
ensures the binding of the identity data, at the attribute level,
to the Holder by cryptographically binding the Wallet to the
intended owner. Through this way, we offer higher levels of
confidence to the authentication and electronic identification
service of the Wallet - hence a higher LoA as required by
emerging regulations. In this paper, we further propose a
formal definition of the security properties that a protocol
should offers to achieve LoA ”high”, and then we provide
a mathematical definition of these properties and proof of the
correctness and soundness of our scheme. We also present a
performance analysis and evaluation of DOOR based on real-
world implementation.

A. Wallet Properties & Requirements

Our design follows the concepts and roles defined by W3C
for the ecosystem of VCs [2]. The main actors include the
Issuer, Subject, Holder, and Verifier. This model should satisfy
additional security properties, in order to allow any Wallet to
achieve the highest LoA, extending the set of requirements
defined in ISO 29115 and the eIDAS implementation act [7].
Based on that, we come up with specific security properties,
following the simulation-based security model of the UC
framework, based on composable proofs, which allows our
scheme properties to fit any wallet design.

Definition 1: (Holder Binding) It must be ensured that the
issued identity data are delivered only to the intended Holder.
■

The intention of this definition is to safeguard against
adversaries that try to construct VPs without having access
or being the intended recipient of the issued credentials. This
might occur, for instance when an adversary gets access to
a Holder’s VCs (but not her unique identifier - secret key)
and constructs VPs that would be accepted by a Verifier. We
differentiate this from the scenario where a legitimate Holder
is acting on behalf of another user (e.g., parents attesting to
attributes of their children).

Definition 2: (Device Binding) Issued VCs should be bound
to the Holder’s unique identifier (i.e. secret key) and no one
should be able to use or show this credential without proof of
possession of this unique identifier.■

In continuation to the Holder Binding property, this defini-
tion further ensures the issuance of credentials bound to the



3

Holder’s secret key, so that no one can show this credential
without such secret key. This requires the anchoring of the
public part of the Holder’s secret key to the credential. The key
needs to be a hardware-based key originating from a Trusted
Component (TC), hosted on the Holder, so that additional
security policies can be enforced for protecting against key
leakage and ensuring that only the Holder’s authenticated
Wallet can securely contract the key for creating signed
attribute attestations.

Definition 3: (Selective Disclosure) VPs should constitute
collections of claims that the Holder can construct (from
different VCs) disclosing only those attributes needed for ver-
ification without revealing further information on the claims,
such as the signature of the VC Issuer or other remaining
attributes.■

Selective disclosure guarantees that if all I credentials with
any K attributes each are correctly issued to a Holder by
L honest VC Issuers, then any presentation with selective
disclosure and proof of possession of the original credential
(indicated by c) as well as proof of Wallet integrity (indicated
by signature σD), correctly computed by the Holder will be
accepted by the Verifier.

Definition 4: (Full Anonymity) Shared VCs and/or VPs are
considered anonymous when no adversary or (single) “honest-
but-curious” infrastructure entity can identify the Holder
presenting a claim (based on a set of issued attributes x) or
learn anything about the Holder except to the extent that it
is trivially learned from the VC Issuers’ public key required
to verify the claim. Full anonymity also includes unlinkability
dictating that no Issuer or Verifier should be able to link VPs
back to their Holders; cannot keep track of the use of attributes
they issue and verify. ■

The above definition is twofold: On one hand, it means that
no adversary can extract any knowledge from a constructed VP
signature (σ) that helps identify who presents σ and which
credential is being used to construct σ, except for the level
of identification that can be performed from the disclosed
attributes and VC Issuers’ public keys. On the other hand,
unlinkability of the credentials and presentations is needed so
that the Holder’s actions cannot be tracked between Issuers,
Verifiers, or even between Issuers and Verifiers. While the
latter has also been highlighted as one core property for
all EU Identity Wallets [15], existing cryptographic schemes,
including the SD-JWT [16] and Mobile Security Object [17],
specified in ISO 18013, all support only linkable signatures.

Definition 5: (Unforgeability) It should not be possible for
any adversary to construct a forgery VP/VC, based on “non-
valid credentials”, that will be accepted by a Verifier (Vi).■

With an unforgeable anonymous credential, for an honest
Issuer (at least one of either the DAA or VC Issuer) and
a group of honest Holders, no adversary can create a valid
signature (σD) on a claim that will be presented and accepted
by a Verifier (Vi). Here, forgery should be non-trivial, that is,
forgery should not be feasible when the Holder does not have
access to the signing key (protected by the Device Binding
property) nor when the Holder is not the intended recipient
of the used credential based on which presented claims were
disclosed (protected by the Holder Binding property).

Definition 6: (Wallet Correctness) It must be ensured that
only authenticated and non-compromised Wallets can access
a Holder’s unique identifier for creating attribute attestations.
■

This definition ensures that a Verifier will accept a presented
claim if and only if the Wallet can provide verifiable evidence
that its integrity has not been altered (from the time of cre-
dential issuance) in an unauthenticated manner. This basically
necessitates the enforcement of key restriction usage policies
for governing the credential management, leveraging a TC’s
policy-based safeguards.

