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This chapter aims to review, from the security standpoint, the artificial intelligence
solutions used to empower smart manufacturing environments. Our analysis will
focus on the adversarial models utilized by malevolent entities in order to cause mal-
functions to AI-powered systems both during the training process, but also during
the inferencing mode of the leveraged machine learning models. Such attacks can
have significant impact to the operation of the manufacturing supply chain ecosys-
tem, as they can affect not only the business continuity, but more importantly, the
integrity of safety-critical operations of systems. Towards this direction, this chap-
ter reviews the state-of-the-art in technical approaches to secure machine-learning
models and pave the way towards the safe adoption of such measures in the manu-
facturing field. The focus is on new generation of artificial intelligence setups using
at their core deep neural network structures. In addition, the chapter elaborates
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on attestation-based provenance mechanisms that guarantee the trustworthiness
of data streams feeding AI systems. The goal is to highlight the need for robust
solutions against adversarial machine learning attacks for such environments and
to provide additional insights on the appropriate mitigation strategies against such
intelligent aggressors.

2.1 Introduction

For many years manufacturing systems lacked information and data security, until
recently that everything in the manufacturing supply chain ecosystem changed.
Ethernet and IP protocol layer became the next big thing; of course, some of
the driving factors for this big change were cost, need for automation and con-
venience. Networks became a core part of the manufacturing field and currently
interconnect wider and more complex manufacturing floors. Hence, connectiv-
ity along with the increased sensing capabilities, and the desire for reduction of
installation costs gave birth to an increased demand for wireless networks, multi-
ple IoT devices, and human-robot interaction which is blooming as the new era
for smart factories. The evolution of human-robot collaboration and Internet of
Things have major impact on the manufacturing processes, working environment
and processes, as new services can be developed by the integration of the physical
and digital worlds. Moreover, this progress has an impact on the physical security
of the workers and the overall safety in the smart factories, and the reason for this is
because human-robot collaboration will provide to the workers a more privileged
job position where the robot will handle most of the dangerous and demanding
parts of the job. Smart devices and networks with improved capabilities can have
significant impact on the users’ well-being and on the everyday activities and pro-
cedures in a manufacturing environment with the emergence of new “systems-of-
systems” (SoS).

In addition to the above, the scenery of manufacturing is rapidly changing by
the penetration of artificial intelligence solutions that primarily aim to boost the
productivity on the manufacturing operation process. In fact, artificial intelligence
is revitalizing the smart manufacturing domain with the integration of advanced
analytic methods capable of processing huge amount of data collected by the mul-
tiple IIoT devices. Based on this, predictive maintenance for minimising operation
and maintenance costs, improved supply chain management, automated quality
control, efficient and safe human-robot collaboration and buyer-centric manufac-
turing are prominent examples of added-value services that have emerged as a result
of the integration of AI in the manufacturing field.
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Undoubtedly, the digitisation of the manufacturing field in combination with
the AI infiltration in the production processes have led to the formation of a rather
complex cyber-threat landscape on smart industries. More specifically, the threats
that emerge as a result of the integration of legacy ICT technologies have been
widely documented in the literature [1], while several reports have documented
threat taxonomies in this direction [2]. Notably, when it comes to the documenta-
tion of AI-specific threats, in other words, attacks that target specifically AI empow-
ered systems and the leveraged AI methods, only recently the community has started
to document possible attacks that can offend the operation of such systems [1, 3].
In this direction, this chapter aims to shed light on the underpinnings of the AI-
fuelled smart manufacturing and in parallel to put forth adversarial techniques
that can be used against such AI methods. More specifically, the focal point of
this work is the in-detailed investigation of the most prominent type of attacks,
namely poisoning and evasion attacks [3–6]. Poisoning attacks attempt to train
the deep neural networks in ways that compromise their correct operation with
the inclusion of intentionally malformed instances in the training set of AI algo-
rithms. Evasion attacks take place at the inference stage of a deep neural network
where malicious parties craft data that are incorrectly classified by deep learning
systems.

In view of the above, this sets the challenge ahead: “To which extend AI adversar-
ial techniques can affect intelligent manufacturing systems, and what are the defensive
actions that can guarantee the robustness of the AI systems towards achieving increased
resilience of the production lines and business continuity?”

Compounding this issue, Section 2.2 offers an analysis of the smart
manufacturing stack by highlighting the engagement of AI solutions in the man-
ufacturing processes. Given this analysis, Section 2.3 highlights the cyber security
posture of AI-fuelled manufacturing systems by documenting impactful vulnera-
bilities and threats. Section 2.4 documents the importance of solutions, such as
attestation that can guarantee the integrity of data flows fed into machine learn-
ing data pipelines. Section 2.5 offers a discussion and critique on the formed field’s
baseline before Section 2.6 elaborates on the road ahead and discuss novel solutions
that can increase the residence of AI setups.

Overall, the motivation of this work is to set the scene on the need for secure
AI-based systems for manufacturing environments that cannot only enable efficient
decision making process but can also withstand a prolonged siege from an attacker;
either targeting the integrity of the input data or the correctness of the classification
model and process. Having identified the challenges and current hurdles, we also
put forth a road-map of future research avenues which we need to consider if we
are to fruitful benefit from the Industry 4.0 revolution.
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2.2 Hardening the Smart Manufacturing Stack: Towards
Inter-Trustability of System-of-Systems

Security intelligence in smart manufacturing is widely used to solve security prob-
lems, such as incident prevention, detection, and response, by applying machine-
learning and other data-driven methods. The selection of intelligence sources and
feeds is vast and growing, so is the choices in methods that can be applied, while
the problems evolve and new ones appear. To this end, as aforementioned, there is
a large body of prior work that solves security problems in specific scenarios, using
specific types of data and specific algorithms [3–6]. Being specific has the draw-
back that it becomes hard to adjust existing solutions to new scenarios, data, or
problems. Furthermore, all prior work that strives to be more general is either able
work with complex relations (graph-based), or to work with time varying intelli-
gence (time series), but never both. While there exists solutions to spatio-temporal
problems in graph machine learning, they do not satisfy the conditions: 1. hetero-
geneity of attributed nodes, 2. time-dependence of the nodes and their attributes,
3. time-dependence of the relationships, 4. scoring of the nodes, and 5. arbitrary
interactions that are not necessarily bipartite (i.e., hyperedges).

