
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Direct Anonymous Attestation on the Road: Efficient and
Privacy-Preserving Revocation in C-ITS

ABSTRACT

Vehicular networks rely on public key infrastructure (PKI) to gen-
erate long-term and short-term pseudonyms that protect vehicle’s
privacy. Instead of relying on a complex and centralized ecosys-
tem of PKI entities, a more scalable solution is to rely on Direct
Anonymous Attestation (DAA) and the use of Trusted Computing
elements. In particular, revocation based on DAA is very attractive
in terms of efficiency and privacy: it does not require the use of
CRLs and revocation authority can exclude misbehaving partic-
ipants from a V2X system without resolving (i.e. learning) their
long-term identity. In this paper we design a novel revocation pro-
tocol based on DAA and show a detailed design and modeling of the
implementation on a real TPM platform in order to demonstrate
its significant performance improvements compared to existing
solutions.

KEYWORDS

Security, Privacy, Direct Anonymous Attestation, Trusted Platform
Module (TPM), Revocation, C-ITS, V2X

1 INTRODUCTION

Connected vehicles, as part of the emerging Cooperative Intelligent
Transportation Systems (C-ITS) are positioned to transform the
future of mobility. This change is enabled by the exchange of mes-
sages between vehicles (V2V) and between vehicles and transport
infrastructure (V2I), comprising together the overall vehicular com-
munication (V2X). V2X communication systems are expected to
greatly improve road safety and traffic efficiency while better sup-
porting autonomous driving. V2X can also save lives by providing
road hazard warnings to the driver and reducing collisions [4].

However, despite their benefits, privacy is a key concern in this
facet of C-ITS, since the involved vehicle transmissions can be
used to infringe the users’ location privacy [28]. Many V2X ap-
plications rely on broadcasting continuous and detailed location
information, as for example through the Cooperative Awareness
Messages (CAM), which are broadcasted unencrypted by vehicles at
the frequency of 10 Hz. If this information is misused (all exchanged
messages can be eavesdropped within radio range) can lead to the
extraction of detailed location profiles of vehicles and path track-
ing [9]. Since there is usually a strong correlation between a vehicle
and its owner [11], location traces of vehicles have the potential to
reveal the movement and activities of their drivers.

Addressing this challenge, current approaches are based on
PKI-based solutions [10] with privacy-friendly authentication ser-
vices through the use of short-term anonymous credentials, i.e.,
pseudonyms [19]. The common denominator in such architectures
is the existence of trusted (centralized) infrastructure entities for
the support of services such as authenticated vehicle registration,

pseudonym provision, revocation, etc. The location privacy is pro-
tected by requiring that each vehicle uses multiple pseudonyms,
changing frequently from one pseudonym to another [10].

Use of changing pseudonyms can be considered the state-of-the-
art in VANET privacy enhancing technologies like the one that was
recently proposed in [26]. Prominent solutions include the Security
Credential Management System (SCMS) [26], which is a product
of vehicle OEM consortia and the US Department of Transport
(USDOT), and the Cooperative-ITS Certificate Management System
(CCMS) developed by the European Committee for Standardisa-
tion (CEN) and European Telecommunications Standards Institute
(ETSI), with support from the European Commission [5].

These architectures have several inherent drawbacks stemming
from the fact that they are based on a complex and centralised
ecosystem of PKI entities, which we need to trust for issuing and
distributing pseudonym certificates. First, a technical and organisa-
tional separation of capabilities between the PKI entities is required
to cope with internal attackers, resulting in a very costly solution
to implement in practice. The bottleneck of having to connect to
the back-end infrastructure to acquire pseudonym certificates is
resolved by downloading a larger pseudonym pool size, which then
provides less protection against Sybil attacks. In the context of revo-
cation policies for removing misbehaving nodes from the network,
they are based on dissemination of CRLs, which is an inefficient
solution in terms of computational and communication overhead.

To address the aforementioned challenges of centralised PKI
solutions, several researchers have suggested moving towards a
decentralised approach, where trust is shifted from the back-end
infrastructure to the edge [8, 23]. In its recent white paper on
privacy-by-design aspects of C-V2X, 5GAA is also pointing to the
need of more scalable and decentralised solutions eliminating the
need for trust built around “federated infrastructures” [1].