B. System Model

In this work, we present an enhanced version of DAA-
A [14], in order to satisfy all of the above properties for
decentralized identity wallets. Direct Anonymous Attestation
(DAA) [13] is an anonymous signature scheme, which allows
a Trusted Component (TC) to attest to the state of the host
system while preserving the privacy of the Holder. While we
do not build our solution around a specific type of TC, in
our implementation we have leveraged the functionality of
the TPM as the underlying root-of-trust for providing support
on cryptographic operations and secure key storage. A DAA
scheme consists of an Issuer (DAA Issuer in Figure 1) and
a set of signers (Holders). It includes five algorithms: Setup,
Join, Sign, Verify and Link. The DAA Issuer produces a DAA
membership credential for each Holder, which corresponds to
a signature on the Holder’s unique identifier. This credential
furthermore authorizes the use of the HW-based DAA Key
which is stored inside the TPM and its usage is safeguarded
through a number of policy regulations.

DAA-A construction [14] appeared later as a variant of
DAA, with the difference that the public key does not cor-
respond to a single secret key but is the result of a discrete
logarithmic representation of multiple attributes. On one side,
this feature enables us to build VPs with selective disclosure
(Definitions 3) by encoding each attribute as a separate key,
and on the other side it provides controlled anonymity (Def-
inition 4) by allowing the representation of the identity as a
separate attribute key to be hidden. The authenticity of the
hidden attributes is proven by the integrated zero-knowledge
(ZK) protocol.

Relying on these strong privacy guarantees, we build our
DOOR protocol on top of DAA-A by adding extra layers of
security; i.e., constructing policy regulations to govern the
usage of the DAA Key (by the Holder) to sign attribute
claims. The component responsible for the enforcement of
these policies is the TC Bridge, which acts as the mediator
between the Wallet and the underlying TPM. One such policy
can ensure the binding of the DAA Key to the Holder’s
authenticated Wallet (Definition 2), which in turn enables the
binding of the issued identity data to the Holder as the intended
recipient (Definition 1). This is done by the VC Issuer through
binding issued attributes to the anonymized part of the DAA
credential. We also contract an additional policy to restrict the
usage of the DAA Key, for creating attribute attestations, if
and only if the Wallet integrity has not been altered in an
unauthenticated manner (Definition 6).
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Fig. 1: DOOR High-level Architectural Overview and Creden-
tial Management Functionality

We also highlight that our notion of unforgeability (Def-
inition 5) is stronger than what is required in existing VC
management schemes [12] where only one Issuer is assumed
in the system model: the VC Issuer can forge credentials and,
hence, create forged signatures on presented claims. In our
design, we have prompted to adopt the separation-of-duties
principle where each Issuer is given the minimum amount
of information required to execute its respective task; i.e.,
Device Binding and Key Restriction (DAA Issuer) and VC
Issuance (VC Issuer), as detailed in Section II-A. Therefore,
our unforgeability definition provides stronger guarantees that
no single Issuer entity can forge signatures.

C. Related Work

The latest advancement in the area of Verifiable Credentials
(VC) have their base in Anonymous Credential (AC) systems.
The first practical approach of AC was from Camenisch and
Lysyanskaya known as the CL-signatures [18] that use RSA
groups and facilitate to efficiently do the proof of knowledge
of a signature. They extended the work with CL-signatures
from bilinear groups [3], which significantly improved on the
efficiency of the scheme as it reduced the size of the keys.
This was followed by a series of works related to AC schemes
such as [19]–[21] that comes with different trade-offs related
to efficiency, privacy and security.

AC schemes allow for the construction of efficient VCs
that comes in different assertion formats, popular once be-
ing SD-JWT [22] and JSON-LD [23] using Linked Data
(LD) Proofs [24]. The assertion formats could factor towards
significant impact on the security and privacy of these AC
schemes, so it is important to choose the right assertion format.
The LDP-BBS+ [11] scheme is one of the most popular one
in the community and under standardization efforts, e.g. in
ETSI [25]. This scheme applies the BBS+ signature [26] to
VC or VP based on JSON-LD to allow selective disclosure
of attributes. However, BBS+ Signatures are not capable of
predicates, which might be required for specific use cases, as
well as it is hard to achieve selective disclosure with a VP that

is based on VCs from different issuers. To address this, LDP-
BBS+ [11] was enhanced by Yamamoto et al. [12] that allows
to securely manage credentials using BBS+ signatures for
achieving selective disclosure. However, relying on LD has an
inherent limitation on the anonymity level due to the ordering
of the attributes (based on the lexicographic order used by
the canonicalization algorithm) which leaks information for
the non-disclosed attributes. On the other side, the use of
LD helps to link multiple credentials from different credential
issuers and improve credential interoperability by enabling the
credential to be anchored to a specific trust framework, e.g.
Gaia-X [27].