In this context, security intelligence data, or simply intelligence, must relate
to something of relevance to security of interest, i.e., one or more specific
instance of some entity types, and it must describe the entity (or entities), either
through attribute(s) or by their relationship. Examples include knowledge that a
device/sensor exists on the network of concern (identifies an instance, e.g., by a
securely generated ID), that the device is turned on (an attribute that describes that
state of the sensor), and that the device has used the Domain Name System (DNS)
to resolve a domain name (Interaction between the client and domain entities).

The complete body of all security intelligence is not practically available, but
parts of it can be observed. The types of intelligence we consider include also
enriched observations, such as the relation between a device’s ID and the hostname
obtained via reverse lookup in the underlying network (programmable) infrastruc-
ture. Either way, monitoring of data is one approach to observe intelligence, which
for instance network owners can use to gain insights to the traffic circulated in a
smart manufacturing floor, yielding intelligence like the above. Another option is
to source intelligence from others, via public or private feeds, e.g. for free or under
some commercial agreement.

Whether intelligence is sourced from monitoring controlled systems, third par-
ties, or elsewhere, the arrival of new intelligence is expected to occur at spe-
cific points in time because monitoring reveals events from observed data, or
because new data from a feed arrived. To capture this, we define an event to
be a timestamped observation of intelligence data, where an observation may for
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example be either a first time observation, interval since last modification or an
affirmation that the previous intelligence data is still current. For instance, a data
transmission from a device is an event which provides several pieces of intelligence;
there is a sensor on the network that has a certain ID, it is active, and it is related
to the domain name in question.

In the above, we have explained out how intelligence can be obtained from
monitoring, external sources, and enrichment, but it may also be obtained from
machine-learning, heuristics, manual processing and more. Common for all these
processes is that they take some intelligence as input and produce some new or
updated intelligence as output. This type of process we refer to as a map process,
which encapsulates the knowledge of a variety of domain experts into an auto-
mated framework that enriches intelligence. In what follows, we dig into more
detail behind the scenes on the types of information sources that can be considered
as part of this map process; essentially, the actors that comprise this new paradigm
of smart manufacturing systems that organize and integrate real-time knowledge
between physical objects and the virtual computational space [8].

2.2.1 Data Source & Security Requirements of Industry 4.0:
Smart Manufacturing Processes, Actors
and Safety-Critical use Cases

Towards this direction, additional Cyber-Physical Systems (CPS) such as reliable
indoor positioning system and activity recognition systems (e.g., motion capturing
sensors), together with AI-based software solutions are among the enabling tech-
nologies that need to be leveraged. The incorporation of robotics into industrial
systems has accelerated over the last decade, and there are no signals of a slow-
down on the horizon. Because of regulatory and business measures, such as the
German-created Industry 4.0 [7], the expanded use of robotic architectures could
be an unintended result of parallel advances in a few related fields [9]. Plant systems
(machines, conveyors, and so on), cognitive devices, and the cloud will both con-
nect and share data in real time using the existing network infrastructures. Every
one of the machine components, seen as units, collaborates effectively to achieve
versatility and stability. Operatives must deal with problems including packet losses
and ineffectiveness that may occur as a result of incompatibilities. To reduce packet
loss, massive data feedback mechanisms are required [10]. Detectors play a crucial
role in the application of IoT and CPS in a delivery device. A sensor is described
as a complex machine that detects light, humidity, reclamation, of some kind and sends
a signal to a monitoring or controlling endpoint. It is a good resource for convert-
ing data from the surrounding world into data in a cybernetic environment. It is
proposed that self-aware and self-monitoring systems be used to capture and relay
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the information from the production process in actual environments [11]. When
building a managed work environment with the widespread use of smart appli-
ances, process management is often encouraged. To ensure effective communica-
tion across devices for several monitoring processes, IoT devices are further split
into categories, with each class of sensors loosely deployed in a sub-area. a big fac-
tory or a long product design and development line [10]. These advancements,
particularly in software engineering and automation, have allowed separate mecha-
nisms to use smart data analysis to build process information awareness that can be
used to illuminate the operational behaviour the systems and manufacturing fields.

2.2.1.1 Ideal operational requirements

The development of manufacturing advances and new processes are expected
to continue in the future. Modern materials, components and objects will
emerge [12]. Injection molding is an example of a modern technique that has
accelerated from the innovation of modern technologies, changed the development
and manufacturing of products, and unlocked the way to previously untapped
areas such as biomanufacturing. Manufacturing equipment, for example, devices
intended for standardized and lateral machining, as well as penetration, have been
developed to manage different activities. Further type convergence will occur, such
as the use of advanced products, item schedules, and production procedures, such as
the identification of a chemical substance that relates to the creation of a new med-
ication, a delivery mechanism, as well as medication production and the device.
New-age robots, which are very inexpensive to build and maintain, takes smart
factory automation to unpredictable levels. IoT devices and application functions
make new era smart manufacturing systems more intelligent and better suited for
the plant and beyond communication.

These ideal manufacturing advances in time increase manufacturing speed and
productivity. Traditionally, productiveness is described to measure the degree of
output as compared with a given input. Examples of inputs are individual work-
ing hours, devices hours, and materials. Productivity may be measured at unique
tiers of the organizational hierarchy from an individual device to the entire organi-
zation. Productivity is outstanding from generally used overall performance goals
including return-on-investment (ROI), that’s a cost-primarily based frequently used
at the very highest stages of the organization. A device can adjust its behaviour
depending by its own knowledge with the aid of artificial intelligence, and whether
it has sophisticated tracking systems, it can, for example, use cognitive computing
to automate its processes and be accurate and precise. These activities and applica-
tions are susceptible to improvements in integration and may benefit from artificial
neural networks. They should therefore be viewed as part of an intelligent control
system. Independence exists where a device (a) may respond to feedback and act
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out its actions to achieve a specified goal, and (b) the unit wishes for the feedback
loop to function. Advanced control technology is needed. As a result, independence
must be a component of particular value. A device is said to be fully automated if
it can automatically execute its own operation, although the level of automation
varies from device to device [13].