As it has been shown by recent work, one way to do this is by
leveraging the use of Direct Anonymous Attestation (DAA) and
the incorporation of trusted computing technologies [8, 13, 23].
DAA, originally introduced by Brickell, Camenisch and Chen [2],
is a cryptographic protocol designed primarily to enhance user
privacy within the remote attestation process of computing plat-
forms, which has been adopted by the Trusted Computing Group
(TCG) [21], in its latest specification.

Applying the DAA protocols for securing V2X communication
results in the redundancy (and removal) of most of the PKI infras-
tructure entities, including the pseudonym certificate authority:
vehicles can now create their own pseudonym certificates using an
in-vehicle trusted computing component (TC), and DAA signatures
are used to self-certify each such credential that is verifiable by all
verifiers. Furthermore, a DAA-based model supports a more effi-
cient revocation of misbehaving vehicles that doesn’t require the
use of CRLs, removing therefore all the computational and commu-
nication overhead that comes with it. Instead, when the Revocation

1

Anon.

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Authority issues a revocation request, this triggers the TC of the
misbehaving vehicle to delete all of its pseudonym certificates and
cryptographic key pair, thus, rendering the TC unable to generate
new pseudonyms in the future. However, the details of this process
has not been shown and demonstrated so far and its feasibility
remains an open question.

In this paper, we are providing a novel revocation protocol for
C-ITS based on DAA that leverages the benefits of trusted com-
puting to offer an efficient and privacy-respecting solution. Our
protocol provides both revocation of the vehicle from the system
and revocation of specific pseudonyms that cannot be reused again
(referred to as hard and soft revocation respectively). We provide
an implementation of the protocol in a real TPM, in order to demon-
strate that the proposed solution is applicable to the real-world and
can meet the strict performance requirements, as documented in
ETSI standards, and also verify that near-constant revocation time
is achievable even when multiple pseudonyms are entailed.

The rest of the paper is organized as follows. Section 2 discusses
related work and provides and analytical evaluation of what ben-
efits our solution provides. Then, Section 3 presents a conceptual
overview of our solution, while in Section 4 we present the details
of the protocol’s design and modeling. In Section 5 we evaluate
our protocol experimentally and in Section ?? we discuss the trust
assumptions. Section 6 concludes the paper.

2 MOTIVATION AND CONTRIBUTION

Revocation is a standard consideration for any C-ITS system. In
case of a misbehaving vehicle, the wrongdoer can be evicted and
be prevented from further participation. In the case of PKI-based
solutions, the revocation can be done in standardised ways by
adding the revoked certificates to a Certificate Revocation List
(CRL), which is then published by the CA responsible for that
trust domain. However, for vehicles using short-lived pseudonym
certificates, things are more complicated. If a vehicle possesses
multiple certificates that are unlinkable, every single certificate
needs to be put on the CRL, which would increase the bandwidth
requirement to unfeasible levels. Nowatkowski et al. [18] have
shown that the CRL list may grow as much as 2.2 GB, depending
on the policy for the number of pseudonyms on vehicles.

There are several approaches in the bibliography that try to
address the problem with the size of CRLs. First, CCMS takes the
approach not to revoke pseudonym certificates, but instead revoke
only the long-term identity of the vehicle [5] to prevent it from
acquiring new ones. SCMS includes a linkage value to pseudonym
certificates derived from cryptographic seed material [26]. Publica-
tion of the seed is sufficient to revoke all certificates belonging to
the revoked vehicle. However this requires the addition of two new
entities in the architecture, called Linkage Authorities (LAs), with
corresponding technical and organizational guarantees to operate
separately. Alternative solutions leverage encrypted pseudonyms
during the provisioning process [17, 20] so that a vehicle can only
decrypt pseudonyms after receiving the encryption keys.

In addition to the efficiency problems of the above revocation
mechanisms, they all require the resolution of vehicle’s long-term
identity from their pseudonyms, in order to work. Even though
this can be performed typically only by a dedicated authority, it sill

poses a privacy threat and require that this resolution authority is
fully trusted and won’t misbehave or get compromised.