The AC schemes described above cover the privacy aspects,
but they don’t consider the requirement of providing a high
level of assurance that is required to develop a fully compliant
digital wallet. So far, there has not been work that focuses
on satisfying both requirements. There is a separate line of
work that focuses on protecting cryptographic key material
with hardware-based measures, however, this is mostly related
to access control and not to protecting the wallet itself. For
instance, Abraham et al. proposed a scheme to ensure user
authentication to the Wallet, utilizing the secure element of
the mobile phone, as well as a second key on a FIDO2
hardware token [7]. Moreover, Hanzlik and Slamanig presents
a highly efficient core/helper anonymous credentials scheme
(CHAC) [28] using a combination of signatures with flexible
public keys (SFPK) and the novel notion of aggregatable
attribute-based equivalence class signatures (AAEQ). How-
ever, this might not be the perfect solution in the context of
digital wallets, since it would not support holder binding and
is not efficient to run in devices with fewer computational
resources.

To the best of our knowledge, DOOR is the first complete
protocol capable of providing secure credential management
with selective disclosure and with high LoA, thus, achieving
all requirements listed in Section I-A. Our work can be
integrated into the OpenID Connect for SSI specifications [29]
as well as the technical Architecture and Reference Framework
(AFR) for implementing the European Digital Identity [15].

II. CONCEPTUAL PROTOCOL OVERVIEW

A. High-Level Overview

This section presents the high-level flows and functionalities
of DOOR implemented to support the requirements formulated
in Section I-A. The overall flow begins with a party wishing
to acquire a credential, i.e., a virtual driver license. This party,
the Holder, must first acquire the software necessary to handle
credentials; the Wallet. The device the Wallet is installed on
must have a Trusted Component such as a TPM (discrete
or virtualized in a TEE) because of the following step. The
application contacts the DAA Issuer, who will validate the
Trusted Component and issue a DAA Credential and Key - a
special cryptographic. The DAA Key can only be read and
used internally inside this particular TC, therefore binding
it to the device; we call this Device Binding. Furthermore,
the key is only operable if certain negotiated conditions are
met; i.e. the state of the device. We call these conditions Key
Restriction Policies. Now the Holder can use the Wallet to
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acquire a Verifiable Credential (VC) from a VC Issuer, such
as the DMV, school, government, etc. To do so, the Wallet
shares the DAA Key with the VC Issuer, which verifies that
it is genuine. If so (and assuming the Holder is verified
through some authentic means) a VC is crafted and bound to
this particular DAA Key, meaning it can only be used on
the Holder’s device. When the Holder wishes to present the
credential, for example, to show that the holder’s age is above
21, he uses the Wallet application, selects the credential, and
decides what attributes to present, thereby only revealing the
necessary attributes. The Wallet then constructs a presentation
of the credential called a Verifiable Presentation (VP) using
both the DAA Key and the VC. This can be shared with
another party, the Verifier, who can verify the authenticity
of the presented attributes using only the relevant VC Issuer
and DAA Issuer public keys. Figure 1 shows the conceptual
flows between the actors. Steps (1,2,3,4) concern Credential
Management and (5,6) Attribute Authentication, all covered
in a high-level manner in this section.

Device Binding and Key Restriction: To support Device
Binding of VCs, we use a hardware-protected key. It takes
on the role of a DAA key, built by the Holders’ Trusted
Component (TC). This guarantees that only this particular
component can read and interact with the key, ensuring that
cryptographic outcomes are unforgeable. Before creating the
key, an exchange could take place between the key-certifying
entity, i.e., the DAA Issuer (IDAA), and the VC Issuer (IVC) in
order to negotiate a TC-enforced key restriction policy, that
is requirements regarding when the key can be used. Upon
agreement on requirements, IDAA develops a key restriction
policy that captures the requirements and sends the policy
to the TC Bridge. The TC builds the key and releases the
public part of the key, containing the public key PK and
integrity-protected information, such as the key restriction
policy. This information is shared with IDAA to verify the key
produced and validate the TC (§ 1). If both checks succeed,
it releases a DAA Credential for the now certified key (§ 2).

Obtaining a VC: When requesting a VC, the TC Bridge
shares the DAA public key with IVC (§ 3) (and authenticates
the Holder, along with a DAA signature to prove device
ownership). IVC constructs the relevant attributes for the VC
and includes the DAA public key as an ”identity attribute”.
Therefore, this binds the VC to the DAA key, resulting in
the VC being bound to the physucal device. The credential is
returned (§ 4) to the Holder and stored in the Wallet.

Generating a Verifiable Presentation: A VP is a representa-
tion of a subset of the attributes issued as part of the Verifiable
Credential. It can be verified by any Verifier knowing the
respective VC and DAA credentials. To protect against VP
linkability, we are contracting a ”blinding” or ”randomization”
operation to the credentials. This process does not negate
the Device Binding property (Definition 2), but ensures Full
Anonymity and Unlinkability (Definition 4) against both the
VC Issuer (not keep track of the use of the attributes they
have issued) and the Verifier (conducting attribute validity) (cf.
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Fig. 2: DAA signing key usage requires both authentication
tokens from Wallet, and internal PCRs to be in a trusted state.