2.2.1.2 Operational and performance assurance

Manufacturers usually need technological skills to monitor the range and form of
technology widely available to upgrade their processes, which is posing a significant
problem for industry 4.0 and smart manufacturing. Provisional application creation
and evaluation are often carried out in laboratory environments, which may pre-
clude the software from being publicized and used due to deployment challenges.
This will go unnoticed by the developer. To establish that smart technological devel-
opments integrate well with traditional manufacturing processes, it is critical that
the vendor and product providers collaborate to find problematic areas as well as
shared solutions and best practices. To guarantee that the current framework ulti-
mately improves efficiency, performance indicators must be identified. The use of
performance enhancement standards at all stages and levels of development means
that supply chains fulfil the anticipated functional criteria while also providing the
appropriate guidance for quality improvement. The manufacturer’s priorities must
be supported by performance evidence that cascades from the highest operational
level to the lowest acceptable level. It is critical that certain small indicators rep-
resent the duties given at your level while still adding to the organization’s total
operating measure [8].

2.2.1.3 Quality assurance

Analytical tools including simulation and statistical evaluation play a position in
analysing productiveness through examination in their output reports. Advanced
knowledge could also analyse comparatively existing system information, recog-
nize correlations among differentiated system phases and inputs, and refine com-
ponents that have the greatest effect on yield and productivity [12]. Replacing old
fashioned manufacturing processes with Machine learning smart manufacturing
processes can result in huge to slight increase in productivity and profit. Although,
a reasonable question is how the quality and performance assurance are impacted
from these radical changes. The quality management roadmap establishes bench-
marks for enhancing quality for production processes through procurement part-
nerships with and within individual supplier providers. When a critical occurrence
happens, it notifies human operators, allowing them to take immediate steps if pos-
sible. In case of human-robot collaboration time has taught us, that humans may
be vulnerable to many types of exploits and knowledge base already exists for such
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type of exploitation. However, the second type of the equation is new to the man-
ufacturing processes and various ways of exploitations can be found for a malicious
individual seeking to damage the smart manufacture and attacking the machine
learning algorithm behind the robot which cooperates with the human.

2.2.1.4 Control-safety and secure AI

Since the human-robot collaboration has been a core part in modern smart man-
ufactures, as a robot we can categorize multiple IoT devices that can get involved
in manufacturing processes. In that context heavy parts have to be lifted, various
metallic and non-metallic components have to be machined and large plates have to
be connected to one another in frequently performed tasks, big and strong devices,
such as robotic manipulators, which present a severe safety threat to humans. Mul-
tiple security procedures, such as locking the machines in physical or simulated
cages and holding humans at a safe range while the robots are in action, have
already been introduced. However, in addition to the new conditions for mod-
ern automotive and manufacturing purposes, a new version of ISO 10218 [14],
the key specification for safety specifications for robotic systems, has been
created.

In the context of incorporating safety standards for autonomous or collaborative
robots working with humans [12], the proposed rules for operating in a cooperative
mode also include the following:

• Stopping functions (10218-1)—requirements are specified for how and when
the robot should perform protective, or emergency stops when humans are
in the robot’s workspace [14].

• Speed and position control (10218-1)—requirements are specified for the
maximum allowable speeds of robot arms and end effectors when humans
are in the robot’s workspace [14].

• Power and force control (10218-1)—requirements are specified for the max-
imum allowable power and forces applied by robot arms and end effectors
when humans are in the robot’s workspace [14].

• Design of collaborative operation workspaces (10218-2)—requirements are
specified for the layout design of workspaces around the robot, including
safeguarded spaces (where humans are separated from the robot and protected
by safeguards) and collaborative spaces where humans are not separated from
the robot and hence the robot shall apply the control limits [14].

• Collaborative operation modes (10218-2)—requirements are specified for
the specific operating modes that must be designed into the robot’s control
function when collaborating with a human in the collaborative workspace,
including teaching modes and autonomous modes [14].
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2.2.2 Human-Robot Collaboration and IoT Devices

While the evolution of smart manufactures is radical and shifts quickly to the new
era of machine learning and human-robot collaboration, the concern for physi-
cal security flourishes next to the new era. Robots and IoT devices complexity
and configurations make extremely dangerous the scalability of the technologies
that have been evolved within this concept. Given the clear benefits of incorporat-
ing robotics in smart manufacturing, most areas where they are being completely
deployed neglect any security defense functionality by nature, making robots unre-
liable and vulnerable to cyber-attacks. This is one of the factors why human-robots
are only preferred in testing and have not yet completely proven themselves in the
market of smart manufacturing. Although it is not an easy job, many guidelines
are necessary from the start to boost robot and IoT system cybersecurity [15], such
as: Secure device construction development phases, encrypting robot communi-
cations, maintaining networks updated, limiting access to authorised customers,
offering ways to restore a robot to a secure factory default mode, implementing
cybersecurity guidance, including cybersecurity training for professional machin-
ists and administrators, allowing consumers to provide input on potential bugs, and
encouraging security assessments prior to output.

2.2.2.1 Towards trustworthy smart manufacturing processes

In smart manufacturing environments, devices can participate in the sensing pro-
cess and upload their contributions to the backend (or Mobile Edge Computing
(MEC) layer running) decision-making system, and raw sensor data are collected on
sensor devices and processed by local analytic algorithms towards producing con-
sumable data for requesting applications. In this context, for a specific time window
with n time steps and m sensors, we consider a dataset D containing a sequence (S)
for each sensor j where Sj = [v1,j, v2,j, . . . , vi,j, . . . , vn,j].

Threat Model: The aim of adversarial agents is to mislead the smart manufacturing
processes towards considering malicious measurement values as legitimate in their
services. To this end, an adversary may change the input value vi,j in Sj to v′i,j, where
v′i,j 6= vi,j to maximize the distortion:

max{|vi,j − v′i,j|} (2.1)

where the distortion should be lower than a maximum allowed considered by the
adversarial agent.

There are two primary adversarial attack models [1, 4]: (1) pre-training (poison-
ing) attacks, and (2) post-training (evasion) attacks. In pre-training attacks, adver-
saries try to inject malicious data in an attempt to poison the training dataset and,
thus, decrease the classification accuracy of the classifier. In the post-training attack
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scenarios, adversaries aim at misleading trained classifiers to mis-classify samples
towards a malevolent intent. Let us assume f(xi) = yi as the mapping function
to calculate/map xi to yi . For every new sensed values x′i, f gives a new output
f(x′i) = y′i , and we have the following cases:

• True Positive: if x′i is positive and f correctly outputs positive, there is no loss
on the application.