In order to address these shortcomings of PKI-based solutions,
there is an increasing effort by researchers to apply anonymous
credentials as a solution for privacy-respecting V2X communica-
tion. For example, Föster et al. presented PUCA [7] a pseudonym
scheme that allows vehicles to use anonymous credentials for au-
thentication with the PCA when obtaining new pseudonyms in
the existing European ITS system, changing only the pseudonym
issuance phase. PUCA foresees no way of credential revocation.
The REWIRE V2X revocation protocol [6] uses trusted computing
to enable revocation without pseudonym resolution. An enhanced
variant was presented in O-TOKEN [24] where an additional key
pair is embedded into pseudonym certificates. However, in both
schemes, there are inherent trust assumptions beenmade on the cor-
rectness of each vehicle Electronic Unit (ECU) (either configuration
or behavioural execution correctness) that limits their feasibility
and applicability in real-world environments.More specifically, they
have not considered an enhanced threat model where malicious
and/or compromised ECUs can monitor and modify all interactions
between the host and the attached Trusted Component (TC); i.e.,
using the TC as an “oracle” that can interact with for executing
sensitive crypto operations in order to bypass the revocation.

Whitefield et al. [23] first applied DAA to the V2X case and
showed how to enable vehicles manage their own pseudonym cer-
tificates. Hicks et al. [13] also proposed a scheme that leverages
the decentralized properties of DAA towards enabling a secure and
privacy-preserving revocation coupled with strong vehicle authen-
tication. However, the proposed architecture relies on a number of
infrastructure entities that are not aligned with the current ETSI
standards; for instance, it is not clear whether the inclusion of
an Authorization Authority (AA) is better for privacy-preserving
revocation against what has been proposed in PKI-based systems.
Finally, Kumar et. al. [16] proposed the use of DAA for verifier-local
revocation in online subscription systems, however, their scheme
is rather inefficient as it is linear to the size of the revocation list
and not constant.

2.1 Overview of Revocation using DAA

Figure 1 introduces the typical DAA [2] pseudonym life-cycle ar-
chitecture [23]. As we can see, only two trusted third parties are
needed; (i) the Issuer who is responsible for authenticating vehicles
through the JOIN protocol (Step 0) and (ii) the Revocation Authority
(RA) that shuns out misbehaving vehicles from the ITS within the
revocation domain that is managing. In our context, vehicles are the
combination of a host, that is a vehicular on-board computer, and
a trusted computing component (TC) that executes in the “secure
world”; together they form the platform which we refer to from
this point on-wards as the vehicle.

Using DAA, the trusted computing component (TC) in the vehi-
cle is responsible for creating the pseudonym certificates without
involving any infrastructure component from the back-end (Step
1 - DAA CREATE). However, the vehicle cannot use pseudonyms
unless it has been registered with the RA (Step 2 - DAA JOIN). The
registration consists of providing the RA with unique values that
can be used later to revoke the key (DAA SETUP). We call these
values revocation hashes. Upon such a registration, the vehicle will

2

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Direct Anonymous Attestation on the Road: Efficient and Privacy-Preserving Revocation in C-ITS

Register
Pseudonyms

Contains and Cotrols

Produces
Pseudonyms
DAA Create

Trutsted
Component

Revokes
Pseudonym(s)

Provides
PoR

Provides DAA
Credentials

DAA Setup / Join

Forwards
Revocation Message

Vehicle

Reports
Pseudonym

Vehicle

1

6

7

Signed Message + PoR
DAA Sign

2

3

4

0
5

Revocation AuhtorityIssuer

Figure 1: Conceptual overview

receive Proof of Registration (PoR) (Step 3), which is sent along
with a signed message (Step 4). Without PoR, any vehicle should
disregard the message, as the RA would not be able to revoke such
a key. In case a vehicle suspects malicious behaviour of a vehicle,
it reports the corresponding pseudonym to the RA (Step 5). Let’s
assume a number of reports containing a misbehaving vehicle’s
pseudonym have been already issued to the RA, and the decision
to revoke the vehicle has been made based on strong evidence.

The RA does not perform any pseudonym resolution to discover
the identity of the misbehaving vehicle. Instead, it initiates the
revocation protocol by creating a signed revocation message using
its secret key and broadcasts this to all vehicles containing the public
pseudonym key that needs to be revoked (Step 6). All vehicles
receive the revocation message and their hosts are required to
forward them to their corresponding TCs (Step 7). It is the TC of the
revoked vehicle which is responsible for deleting the pseudonym
certificates and no longer use them.