Section III). Following this blinding, the Holder then decides
which attributes to disclose. All non-disclosed attributes are
hidden by using a cryptographic operation that attests to
their equivalence in the original VC, thus, providing the
necessary proof that the VP has been correctly computed
by the Holder which owns the Wallet of credentials (creates
a bound signature associated to the attribute values). The
”identity attribute” (the DAA private key) will always be
hidden by the TC, to ensure anonymity. The final presentation
blob is now constructed as a set of disclosed and non-disclosed
attributes accompanied by the two blinded credentials and
can be shared with any Verifier. To verify that both hidden
and revealed attributes were certified in the VC, the Verifier
can use the mechanisms provided by the DAA-A scheme to
confirm attribute validity and that the Holder also controls the
rest of the (undisclosed) attributes. Furthermore, she can also
assert that the correct key restriction usage policy has been
implemented to ensure Wallet Correctness (Definition 6).

B. Principles of Secure Wallet Construction

It should now be evident that DOOR protects the HW-based
DAA key with a set of policies for ensuring Wallet Correctness
and verifying that only the authenticated (intended) Wallet can
interact with the TC through the TC-Bridge software stack.
A Verifier trusts the DAA Issuer to validate the DAA key
and the TPM, which implies trust in any assertions produced
by that key. An asymmetric key pair created by the TPM is
de facto bound to it. Keys are created as Primary Keys (re-
creatable under a secret internal unique seed) or as Childre
Keys of a Primary key (encrypted by the parent). As private
keys never leave the TPM, the produced keys are restricted
to the physical chip. TPMs also provide a policy-enforcing
functionality that can bind an integrity-preserved policy to a
key, thereby restricting the use until the policy is satisfied; we
call this a key restriction policy. To satisfy a policy, one or
more policy commands [30] are executed on the TPM, each
providing distinctive evidence. Therefore, if a policy-protected
TPM key provides a signature, the Verifier can be sure that the
policy has been satisfied. In the rest of the section, we cover
how the TPM is used to protect the DAA key from untrusted
device configurations and unauthorized Holders using policies.
Restrict to Trusted Configuration The TPM includes a set
of internal extendable registers called Platform Configuration
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Registers (PCRs). These store measurements of the residing
platform (the Holder device) as chained hashes originating
from a root of trust for measurements (e.g., CPU microcode,
TEEs, or similar). We can build a policy that can be satisfied,
if a selection of PCRs matches a predetermined value,
referencing a trusted state. Using PolicyPCR, we ensure
that the DAA key is inoperable, if the integrity of the device
state is compromised. Since policies are immutable, updating
the reference values (the policy itself) will require a new key
with an updated policy to be issued. To avoid this, the DAA
key is instead bound to the contents of an internal non-volatile
register through a policy called PolicyAuthorizeNV
(Algorithm ??). Any policy (e.g. PolicyPCR) residing
in the register, the Policy Index (PI), must be satisfied
before the TPM allows the use of the key. To protect the PI
from malevolent changes, it is itself protected by a policy
(Algorithm ??). This policy (PolicySigned) requires that
to write a policy to the PI, IDAA must sign it. This policy also
protects the deletion of the index, to prevent recreation, and is
resistant to replay attacks by including a TPM session-nonce
in the authorization (Algorithm ??).

Wallet (PK) IDAA ((x, y), ρ)
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ρ←−−− ρ← {0, 1}λ

TPM Calculate PK =
x0G0 1
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Fig. 3: The Join Protocol with IDAA. Note: x0 is private to TPM

Key Ownership and Usage As the TPM is not uniquely
accessible from the TC Bridge, the Verifier cannot determine
who ordered the signature. For instance, if a trusted application
was misused to produce signatures. To appoint ownership of
the DAA key, we again use the TPM policy functionality.
Policies are not restricted to singular commands, but can
be built as multiple policies in an order-restrictive format;
hence, we can add more policies to the already described
PolicyPCR. The wallet comes with a preinstalled key, the
”Wallet key” (WK), which we can use in PolicySigned,
as we did to protect the PI (require a signature to authorize
operation). Any trusted applications cannot access the WK,

and untrusted applications are locked out by PolicyPCR. A
signature of the DAA key provides the Verifier with evidence
of intention and Holder correctness, as seen in Figure 2. How-
ever, a DAA signature requires an additional cryptographic
operation, namely the Commit operation. As this operation
is not used to provide evidence to a Verifier, it should not
be restricted. Furthermore, since the DAA key is used to
certify the PI using NV_Certify, this should be allowed
without using resources on the other policies. TPMs provide
the functionality to allow multiple policies to be valid, using
a special policy command PolicyOR. This allows the key to
be operable if the sign policy is satisfied (proof of intent and
correctness) or if the next command is authorized (Commit
and CeritfyNV). Both can be allowed using individual policies
using the policy command PolicyCommandCode. This can
be added to one large policy, which is authorized by IDAA. The
final result is a device-bound key.