• False Positive: if x′i is negative and f outputs positive, there is a loss on the
application.

• False Negative: if x′i is positive and f outputs negative, there is a loss l on the
application.

• True Negative: if x′i is negative and f correctly outputs negative, there is no
loss on the application.

In principle, a machine learning technique tries to minimize |f(x′i) − y′i| which
means minimizing l and ε. On the contrary, an adversarial attacker attempts to
maximize the impact of the attack by maximizing |f(x′i)− y′i|.

2.3 Cybersecurity Posture of AI-Fueled
Manufacturing Ecosystem

Security in smart manufacturing does not stop in the physical security of the work-
ers. This radical change might increase safety for the workers thus it will also create
a lot of information security gaps. Considering the different networking and appli-
cation layers that are being involved in this big change, a lot of new vulnerabilities,
attack paths, and information security gaps are being born. Considering the above
threats, confidentiality and integrity must be ensured in such environments.

On the way towards such IoT-based SoS, this added richness and connectivity
also poses a significant risk. The new approach of SoS will potentially leave the net-
work vulnerable providing a huge scale of attack path to malicious users. Further-
more, in the smart manufacturing environment, this is largely underrated. Between
April 2012 and January 2014, over 500,000 Computer production devices in sys-
tem control ecosystems were discovered, as per Project SHINE data [16]. Since
the installed smart manufacturing systems are far smaller than normal industrial
equipment, it may not cause warnings to be sent to the owners of such installations
because there have been relatively few attacks reported on them. However, it is
worth noting that the presence of recorded attempts on such recently implemented
programs does not imply a lack of vulnerabilities. It is only a matter of how long
before the hacker community acquires the basic information needed to initiate suc-
cessful attacks [17]. The most recent and violent assault on industrial infrastructure
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was the power grid attack in Ukraine in December 2015 [18]. The attackers used a
combination of cybersecurity techniques such as malware, denial of service, and
phishing to take the entire electricity supply infrastructure to a point where it
became difficult to repair, resulting in power failures across the country. These out-
ages caused several blackouts, affecting 225,000 clients across Ukraine. Because this
incident affected the advanced manufacturing ecosystem, it is not shocking that
there haven’t been many accidents involving industry 4.0 systems. However, major
attacks have been launched against some of the more cutting-edge smart manufac-
turing systems, most noticeably IoT. Relatively typical IoT nodes combine a consid-
erably lower CPU with wireless networking network interfaces, encouraging cyber
hackers to target them explicitly within their radio frequency spectrum. This con-
tradicts the conventional security paradigm, where there is a well-defined perime-
ter and sensors (such as firewalls and intrusion prevention systems) are responsible
for protecting the boundary. Instead, each system would have to be at least par-
tially responsible for its own protection, a task made more difficult by the restricted
processing technologies of a standard IoT node. Naturally, this is exacerbated by
manufacturers failure to recognize the broad implications of inadequately securing
individual devices, as well as the high-profile IoT botnet Mirai [19], which resulted
in the biggest denial of service attack seen so far, is a deafening example of this
disaster.

Research-wise the most promising and the one that has been given effort and
developed the last couple of years is AI-based cyber defence mechanisms that are
decentralized and that can more dynamically classify various attack vectors. Many
efforts have been made, many algorithms have been developed and the machine
learning classification models for cyber defence have gotten more sophisticated and
have improved dramatically the last years. According to Sturm et al. (2014) [20], a
void in a 3D printing component would then lead to a reduction in yield, as well as
other natural physical alterations such as weight, stiffness, and attenuation coeffi-
cient. Anomaly detection can also detect unusual behaviour on a network or system
(Kim et al. 2013) [21], as well as image (Chandola et al. 2009) [22], performance
monitoring, and data acquisition (SCADA) (Garcia et al. 2011) [23], or for preven-
tive equipment maintenance (Rabatel et al. 2011) [24]. It focuses on the problem
of calculating the correlation that do not match expected pattern (Chandola et al.
2009). The concept is to identify patterns of standard practice that the algorithm
has learned or indicated. Administrators will be notified if an activity deviates from
the predetermined or accepted model of behaviour. When compared to existing
methods, anomaly detection has the benefit of being able to detect malicious activ-
ity. That being said, the adversarial machine learning does not fall in the category
where the attacker attacks the physical machine or the nodes where the AI agents are
operating. In this case, the attacker tries to bypass or manipulate the classification
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model, which has been created, executing his real attack in a stealthy manner with-
out being detected by the classification model. According to Kumar et al. (2020),
It is unclear how Machine Learning vulnerabilities can be rated in terms of risk and
effects. When a security specialist sees headlines of an invasion, the simple truth is
usually “Is my company impacted by the attack?” and organisations today lack the
intellect to search an ML area for suspected adversarial ML related vulnerabilities.
In this recently adopted definition, three kinds of attacks are considered: poison-
ing, stealing, and evasion. The overarching aim of these models is to minimize
the classification’s generalization error and potentially deceive the decision-making
mechanism against desirable harmful calculation metrics stated by Chen Li and
Jiliang Zhang (2019) [25].

2.3.1 Poisoning Attacks

In the first scenario, the adversary will contaminate the training data. To do this,
the opponent extracts and infuses an argument that reduces classification preci-
sion. This attack has the potential to totally alter the classification mechanism dur-
ing training phase, allowing the attacker to interpret the system’s classification in
whatever way he sees fit says Vahid Behzadan and Arslan Munir (2017) [26]. The
extent of the classification error rate is defined by the data used by the perpetrator
to poison the preparation. The backdoor or Trojan attack, for example, is an espe-
cially sophisticated attack in this class, in which the attacker deliberately poisons
the model by adding a backdoor key to ensure it performs well on normal training
data and testing samples but misbehaves only when a backdoor key is used. When
we are referring to model stealing, this usually can be met in confidentiality to the
outer world Machine Learning models which are being implemented with an API
interface that is open to the public. As an example, consider the ML as a service sys-
tem: Many encourage individuals to train the models on highly sensitive data and
charge others on a pay-per-query basis for use. The tension between product confi-
dentiality and public access motivates the research of model extraction and stealing
attacks. An intruder with black-box access but no background knowledge of an ML
model’s characteristics or training set tries to reproduce the model by “stealing it”,
in these types of attacks. ML-as-a-service services, unlike traditional learning theory
environments, may accept limited feature vectors as inputs and provide trust values
with predictions.