To be more precise, we differentiate between two kind of revo-
cations: soft- and hard-revocation. Soft revocation means the RA
revokes a specific pseudonym, that was used for signing the mes-
sage based on which the misbehavior policy violation was detected,
while hard revocation means revoking all pseudonyms associated to
a specific vehicle, thus, not allowing it to further participate in the
overall system as an authenticate participant. These two revocation
variants essentially reflect the current need for message-based and
identity-based revocation [13]: The first scenario might be triggered
when revocation needs to occur due to a technical defect of a vehi-
cle due to a malfunctioning sensor (thus, we want to temporarily
revoke his ability to participate in the system by not allowing it to
re-use this specific pseudonym). The second case mainly deals with
malicious attackers who need to be barred from communication as
soon as possible.

Besides enhanced revocation models, with minimal trust assump-
tions on a vehicle host (Appendix A.3), such solutions need to also
be rather efficient and to not pose additional performance overhead,
compared to the existing schemes. For instance, in the case of PKIs,
pseudonym resolution is required which assumes the interaction

between a number of trusted back-end infrastructure entities: These
protocols usually require the RA to inquire the Pseudonym Certifi-
cation Authority for the vehicle identifier that requested a specific
pseudonym, 𝑃𝑠 . Then, the RA needs to ask the Identity Provider to
retrieve all the identifiers issued for this vehicle so that the PCA can
then identify all pseudonyms been provided to this specific vehicle.
Extensive research in academia [10] has showcased the scalabaility
and performance issues with such architectures since even for a
small number of pseudonyms (e.g., around 100 pseudonyms) this
process requires an additional 2-3 seconds (excluding the network
latency and bandwidth requirements).

In the case of other DAA-based solutions, revocation is an ineffi-
cient process which is linear in the size of the revocation list [16].
Specifically, the signature-based revocation that allows for the cre-
dentials of misbehaving vehicles to be revoked introduces a signifi-
cant computational overhead. For example, using the ECC-DAA [3]
scheme on a 192 bit curve and a blacklist with 200 revoked signa-
tures, attestation takes 24.4 seconds on an ARM11 host [27]. The
corresponding proof verification takes 1.4 seconds to verify on a
standard desktop PC [13].

Table 1: Notation used

Symbol Description

𝐸𝐾† Endorsement Key
𝐴𝐾† Authorization Key
𝐴𝐾𝑜𝑙𝑑

† Authorization Key from previous iteration
𝑅𝐴𝐾† Revocation Authority Key
𝐸𝑝𝐾† Ephemeral Key
𝐾𝐻𝑥 Key Handle identifying a loaded key (𝑥) in the Tc.

𝐸TMP, 𝐴TMPKey Creation Template 𝐸𝑝𝐾 and𝐴𝐾 respectfully
𝑃𝑑 A digest representing a governing policy

𝑟𝑖𝑛𝑑𝑒𝑥 A non-volatile index in𝑇 c containing 64 bits.
𝐴𝐶𝐼 A non-volatile index in𝑇 c containing 8 bits.
𝑟𝑏𝑖𝑡 Revocation bit(s).
𝐴LIMIT Max number of correct authorizations for𝐴𝐶𝐼
𝐴COUNT Current number of correct authorizations for𝐴𝐶𝐼
𝐴𝐶𝐼𝑜𝑙𝑑 An instance if𝐴𝐶𝐼 from previous iteration
𝜎𝑥 Cryptographic signature
𝐻 A hash output (digest)
𝜆 A set of hard revocation and soft revocation policy (leaf digests, l)
𝛽 A compound policy (of branch digests, b) to satisfy to allow revocation.
P A set of 𝛽 plus initial write policy.

𝑃Auth Final policy digest (𝑃𝑑) of all data in P signed by𝐴𝐾
𝑡 A ticket generated by𝑇 c proving verification of a signature.

† An asymmetric keypair, containing both public and a private key, denoted 𝑥𝐾𝑝𝑢𝑏
and 𝑥𝐾𝑝𝑟𝑖𝑣 .