III. ARCHITECTURAL DETAILS & PROTOCOLS

Notation Let F be a finite base field and F̃ be a finite extension
field of F. Let E be an elliptic curve defined over F with a
base point G0. Let Ẽ denote the points of E over the extension
field F̃ and G̃0 be a base point of Ẽ. G̃0 is used to generate
the Issuers’ public keys in Ẽ, whereas G0 is used to generate
the public part of the TPM’s DAA Key in E. The curve E
is equipped with a type III pairing τ : E × Ẽ → F̃. τ is
used to verify the DAA and VC credentials under the Issuers’
public keys. The operation on E (resp. Ẽ) is written with
additive notation. Multiplication by scalars is always written
on the left. Scalars are always defined on Zq (from where
the secret keys are sampled), where q is a prime number that
represents the order of the subgroup ⟨G0⟩ in E. Arithmetic
has to be understood in the respective finite fields. Uppercase
Latin or Greek letters always indicate EC points on the curve
E. Uppercase Latin or Greek letters with a tilde on top will
denote elements on the curve Ẽ.
Setup: The public group elements G,G1, . . . , Gn ∈ E and
G̃, G̃1, . . .
, G̃n ∈ Ẽ are generated from G0 and G̃0 respectively, where
G = rGG0, Gk = rkG0, G̃ = rGG̃0 and G̃k = rkG̃0 for
k = 1 . . . n and rG, rk ∈R Zq , where ∈R indicates that the
elements are chosen randomly. G1, . . . , Gn will be used in our
scheme to generate the attribute tokens in E. G̃, G̃1, . . . , G̃n

are used in the verification phase in the batch proof trick
presented later in the section. It is required that the values
of rG and rk for k = 1 . . . n are generated by the setup
system and erased after the setup process, such that there is
no known discrete logarithm relation between any Gk and
Gj (for some j ̸= k) and between any Gk and G. The
hash function: H1 : {0, 1}∗ → Zq is used in our scheme
to output the challenge c used when creating Schnorr Non-
interactive Zero-Knowledge Proofs. IDAA’s signing secret key
consists of two integers x, y ∈ Zq . X̃ = xG̃0 and Ỹ = yG̃0

correspond to IDAA’s public key. Let u, v ∈ Zq be the VC
Issuer’s private key. Ũ = uG̃0 and Ṽ = vG̃0 correspond to
the VC Issuer’s public key. Let us highlight that IDAA creates a
proof of knowledge πDAA

ipk to prove that the relation between
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Wallet (PK) IVC ((u, v), ρ)

requestV C (PK)
−−−−−−−−−−−−→
Keyw={x1,x2,...,xn}, n ∈R Z 1
←−−−−−−−−−−−−−−−−−−−−−−−−−

TPM Calculate σDAA

on (KeyW , n) 2 σDAA
−−−−−→

Verifies σDAA on (KeyW , n)
Γ = PK +

∑k=n
k=1 xkGk 3

t ∈R Zq 4
Aw = tG,Bw = vAw

Cw = uAw + tuvΓ
Dw = tvΓ 5
EWk

= tvGk ∀ k ∈ [0, n]

6
γ ∈R Zq

ĉw =

H1

(
γG|γG0| . . . |γGn|γΓ|ρ

)
ŝw = γ − ĉwtv 7

(Aw,Bw,Cw,Dw,EWk
,ĉw,ŝw,ρ)

←−−−−−−−−−−−−−−−−−−−−−−−
τ(Aw, Ṽ )

?
= τ(Bw, G̃0)

τ(Aw + Dw, Ũ)
?
=

τ(Cw, G̃0) 8
ĉ′w = H1

(
ĉwBw +

ŝwG|ĉwEW0
+

ŝwG0|ĉwEW1
+

ŝwG1| . . . |ĉwEWn +

ŝwGn|ĉwDw + ŝwΓ|ρ
)

ĉ′w
?
= ĉw 9

cre = (crePK , crew)

Fig. 4: The Join Protocol with IVC (Issue VC)

(x, y) and (X̃, Ỹ ) is well established (i.e. X̃ = xG̃0 and
Ỹ = yG̃0). This proof correctly binds the public key (X̃, Ỹ )
to its corresponding secret key (x, y). This step is crucial
for the correctness of the protocol, which states that honestly
generated signatures should successfully verify, hence verified
under the same Issuer’s public key who initially created the
user credential. Similarly, IVC proves that his key is well-
formed by providing a proof of knowledge πV C

ipk of (u, v).

A. Credential Management

In our architecture, VCs are enhanced with hardware-based
keys issued from a Trusted Component (e.g., TPM). This
key (DAA Key) must be accompanied by a credential
(DAA Credential) certifying its properties and enabling the
key to work. All VCs issued are, therefore, bound to a
particular DAA Key, hence the creation and certification
of this must happen prior to the issuance of a VC. Each
issuer is assumed to have an authentic copy of the TPM’s
endorsement key, which is used to establish a secure and
authenticated channel between the TPM and the issuer. In
the join protocol description, it is assumed the existence
of a secure authentication channel between the TPM and
the DAA/ VC Issuer, the reader is recommended to find
the detail regarding how to establish such a channel from [31].

Issue DAA Credential: Before establishing contact with IDAA,
the TC Bridge configures the TPM to enable safe storage of the
Issuer-generated key restriction policy. It does so by creating
the TPM-protected Policy Index (PI) with safety mechanisms
that only allow the IDAA Issuer to modify it (Figure ??). The

TC Bridge computes a policy for the upcoming DAA key that
makes the key usable only if the policy stored in the PI can be
satisfied. To do so, it acquires the unique index name N and
calculates the policy digest according to the TPM standard.
With the newly created policy, the TC Bridge sends it to the
TPM with instructions to generate a new DAA Key. Internally,
the TPM chooses the secret DAA Key x0 ← Zq and sets
its public key PK = x0G0 1 . It returns the cryptographic
PK, alongside other parameters (i.e., policy) in an integrity-
protected data structure.