2.3.2 Evasion Attacks

Moreover, the adversary during the research process, can conduct an evasion attack
against classification, resulting in an incorrect machine interpretation. In this case,
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the adversary’s target is to misclassify some data in order to, for example, stay
stealthy or imitate some favourable behaviour. In terms of network anomaly detec-
tion, an intrusion detection system (IDS) can be avoided by interpreting the attack
payload in such a manner that the target of the content can read it, but the IDS
cannot, amounting to a misclassification. As a result, the perpetrator will dam-
age the targeted device without being detected by the IDS. Another target of the
intruder may be to induce concept drift in the system, resulting in persistent system
re-training and dramatically deteriorating its efficiency.

The primary aim of this type of adversarial machine learning is to reduce the
performance of the classification process that is based on machine learning. For clas-
sification problems, this can be interpreted as increase in false positives, in false neg-
atives, or in both. For clustering problems, the aim is generally to reduce accuracy.

• False positives: In classification problems, such as spam detection, where
there are two states (spam or normal), the aim of an attacker may be to
make the targeted system falsely label many normal data as falsified data.
This would lead to the decision-making system miss crucial information.

• False negatives: Using the same example, if the attacker aims to increase the
false negatives, then many falsified data will actually be labelled as legitimate.

• Both false positives and false negatives: Here, the attacker aims to reduce
the overall confidence of the user in the decision-making process by letting
falsified data go through and by filtering out legitimate data.

• Clustering accuracy reduction: Compared to classification, the accuracy of
clustering is less straightforward to evaluate. Here, we include a general reduc-
tion of accuracy as the overall aim of the attacker of a clustering algorithm.

2.4 Trustworthiness of Data Input to Machine
Learning Algorithms

“AI Is Only as Good as the Data You Feed It” is a well-known phrase in the AI com-
munity and, indeed, stands true, as it reflects this reality from a technical perspec-
tive. AI solutions, and especially the latest Deep Neural Network (DNN) setups,
are very efficient in capturing patterns in data both in supervised and unsupervised
ways. In this regard, an AI system which is instantiated with a specific training
set inherits the intrinsic characteristics of the that data. Hence, if a biased training
set (within a given context) is used, then the trained AI system will gain only a
partial knowledge of the context for which it was trained for. This may result to
a poor performance during the actual deployment of the system in practice. This
is just an indication of the implications that may emerge due to the poor data
quality.
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However, apart from the quality of the data, the aim of this section is to high-
light the importance of the trustworthiness of data which are being fed into the
AI systems. Following the same mindset, we argue that “AI Is Only as Trustwor-
thy as the Data You Feed It”. In the context of adversarial machine learning and
more specifically, in the context of poisoning and evasion attacks, the community
has witnessed a series of events at stages of the machine learning pipeline (training
and production) where attackers try to highjack the training process or to evade the
inference process of AI systems. In both cases, the attackers inject small perturba-
tions in the data which are just-enough in order to either lead to a faulty trained
systems or to fool the system at the inference stage.

It becomes clear, that in order to safeguard AI systems we need, not only to
enhance the robustness of the AI models per se, but also to deploy additional tech-
niques that can guarantee the operational assurance of the components taking part
in the data processing pipelines of AI systems. Thus, we argue that beneficial tech-
niques, such as Adversarial Training or Defensive distillation [1], can be comple-
mented event further by solutions that technically can offer verifiable evidence on
the provenance and integrity of the data, and the legitimate operational state of
the data generators. Especially, in the case of smart manufacturing, where multiple
heterogenous devices support different production lines that generate diverse data
flows, it is crucial to identify these roots of trust.

In the context of smart manufacturing, attestation can be used as a solution to
guarantee the operational assurance of systems and to a certain extend to be used
as the root of trust for the generated data flows.

Particularly, heterogeneous components must be enabled to make and prove
statements about the integrity of their produced data so that other components
can align their actions appropriately and an overall system state can be assessed.
This goes substantially beyond simple authorization schemes telling who may access
whom but will require understanding of semantics of requests and chains of effects
throughout the system and an analysis both statically at design-time and dynami-
cally during runtime.

2.4.1 Attestation for the Trustworthiness of Data Generators

Remote attestation is an efficient mechanism to provide evidence of the integrity
status of a remote component. It is typically realized as a challenge-response proto-
col that allows a trusted party (verifier) to obtain an authentic and timely report
about the state of an untrusted, and potentially compromised, remote device
(prover). A prominent root of trust to enable attestation is the Trusted Plat-
form Module (TPM). The TPM allows to implement remote attestation pro-
tocols in such a way that the anonymity of the platform is protected. Remote
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attestation services are currently used in a variety of privacy-preserving sce-
narios, ranging from attestation for isolated execution environments based on
the -now outdated- Intel’s Trusted Execution Technology [27], to more mod-
ern approaches used in conjunction with Intel’s Software Guard Extensions,
e.g. [28, 29].

From a high-level perspective, a remote attestation protocol requires that the
prover creates an Attestation Key (AK) via the TPM, which is an asymmetric key
pair used for signing quotes. A quote is a digitally signed report of the contents
stored in selected Platform Configuration Registers (PCRs) of the TPM with the
AK, i.e., a signature of the platform state. In order to preserve the anonymity, the
prover has the ability to create as many AKs as they wish, but it is required that each
AK be certified by a trusted third party called the Privacy Certification Authority
(PCA). A verifier can trust the platform if it successfully verifies that a quote is a
valid signature over expected PCR values with a certified AK.

The aforementioned process is the pilar in the trusted computing field in order to
establish trust among different TPM-enabled entities. The benefits of this solution
have led to the realisation of numerous attestation approaches, while several imple-
mentations and research endeavours have emerged with particular focus in IoT
environments. More specifically, leveraging cryptographic techniques for protect-
ing and proving the authenticity and integrity of computing platforms, and in turn,
the data stemming from those platforms, has resulted to a rich scientific field. Both
integrity and authenticity are two indispensable enablers of trust. Whereas integrity
provides evidence about correctness, authenticity provides evidence of provenance.