3 CONCEPTUAL PROTOCOL OVERVIEW

In this section we make a high level overview of our protocol,
showing how we can implement policy regulations for governing
the pseudonyms using the functionality of the Trusted Platform
Module (TPM) been used as the trusted component (due to space
limitation the building blockas of a TPM are described in Appen-
dix A.1). More specifically, we present in the following section how
we utilize an internal, tamper-proof register of the TPM, where
each bit represents the state of a pseudoRnym. Creating such a
register, or index, in a way that remains tamper-proof for even the
host requires deep analysis of the TPM and its internal functions.

In the remainder of this paper, the symbols and abbreviations
depicted in Table 1 are adopted.

3

Anon.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

3.1 Soft- and Hard Revocation

We call the tamper-proof index of the TPM Revocation Index. It has
64 bits and as we mentioned above, each bit represents the state of a
pseudonym, i.e. a set bit means revoked otherwise the pseudonym is
not revoked. So now, revocation of a single pseudonym, namely soft
revocation, is simple. As we trust the TC managing the keys, it will
be asked to set the key’s respective revocation bit to a revoked state.
We will use one of the 64 bits to be able to revoke all pseudonyms
in one go, i.e., performing hard revocation. That means, the DAA
key is linked to the first bit of the Revocation Index, while the
pseudonyms are linked to one of the other 63 bits, as well as the
first (hard revocation) bit.

We must accommodate the possibility that different authorities
govern different areas of the vehicular network, i.e., an RA in one
domain should not be allowed to revoke pseudonyms linked to an-
other domain. Therefore, we must protect each bit in the revocation
index, allowing only predetermined RA’s to execute a revocation
process. We propose doing this by building policies for each of the
pseudonyms, representing the command being executed (set bit)
with particular parameters (which bit). A particular RA must sign
these to authorize a revocation. We call them revocation hashes
and each pseudonym has two: one for soft revocation and one for
hard revocation. These revocation hashes are registered with the
RA, who must sign one before using it in revocation. It should
now be clear that the hard revocation hash must include both the
hard-revocation bit and the pseudonyms’ unique soft-revocation
bit. If this is not the case, the hard-revocation hash for all linked
pseudonyms would be equal, as they are to be signed by the same
RA and setting the same bit. By including the soft-revocation bit,
we "blind" the revocation hash.

Pseudonym limitations. Since the size of the Revocation Index is 64
bits and given we need one for the hard revocation, we can revoke
only 63 pseudonyms with this index, which is not enough to cover
the requirements of vehicular applications. A naive approach to
support more pseudonyms would be to create more revocation in-
dexes and having a new DAA key for each one, following the same
principle. However, this poses two distinct problems:e first, the
DAA Setup and Join phases are very time-consuming and require
communication with the Issuer. Secondly, only 63 pseudonyms can
be linked together in the TPM, making hard revocation of a larger
set impossible. Therefore, we create multiple revocation indexes
using all of their bits for soft revocation and we maintain only one
hard revocation bit to be the one defined in the initial revocation
index. So all pseudonyms share the same hard revocation bit, mean-
ing hard revocation hashes would be equal for all pseudonyms
having soft revocation bits in other indexes. An example of this is
shown in Figure 2, where all pseudonyms linked to the DAA key
share a common hard revocation bit (first bit of 𝑟1), while their
corresponding soft revocation bits span several revocation indexes.

With the current implementation of the TPM, it is not possible
to set multiple bits in different indexes, which means they would
have to be executed as two commands, removing the "blinding" of
the hard revocation hash. To combat this challenge, we propose
that the hard-revocation hash represents a command that sets the
hard revocation bit and any other unique combination of bits in the
index, allowing for 263 pseudonyms with a unique hard-revocation

HRB

RB
PS1

...

r1

TPM Key Memory TPM Storage

DAA Key

PS63 PSn ...

...

...

...

...

r2

...

...

RB
PS2

RB
PS63

RB
PS254

...

...

...
PS

rn

...

RB
PSn

...
...

PS2

RB
PS64

RB
PS127

...PS64

...

PS1 PS127

...
...

Figure 2: Pseudonyms in TPM, linked to different indexes

that shares the same hard revocation bit

index. This requires that the revocation index’s bits are revocable
only by a single RA; otherwise, an anonymizing mask could cause
the unintentional revocation of keys linked to another revocation
domain. To support multiple RA domains in a single index, the
number of linked pseudonyms is limited to 2𝑛 where 𝑛 represents
the available bit space for each pseudonym set.