An authorization session is started with the TPM, returning
a nonce n to the TC Bridge. A registration package can now be
assembled, consisting of the DAA Key data structure, nonce
n, index name N , the public TPM Endorsement Key (EK),
and the Wallets’ software-based public key WK and then sent
to IDAA.
IDAA verifies that the DAA key policy ensures the contents

of the PI are satisfied as a policy, and computes the key-
restriction policy to be written to the PI. This policy, K, can
only be satisfied by proof of intent from the WK and if the
integrity of the Wallet is not compromised. It then computes
the write-authorization by computing ac = H(n|0|cc|0016),
where cc = H(CC_NV_Write|N |N |K) and signs it with
IDAA private key to produce σa. This authorization allows K
to be written to an index with the name N in a session with
the nonce n.
IDAA then creates a challenge using the

make_credential functionality of the DAA scheme.
The challenge, authorization, and policy are returned to
the TC Bridge, which satisfies the PI policy using the
provided authorization to write the policy K, authorized
by IDAA, enabling operations of the key. By using the
activate_credential functionality, the TPM computes
the challenge response. It then computes πM as proof of
construction of PK. To provide evidence of the creation and
contents of the PI, the TPM provides an Index Certificate
signed by the DAA Key.

The resulting certificate and the challenge response are
sent to IDAA, who first verifies πM to check whether the
TPM Wallet is eligible to join, i.e., the DAA Key has not
been previously certified. If this validation succeeds, IDAA
verifies that the current contents of the PI match the previously
computed policy and that writing and deleting the PI requires
IDAA authorization. If this verification succeeds, it will now
compute the credential (Figure 3). A random r ∈R Zq is
chosen and used to calculate the four points (A, B, C, D)
2 .

To provide authenticity, IDAA performs a Schnorr ZK proof
written as (ĉ, ŝ), which shows that the discrete logarithms are
equivalent. To do this, IDAA chooses a random ω ∈R Zq; and
calculates the challenge ĉ and signature ŝ 3 , where ρ is a
message for freshness agreed by IDAA, the VC Issuer and the
signer.
IDAA sends the PK-credential crePK : (A,B,C,D, ĉ, ŝ) to

the Wallet (TC Bridge), which represents the credential that
corresponds to the Holder with embedded TPM with Public
DAA Key PK = x0G0. Upon receiving crePK , the Wallet
verifies the credential under IDAA’s public keys X̃ and Ỹ by
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TPM (x0) Wallet (PK,KeyW )

a ∈R Zq 1
A′ = aA,B′ = aB,C′ = aC D′ = aD
A′

w = aAw;B′
w = aBw

C′
w = aCw, D′

w = aDw

E′
Wk

= aEWk
∀ k ∈ [0, n] 2

TPM2_Commit(B′ + E′
W0

) 3
←−−−−−−−−−−−−−−−−−−−

ω0 ∈R Zq

R0 = ω0(B′+E′
W0

) 4
R0−−→

{ω1, . . . , ωp} ∈R Zq

RWk
= ωkE

′
Wk
∀ k ∈ P 5

c = H1(A′|B′|C′|D′|A′
w|B′

w|C′
w|D′

w|E′
W0
|E′

W1
| . . . |E′

Wn
|R0 +∑

k∈P
RWk

|m′) 6

TPM2_Sign(c)←−−−−−−−−−
s0 = ω0 + cx0 7

s0−−→
sk = ωk + cxk ∀ k ∈ P
σ = (A′, B′, C′, D′, A′

w, B′
wC′

w, D′
w, E′

W0
, . . . , E′

Wn
, sk, s0, c)

Fig. 5: Creating Verifiable Presentations

checking the pairings 4 and verify the discrete logarithm
equivalence via (ĉ, ŝ) 5 . If the above verification passes
are successful, the Wallet stores crePK and can now acquire
VCs. Note that this DAA Key and credential is usable with
multiple VC Issuers as long as they assert the authorized
policy from the DAA Issuer.

Issue Verifiable Credential: To obtain a Verifiable Credential
(Figure 4), the Wallet sends a request to IVC to issue a
credential for a set of attribute keys (e.g. all attributes for
a drivers license). This request contains the DAA Key PK
and any other authenticating information. IVC authenticates the
Wallet and defines the Holders’ attribute space U , covering
the set of attributes x1, . . . xn that correspond to the attributes
related to the Holder, now identified by the DAA Key (PK).