Typical attestation solutions measure the load-time integrity of user-space appli-
cations and files read by the root user during runtime. This is the Binary-Based
Attestation (BBA) scheme proposed by TCG, where measurements and attestation
consider hashes of binaries. Other solutions, focus on the attestation of only a set
of critical properties of the attested devices in order to provide more efficient and
flexible schemes on the basis of Property-based Attestation (PBA) [30]. The afore-
mentioned schemes offer a rather static assertion on the integrity of a platform and
its configuration. To tackle this limitation, Control-flow Attestation (CFA) solu-
tions suggest the acquisition of measurement that reflect the run-time behaviour
of a processes in order to detect attacks that try to evade the legitimate execution
behaviour of a system during runtime.

Considering the above, AI-enabled and IoT-based smart manufacturing indus-
tries can take advantage of remote attestation mechanisms in order to establish
trust among all the components that operate collaboratively in a manufacturing
process. By having indisputable evidence on the configuration and/or runtime
integrity of shop floor devices, the cyber-attack surface is by far minimised leading
and establishing trust among devices on the shop floor. More specifically, in order
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to guarantee the integrity and correctness of data, property-based attestation [30]
seems to be the perfect fit. By identifying these exact properties that need to be
attested on manufacturing systems, A PBA mechanism can guarantee the opera-
tional assurance of component which are responsible for data generation which are
fed into the data pipeline of AI systems.

Attestation can ensure that the data sent from one device to another device has
not been tampered, and this could be ensured in all data processing phases, i.e.,
during transport, during generation or processing on the originating device [31].
Attestation can be used as a provenance mechanism, as data exchanged between
devices in a network can be authenticated along with a proof of integrity of all soft-
ware involved in its generation and processing. The strategy used in [31] to achieve
this, was to decompose the software of embedded devices into simple interacting
modules reducing the amount and complexity of software that needs to be attested,
i.e., only those modules that process the data are relevant.

In the context of AI-fuelled smart manufacturing, where the trustworthiness
of data is a crucial requirement that needs to be met, remote attestation seems a
viable solution to guarantee the integrity of data and minimize the possibility of
adversarial attacks against AI systems.

2.5 Discussion and Critique

Cyber defense in the manufacturing industry is divided into two categories: static
defense and active defense. Static defense methods are centered on adhering to com-
mon industrial rules and specifications. Cryptographic corrective actions, intrusion
detection and prevention systems, human coaching, and incident response man-
agement are examples of dynamic defense mechanisms. Although static defense is a
vital step toward improving overall security posture, it is relatively simple, so more
specifics are overlooked. Manufacturing and smart manufacturing environments
contain hundreds or even thousands of devices, the majority of which are Inter-
net of Things (IoT) devices. Cryptographic primitives are well-known and broadly
used in systems to ensure data confidentiality and integrity. The usage of symmetric
encryption algorithms, public key infrastructure (PKI), hybrid encryption schemes,
cryptographic hash functions, and digital signatures can secure the integrity of the
data, can be used for authentication, ensures that a sender when sending a mes-
sage, cannot deny the authenticity of a message that he sent to the recipient, non-
repudiation and many other aspects of security. Another cyber defense mechanism
is intrusion detection systems in smart manufacturing network-based environments
which are categorized in Host-based IDS and Knowledge-based IDS [34, 35]. Host-
based IDS gather data on single hosts compared to Knowledge-based IDS which
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are accumulating information about previous security flaws and find patterns to
detect intrusions. Both of these security mechanisms work with signature-based
security and basically, the limitation of signature-based security is that they can-
not capture so easily zero-day exploits and newly introduced attacks. Due to the
complexity of modern systems and smart IoT devices used in smart manufacturing
environments traditional machine learning (tree based, Bayesian based, SVMs, etc,)
systems and models are operating based on input data (e.g. Network data, images
from robots, sound data, coordinates etc.) that is collected mainly on network end-
points which are monitored by our system. Based on this input they can perform
a number of decisions (e.g. Alert the system administrator, raise an incident etc.)
based on classification models which, however, can be considered as limited (Zhang
et al. (2019) [25], Banerjee et al. (2018) [4] and Meng Qu et al. (2018) [32]),
because they do not take advantage of enhanced understanding of events that may
happen in other parts of the network, as well as the luck of appropriateness for
aggregating heterogeneous neighbours with different content features. By features
we refer to the features extracted from monitoring and processing collected network
and host-based data that can be used in the classification of specific attack vectors.
More specifically, there is no correlation of data acquired by different individual
sources. In the industrial sector, and even in the scientific literature, for example,
deep learning has been largely applied to datasets in which the training data are:
(i) independent of each other, and (ii) homogeneous, i.e., the subjects of the classi-
fication or regression are instances with same entity type, whereby each section in
the schematic diagram has a consistent interpretation and format. Thus, there is a
need to develop more accurate classification models when it comes to detecting a
wider range of attacks, based on the classification of malicious and benign network
traffic, in collaboration with advanced AI.