3.2 Building the protocol

It should now be evident that we protect the revocation index with
a set of policies. This, however, raises an interesting issue. When
we write a policy that determines what parameters must be used, a
so-called command parameter hash must include the name1 of the
entity it applies to - in this case, the index. As the policy is intended
for the index, it is included in the public area of said index. The
index’s name depends on the policy, and the policy depends on the
index: we have a hash loop without an end, depicted in Figure ??.

To avoid the hash loop, we use a different approach2 where a
unique key authorizes the policy, and we call this key the Autho-
rization Key (AK) (see Figure 3). The policy is now that any policy
signed by the AK is a valid policy. Now, the revocation index’s
actual policy digest is the name of the authorizing key, and to sat-
isfy that policy, one must have the policy signed (authorized) by
the AK. The index and revocation policies, therefore, are no longer
coupled together. However, this approach raises another difficulty:
we must guarantee that the AK can only sign a single policy. If
not, the host can sign any policy to comply with and control the
revocation index.

To address this challenge, we protect the authorization key by
yet another policy. This policy must dictate how many times the
host can use the key. We do this by creating another index called the
Authorization Counter Index (ACI) and giving it a PIN or password
as an authorization value. The ACI contains two parts: Authoriza-
tion Counter and Authorization Limit. We then use this index to
create the authorization key policy, using PolicySecret. This pol-
icy states that we must prove that we know the ACI’s secret by
authenticating with it. Every time the password is used for this in-
dex, the internal counter increments. When the counter reaches the
limit, it fails. With this index, we can define the Authorization Key
policy as the correct authentication with the ACI, meaning we must
1Name is a hash of the public parameters of an entity, including its policy.
2This was identified as a solution in collaboration with the TPM working group of
TCG

4

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Direct Anonymous Attestation on the Road: Efficient and Privacy-Preserving Revocation in C-ITS

Protects

Authorization Key (AK)

Protects

Ephemeral Key (EpK)

Protects

Authorization Counter Index
AuthCount: n
AuthLimit: m

Policy
Signed

EpK

Authorizes

Policy
Secret

ACI

Revocation Index
Policy

Authorize
AK

Governs

Revocation
Policies

Replaces

DAA

Policy
NV

(Soft = 0
Hard = 0)

0
Hard

1
Soft

... 63
Soft

PS63PS1

Figure 3: Protocol functionality and lifetime, as seen from

the Trusted Component

prove we know the password to that index, thereby incrementing
the counter and limiting the use of the key to the authorization
limit. Now the host can still re-create the ACI and thereby reset-
ting the counter, inferring additional authorizations. To combat
this challenge, we protect writing to the ACI using a policy that
requires a signature from an ephemeral key - that is, a key that only
exists during the initial setup, thereby making the ACI immutable.
A straightforward way is to create the ephemeral key in TC’s NULL
hierarchy, use it, and reboot. Because the keys are generated from
a hierarchy seed, and the NULL hierarchy seed is reset on reboot,
the host cannot recreate the key.

Looking over this set of required tasks, it becomes an issue
that the reboot is necessary for each revocation index created. It
is neither efficient nor safe to reboot the Electronic Control Unit
(ECU) after 64 pseudonyms have been used. One solution is to give
the Authorization Key one additional authorization and use this as
the ephemeral key for the next ACI. This has the same effect as a
reboot and will render the ACI immutable after the initial write.

Now we have the foundation where we have successfully ini-
tialized both the ACI and the revocation index. Before the host
can start using the keys, it must initiate the revocation index by
writing to it; otherwise, it is unusable. In order to make sure that
this initial write-operation can only happen once, we will give the
authorization key an additional authorization and, during activa-
tion of the index, sign a digest allowing the initial write. Since the
authorization key will run out of authorizations, the host will not
recreate the index. The host has no incentive to misuse this addi-
tional authorization, as no other than the discussed operation will
allow the keys to work.