IVC sets the Wallet attribute keys (attributes) and sends it to
the TPM Wallet with a nonce n 1 . Recall that an attribute
key is just an encoded attribute using the hashing function
H1. The Wallet stores the attribute keys (x1, . . . , xn) along
with crePK and must now prove to IVC that it controls the
DAA Key provided. To do so, the TC Bridge satisfies both
the commit and sign policy and uses the TPM to generate a
DAA signature σDAA 2 , using the standard DAA signature
scheme, and sends it to IVC. IVC verifies the signature; If
the verification passes, IVC generates a verifiable credential
crew, which contains a signature on all the attribute keys by
performing the following steps. IVC calculates Γ 2 which
now represents the Holders’ public key for the attributes, later
used for verification. It then chooses a random value 3 and
calculates the points Aw, Bw, Cw, Dw 5 . Following this the
values Ew can be calculated as shown in 6 . These values
demonstrate that key xk that was used to provide signature sk,
indeed was a certified attribute key. IVC then chooses a random
value and calculates the challenge ĉw and ŝw 7 , where ρ is
a message of freshness agreed by IVC, IDAA and the Holder,
just as the credential for the DAA key.

IVC sends the credential crew =
(Aw, Bw, Cw, Dw, EWk

, ĉw, ŝw) back to the Wallet. Upon
receiving crew, the Wallet verifies the signatures. First, it
check the pairings 8 and it this check is successful, it
then validates the Schnorr signature 9 . If this check also
succeeds, the credential (VC) is stored in the wallet.

Storing Both types of credentials can be stored and managed
by an SSI Wallet, but to use the credentials, the Wallet must
be extended with our TC Bridge. Even if credentials are lost
due to theft or data leaks, this does not raise any concern
regarding the misuse of credentials. Since a VC depends on a
unique hardware key and this hardware key can only be used
by a particular TPM, stolen credentials cannot provide any
true verifiable presentation.

B. Attribute Authentication

To verify a set of attributes from a credential, the Wallet
uses the TC Bridge to compute a VP. With our architecture,
the TC Bridge can only create a VP on the device to which
the corresponding credential was issued, with a proven intent
of the requesting Wallet. Additionally, due to the extended
hardware support, the Trusted Component will only provide
the necessary assertions if the integrity of the Wallet and TC
bridge is not compromised.

Creating Verifiable Presentations: The TPM checks if the
policy is satisfied, i.e. the device is in the correct state. If
so, the TPM creates a DAA signature σDAA using its DAA
credential crePK and its corresponding DAA key. Using the
basename bsn = ⊥ the signature becomes unlinkable. The
TC Bridge creates a Proof of Knowledge (DAA Signature)
that, as depicted in Figure 5, enables the Holder to present
a valid credential for the attribute key Keyw = (x1, . . . , xn)
and such that the overall DAA signature is only verified under
a certified public key of the device Γ = PK +

∑n
k=1 xkGk,
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where PK is a certified TPM key from IDAA. The flow of this
is as follows.

1) Blind: The TC Bridge creates a random number and uses
it as a blinding factor 1 . Then it blinds both the DAA-
and Verifiable Credential by multiplying the blinding factor
upon the eight respective points and E-values 2 , this step
is crucial for unlinkability.

2) TPM Commit: The TC Bridge commits the B point from
the DAA Credential and the first E-point from the VC using
the TPM 3 . At this point the TPM choses a random value
ω0 and multiplies that upon the committed value 4 , this
random value is safely stored in the TPM, to be used later.

3) TC Bridge Commit: The next step is to commit all the
attributes we do not wish to disclose, within the host. Let
D be the set of indices of the disclosed attributes needed
for a specific service, and let P = {1, . . . , n}\D represent
the set of indices of all other committed (hidden) attributes.
We can represent P by the set {1, . . . p} that denotes the
indices of the committed attributes with p ≤ n. For each
committed attributes, the Wallet selects a random value and
multiply it upon the respective E-points 5 . The random
values are stored within the host.

4) TPM Sign: The TC Bridge calculates the hash value to be
signed, c, 6 and satisfies the signing policy and executes
TPM2_Sign to sign c. TPM then signs the hash using the
same ω0 as used in the TPM Commit phase and the DAA
private key 7 .

5) TC Bridge Sign: The Wallet signs each of the committed
attributes using the respective ω
and outputs sk = ωk + cxk ∀ k ∈ P , us-
ing the attribute keys. The Wallet sends σD =
(A′, B′, C ′, D′, A′w, B

′
w, C

′
w, D

′
w, E

′
W0

, . . . , E′Wn
,

s0, sk∈P , xk∈D, c) to the verifier.

Verification: The verifier checks the attributes and verifies
the DAA signature as follows.

1) Verify the modified CL certificate by checking the pairings
on both the blinded DAA- and Verifiable Credential:
τ(A′, Ỹ )

?
= τ(B′, G̃0) and τ(A′ +D′, X̃)

?
= τ(C ′, G̃0).

τ(A′w, Ṽ )
?
= τ(B′w, G̃0) and τ(A′w+D′w, Ũ)

?
= τ(C ′w, G̃0).

2) Verify the equivalence of the discrete logarithm using the
batch proof trick from [13]: t0, t1, . . . , tn ∈ Z;

τ(t0E
′
W0

+ . . .+ tnE
′
Wn

, G̃)
?
= τ(B′w, t0G̃0 + . . .+ tnG̃n)

3) Verify the Schnorr ZK proof of knowledge of the hidden
attributes:
µW =

∑
k∈P

skE
′
Wk

+s0(B
′+E′

W0
)−c(D′+D′

w−
∑
k∈D

xkE
′
Wk

)

c
?
= H1(A

′|B′|C′|D′|A′
w|B′

w|C′
w|D′

w|E′
W0

| . . . |E′
Wn

|µW |m′)
4) Outputs Valid if all checks and verification pass.