2.6 Outlook – Road Ahead

Entities in smart manufacturing infrastructure are most probably heterogeneous
and endowed with characteristics that change dynamically over time compared to
their subsequent interactions. To apply deep learning to such entities, for example,
for classification, one must first assimilate the encounters into the feature engi-
neering process in a structured manner. The reason for these research questions
is to demonstrate how, in this regard, the present state of graph machine learn-
ing is insufficient and needs supplementation with a rigorous function engineering
framework in space and time. Zhang et al. (2019) [25] provides enough proof to
challenge the concept that traditional machine learning methods are not suitable
to create the most complete and concrete classification model. Also, in the H2020
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STAR project the approach that is investigated to overcome such challenges and
limitations is using Graph machine learning and LSTM which shows promising
results nonetheless there are still a number of open challenges to consider especially
related to the order of monitored events and the time they are present in the system.
We use this base and state of the art machine learning methods to challenge the most
dangerous threat that is present to traditional machine learning classification mod-
els, the “Concept Drift” attack. In smart manufacturing “concept drift” attacks can
apply in multiple examples, one of the examples is the temperature of a very critical
room where IoT sensors are present. The attacker can manipulate the classification
model changing its perspective by increasing very slowly the temperature of the
room thus, impacting the manufacturing environment and causing huge damage
to the machines. Graph machine learning is enhancing the knowledge, given to the
classifier, by using different types of data produced by neighbouring endpoints, as
well as the interaction of the neighbours with other devices and endpoints (entities).
This is the difference between the intrinsic and extrinsic features based on which
the classification takes place. Each of these objects has properties, i.e., characteris-
tics, that are inherent to them. It should be noted that these intrinsic properties are
often transient and therefore necessitate a sequential treatment. Extrinsic character-
istics, on the other hand, emerge from the entities’ relations with one another, and
are influenced by different environmental parameters. When entities communicate,
their extrinsic properties, both of which are dynamic, must be modified to accom-
modate the changing probability that any particular entity bears. The combination
of both intrinsic and extrinsic features enhances the knowledge of the classifier and
this is the benefit that Graph machine learning offers to other traditional machine
learning methods. A more specific and novel solution to the above procedure is the
usage of Bipartite Graphs for hypergraph machine learning. The solution requires
a combination of Bipartite graph models with advanced AI LSTM (Long Short-
Term Memory) agents. LSTMs, introduced by Hochreiter et al. [33], and their
ability to learn on data with relationships and with long-range temporal dependen-
cies, makes them a well-suited technology for phenomena with spatial and time
characteristics such as time series prediction, machine translation, speech recogni-
tion, language processing. Since there can be unexplained lags between significant
events, LSTM is useful for sorting, classifying, and drawing conclusions based on
time series data. The reason for using this specific type of ML-based agents is the
fact that they take into account the time dependency which is crucial in cyber-
security attacks. Based on the use of LSTMs a new classification framework can
be designed to prove the efficiency and effectiveness in accuracy compared to tradi-
tional classifiers. The most usual problem which has been indicated from traditional
AI methods is the inability of the methods to successfully flag “Concept Drift” type
of attacks. In these types of attacks, the attackers manipulate the data slightly as the
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time goes which can disarms the ability of the traditional AI methods to success-
fully classify an attack. Thus, the use of LSTM is imperative for creating the right
framework.

2.7 Conclusions

This chapter focused on the AI adversarial tactics against smart manufacturing
in order to identify the gaps that enable cyber attackers to manipulate AI sys-
tems. As such systems have become an integral part of the modern production
lines for supporting a wide range of operations, from predictive maintenance to
safe human-robot collaboration, among others, such systems have attracted the
interest of attackers. In this direction, this chapter offered a review on the cur-
rent status of smart manufacturing domain by highlighting the emerging threats
and it overall security posture. In this context, we elaborated on the emerg-
ing threats of poisoning and evasion attacks against AI manufacturing systems
and how attestation mechanism can be used to guarantee the trustworthiness
of generated data in the manufacturing domain. This analysis led to a discus-
sion on the road ahead that gave the chance to document the benefits of includ-
ing Graph machine learning and LSTM for building robust AI setups for smart
manufacturing.

Acknowledgements

This work has been carried out in the H2020 STAR project, which has received
funding from the European Union’s Horizon 2020 research and innovation pro-
gramme under grant agreement No. 956573.

References

[1] Pitropakis, N., Panaousis, E., Giannetsos, T., Anastasiadis, E. and Loukas,
G. (2019). A taxonomy and survey of attacks against machine learning.
Computer Science Review, 34, 100199.

[2] Loukas, G., Karapistoli, E., Panaousis, E., Sarigiannidis, P., Bezemskij, A. and
Vuong, T. (2019). A taxonomy and survey of cyber-physical intrusion detec-
tion approaches for vehicles, Ad Hoc Netw. 84, 124–147.

[3] Rouani, B.D., Samragh, M., Javidi, T. and Koushanfar, F. (2019). Safe
machine learning and defeating adversarial attacks, IEEE Secur. Priv. 17(2),
31–38.



References 49

[4] Banerjee, N., Giannetsos, T., Panaousis, E. and Took, C.C. (2018). “Unsu-
pervised Learning for Trustworthy IoT”, In IEEE International Conference
on Fuzzy Systems (FUZZ-IEEE).

[5] Hasan, T., Akhunzada, A., Giannetsos, T. and Malik, J. “Orchestrating SDN
Control Plane towards Enhanced IoT Security”, In Proceedings of 2020 IEEE
Conference on Network Softwarization.

[6] Gisdakis, S., Giannetsos, T. and Papadimitratos, P. (2015). “SHIELD: A
Data Verification Framework for Participatory Systems”, In Proceedings
of the 8th Conference on Security and Privacy in Wireless and Mobile
Networks.

[7] Xu, L.D., Xu, E.L. and Li, L. (2018). Industry 4.0: state of the art and future
trends. Int J Prod Res; 56(8):2941–62.

[8] Jung, K., Morris, K.C., Lyons, K.W., Leong, S. and Cho, H. (2015). Mapping
Strategic Goals and Operational Performance Metrics for Smart Manufactur-
ing Systems. Procedia Computer Science.

[9] Schönsleben, P., Fantana, F. and Duchi, A. (2017). What benefits do initiatives
such as industry 4.0 offer for production locations in high-wage countries?
CIRP 50th Conference on Manufacturing Systems.

[10] Li, D., Tang, H., Wang, S.Y. and Liu, C.L. (2017). A big data enabled load-
balancing control for smart manufacturing of Industry 4.0. Cluster Comput.
J. Netw. Softw. Tools Appl. 20(2), http://dx.doi.org/10.1007/s10586-017-
0852-1.

[11] Mueller, E., Chen, X.L. and Riedel, R. (2017). Challenges and requirements
for the application of Industry 4.0: a special insight with the usage of cyber-
physical system. Chin. J. Mech. Eng. 30(5), http://dx.doi.org/10.1007/s10
033-017-0164-7, 9.

[12] Kusiak, A. (2016a). “Put Innovation Science at the Heart of Discovery.”
Nature 530(7590): 255–255.

[13] Mittal, S., Khan, M.A., Romero, D. and Wuest, T. (2017). Smart man-
ufacturing: Characteristics, technologies and enabling factors. Proceedings
of the Institution of Mechanical Engineers, Part B: Journal of Engineering
Manufacture.

[14] ISO 10218-1 2008 standard (2008). Robots for industrial environments—
safety requirements, part 1: robot.

[15] Cerrudo, C. and Apa, L. (2017). “Hacking Robots Before Skynet”. In Cyber-
security Insight, IOActive Report, Seattle, USA.

[16] Radvanovsky, B. and Brodsky, J. (2015). Project SHINE (SHodan INtelli-
gence Extraction), Findings Report.

[17] Tuptuk, N. and Hailes, S. (2018). Security of smart manufacturing systems.
Journal of manufacturing systems, 47, 93–106.

http://dx.doi.org/10.1007/s10586-017-0852-1
http://dx.doi.org/10.1007/s10586-017-0852-1
http://dx.doi.org/10.1007/s10033-017-0164-7
http://dx.doi.org/10.1007/s10033-017-0164-7


50 Artificial Intelligence and Secure Manufacturing

[18] Nilufer Tuptuk and Stephen Hailes, The cyberattack on Ukraine’s power grid
is a warning of what’s to come, https://theconversation.com/the-cyberattack-
on-ukraines-power-grid-is-a-warning-of -whats-to-come-52832

[19] Antonakakis, M., April, T., Bailey, M., Bernhard, M., Bursztein, E.,
Cochran, J., et al. (2017). Understanding the Mirai Botnet 26th
USENIX Security Symposium (USENIX Security 17), USENIX Association,
Vancouver.

[20] Sturm, L.D., Williams, C.B., Camelio, J.A., White, J. and Parker,
R. (2014). Cyber-physical Vunerabilities In Additive manufacturing sys-
tems, in international solid freeform fabrication symposium proceedings,
pp. 951–963.

[21] Kim, A.C., Park, W.H. and Lee, D.H. (2013). A study on the live forensic
techniques for anomaly detection in user terminals. International Journal of
Security and Its Applications, 7(1), 181–187.

[22] Chandola, V., Banerjee, A. and Kumar, V. (2009). Anomaly detection. ACM
Computing Surveys, 41(3), 1–58.

[23] Garcia, R.F., Rolle, J.L.C. and Castelo, J.P. (2011). A review of SCADA
anomaly detection systems. Advances in Intelligent and Soft Computing, 87,
405–414.

[24] Rabatel, J., Bringay, S. and Poncelet, P. (2011). Anomaly detection in monitor-
ing sensor data for preventive maintenance.Expert Systems with Applications,
38, 7003–7015.

[25] Zhang, Jiliang and Li, Chen. (2019). Adversarial Examples: Opportunities
and Challenges. In IEEE Transactions on Neural Networks and Learning Sys-
tems.

[26] Behzadan, Vahid and Munir, Arslan. (2017). Vulnerability of Deep Reinforce-
ment Learning to Policy Induction Attacks. arXiv:1701.04143.

[27] Goldman, Ken: IBM’s Software TPM 2.0 and TSS, https://sourceforge.net/
projects/ibmswtpm2/,https://sourceforge.net/projects/ibmtpm20tss

[28] Ibrahim, F.A. and Hemayed, E.E. (2019). Trusted cloud computing architec-
tures for infrastructure as a service: Survey and systematic literature review.
Computers & Security 82, 196(226).

[29] TCG: TCG Guidance for Securing Network Equipment Using TCG Tech-
nology Version 1.0 Revision 29 (jan 2018), https://trustedcomputinggroup.or
g/wp-content/uploads/TCG_Guidance_for_Securing_NetEq_1_0r29.pdf

[30] Koutroumpouchos, N., Ntantogian, C., Menesidou, S.A., Liang, K., Gouvas,
P., Xenakis, C. and Giannetsos, T. (2019, June). Secure edge computing
with lightweight control-flow property-based attestation. In 2019 IEEE Con-
ference on Network Softwarization (NetSoft) (pp. 84–92). IEEE. DOI:
10.1109/NETSOFT.2019.8806658

https://theconversation.com/the-cyberattack-on-ukraines-power-grid-is-a-warning-of-whats-to-come-52832
https://theconversation.com/the-cyberattack-on-ukraines-power-grid-is-a-warning-of-whats-to-come-52832
https://sourceforge.net/projects/ibmswtpm2/,https://sourceforge.net/projects/ibmtpm20tss
https://sourceforge.net/projects/ibmswtpm2/,https://sourceforge.net/projects/ibmtpm20tss
https://trustedcomputinggroup.org/wp-content/uploads/TCG_Guidance_for_Securing_NetEq_1_0r29.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_Guidance_for_Securing_NetEq_1_0r29.pdf
http://dx.doi.org/10.1109/NETSOFT.2019.8806658
http://dx.doi.org/10.1109/NETSOFT.2019.8806658


References 51

[31] Abera, T., Bahmani, R., Brasser, F., Ibrahim, A., Sadeghi, A.R. and
Schunter, M. (2019, January). DIAT: Data Integrity Attestation for Resilient
Collaboration of Autonomous Systems. In NDSS.

[32] Meng Qu, Jian Tang and Jiawei Han. (2018). Curriculum Learning for Het-
erogeneous Star Network Embedding via Deep Reinforcement Learning. In
WSDM. 468–476.

[33] Hochreiter, Sepp and Schmidhuber, Jürgen. (Nov. 1997). “Long Short-Term
Memory”. In: Neural Computation 9.8.

[34] Papamartzivanos, D., Mármol, F.G. and Kambourakis, G. (2018). Den-
dron: Genetic trees driven rule induction for network intrusion detec-
tion systems. Future Generation Computer Systems, 79, 558–574. DOI:
10.1016/j.future.2017.09.056

[35] Papamartzivanos, D., Mármol, F.G. and Kambourakis, G. (2019). Introduc-
ing deep learning self-adaptive misuse network intrusion detection systems.
IEEE Access, 7, 13546–13560. DOI: 10.1109/ACCESS.2019.2893871

http://dx.doi.org/10.1016/j.future.2017.09.056
http://dx.doi.org/10.1016/j.future.2017.09.056
http://dx.doi.org/10.1109/ACCESS.2019.2893871