As in [12], our protocol can offer linkability of the commit-
ted attributes even when are not issued by the same VC Issuer.
This is done by the TC Bridge by adding attribute link tokens
in the form of Jk = xkH2(bsnk) for each committed attribute
xk for some verifier’s input bsnk and H2 : {0, 1}∗ → E. If any
two signatures that are signed under the same bsnk contain the
same Jk, then the verifier is convinced that the signers share
a common attribute xk without learning anything about xk.

IV. PERFORMANCE EVALUATION

This section presents a performance analysis and evaluation
of DOOR’s capabilities on creating and verifying VPs, as these
are the more time-sensitive operations. Offline commands,
such as initial setup and initialization are not presented
here but have been analyzed as well. We implemented
DOOR in the C language and timed each component using
real-time measurements for both the TC as well as the Holder
device, showcased with a TPM and Raspberry Pi, respectively.

Experimental Setup & TPM Timings The physical setup
consists of a Raspberry Pi 4 Model B with an Infineon SLI
Iridium 9670 TPM. The tests executed consists of three sce-
narios: 1) No attributes are disclosed, 2) Half of all attributes
are disclosed, and 3) All attributes are exposed. For each of
these three scenarios, we executed one thousand tests with
8, 16, 32, 64, and 128 attributes, per protocol, and stored
the average time. In Table I we show the time it takes
to complete the TPM commands concerning enforcing the
previously described trust requirements. In case of no trust
requirements, this can be reduced to TPM2_Commit and
TPM2_Sign which is summarized to 298.25 ms, leaving the
overhead for our complete trust assurance at only 1026.11 ms.

TABLE I: Create Verifiable Presentation - TPM timings

Command Mean ± (95% CI)
TPM2 StartAuthSession 52.48 ms 2.67 ms
TPM2 PolicyCommandCode 1.51 ms 0.03 ms
TPM2 PolicyOR 3.11 ms 0.09 ms
TPM2 PolicyAuthorizeNV 326.28 ms 7.41 ms
TPM2 Commit 176.63 ms 3.23 ms
TPM2 Hash 119.27 ms 9.41 ms
TPM2 StartAuthSession 51.32 ms 2.64 ms
TPM2 PolicyPCR 2.57 ms 0.07 ms
TPM2 PolicySigned 141.02 ms 2.06 ms
TPM2 PolicyOR 3.18 ms 0.10 ms
TPM2 PolicyAuthorizeNV 325.37 ms 7.74 ms
TPM2 Sign 121.62 ms 9.35 ms
Total TPM Time 1324.36 ms 44.80 ms

Performance Comparison It is obvious to compare DOOR
with BBS+ as they are similar by both providing selective
disclosure. However, while similar, DOOR provides additional
security with key-restricting policies, making DOOR directly
incomparable to BBS+. To fairly compare the protocols, we
stripped DOOR for all policies, only requiring the TPM to
provide Commit- and Sign capabilities, as described above.
To achieve comparable performances, we used a BBS+ library
[32] written in Rust. For anonymity, we tested against BLS
signatures, as they are prominently used in Wallets as well.
The results showed that BLS signatures are, as expected,
much faster than DAA with TPMs, but they also do not
provide controlled linkability features, as DAA does.

Creating Verifiable Presentations In Figure 6, we see how
BBS+ are much more affected by an increase in attributes
than DOOR. It’s also notable how BBS+ VP generation
is more affected by the number of hidden attributes - the
less you disclose, the longer time it takes. While DOOR is
also affected by this, the difference in the worst case (128
attributes) between full- and no disclosure is 55.72ms, an
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increase of 12%, compared to BBS+ 774.17ms, an increase
of 45%. However, if we add the policies described in this
paper to DOOR, we will add around 1000 ms to the time it
takes to create a VP (shown with the star-marked line). In
this case, BBS+ is significantly faster for low-count attributes,
however, BBS+ does not provide comparable trust assurances
in this case.

Verifying Verifiable Presentations In verification, seen in
Figure 7, we see how DOOR is generally faster than BBS+.
This operation is indifferent whether policies have been used
or not, making this operation easily comparable. Both algo-
rithms generally increase similarly in time, as the number of
attributes increases, and overall DOOR is double as fast as

BBS+. However, it’s interestingly noteworthy that BBS+ and
DOOR are mirrored s.t. DOOR is generally faster in verifying
Half- and No Disclosure whereas this is the slowest case for
BBS+.

V. CONCLUSION

DOOR offers higher levels of confidence to the authenti-
cation and electronic identification service of digital identity
Wallets - hence a higher LoA. It also enables construction
of Verifiable Presentations that selectively disclose only those
attributes needed for verification, ensuring at the same time
that anonymity and unlinkability is preserved. The implemen-
tation and evaluation of the performance of DOOR showed
the effectiveness of the design of our protocol. As future
work we plan to add the functionality of constructing one VP
for combining attributes not only based on bound and public
credentials but also multiple credentials issued from different
Issuers. This could open up new application scenarios.
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