Figure 4: Initialize Primordial Authorization Counter Index

Initialize ephemeral index: Tc ⇌ Host
𝐸𝐾 𝐸TMP, 𝐴𝐶𝐼,𝐴LIMIT

CreatePrimary(𝐸TMP, Null)

𝐷 := KDF(HierarchySeed(Null), 𝐸TMP)
𝐾𝐻𝐸𝑝𝐾 , 𝐸𝑝𝐾 := CreateKey(𝐷)

𝐾𝐻𝐸𝑝𝐾

𝑃𝑑 := hash(𝐶𝐶𝑃𝑜𝑙𝑖𝑐𝑦𝑆𝑖𝑔𝑛𝑒𝑑 | | 𝐾𝐻𝐸𝑝𝐾 .𝑛𝑎𝑚𝑒)
PIN := Rand()

DefineSpace(𝑃𝑑 , 𝐴𝐶𝐼, PIN)

CreateSpace(𝐴𝐶𝐼, PIN, 𝑃𝑑)
⇐⇒ SpaceNotDefined(𝐴𝐶𝐼)

𝐻1 := hash(𝑇𝐶𝑑𝑎𝑡𝑎)

Sign(𝐻1, 𝐾𝐻𝐸𝑝𝐾)

𝜎𝑤 := Sign(𝐻1, 𝐾𝐻𝐸𝑝𝐾)

𝜎𝑤

PolicySigned(𝐾𝐻𝐸𝑝𝐾 , 𝜎𝑤)

𝑆 := hash(𝑆 | | 𝐶𝐶𝑃𝑜𝑙𝑖𝑐𝑦𝑆𝑖𝑔𝑛𝑒𝑑 | | 𝐾𝐻𝐸𝑝𝐾 .name)
⇐⇒ VerifySignature(𝐾𝐻𝐸𝑝𝐾 , 𝜎𝑤)

Write(𝐴𝐶𝐼, PIN, 𝐴LIMIT)

𝑃𝑑 := GetPolicy(𝐴𝐶𝐼)
𝑃𝑎 := GetAuth(𝐴𝐶𝐼)
Write(𝐴𝐶𝐼,𝐴LIMIT)
⇐⇒ 𝑆 = 𝑃𝑑 ∧ 𝑃𝑎 = PIN

AuthCounter(𝐴𝐶𝐼) := AuthCounter(𝐴𝐶𝐼) + 1

Restart

FlushKeys(Null)
UpdateNullHierarchySeed

4 ARCHITECTURAL DETAILS & PROTOCOLS

In this section, we look into the protocol’s design and modeling and
outline the commands and functionality needed for the protocol
to hold. We showcase a TPM as a Trusted Component and use the
features and commands from the standard as we implement the
phases described.

4.1 Authorization Counter Index

The initial phase of creating the Primordial Authorization Counter
Index can be seen in Figure 4. As it can be seen, the host must
provide an index identifier, template, and authorization limit. As a
potentially untrusted host passes much information, this underlines
why a trusted entity should verify the index. The first thing to
be done is to create the Ephemeral Key in the NULL hierarchy, as
discussed previously. This can be certified by a certification process
that documents the key and TC’s nature and the current boot count.

To create the index, the host creates a policy based on the Ephemeral
Key and instructs the TC to define the space with a random secret.
The secret is essentially a password, but here we only count how
many times it has been used. Hence there is no need to keep it, in
fact, secret.

The policy defined earlier must be complied with to write the
authorization limit to the index, so the host uses the Ephemeral
Key to sign a nonce. After complying with the policy, writing the
authorization count, and inherently incrementing the authorization
count, the key should be rendered inoperable by executing a reset.
After the reset has been completed, the index can be certified by the
endorsement key. Such a certificate can be used to prove that the
index has a specific authorization limit, and the current boot count
proves the reset has been executed. After the reboot, the ACI is

5

Anon.

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Figure 5: Initializing Revocation Index

Initialize revocation index: Tc ⇌ Host
𝐴𝐶𝐼, 𝑟𝑖𝑛𝑑𝑒𝑥 , 𝐴TMP, 𝐴𝐾𝑛𝑎𝑚𝑒

𝑃𝑑 := hash(𝐶𝐶𝑃𝑜𝑙𝑖𝑐𝑦𝑆𝑒𝑐𝑟𝑒𝑡 | | 𝐴𝐶𝐼 .name)
𝐴TMP .Policy := 𝑃𝑑

CreatePrimary(𝐴TMP, Owner)

𝐷 := KDF(HierarchySeed(Owner), 𝐴TMP)
𝐾𝐻𝐴𝐾 , 𝐴𝐾 := CreateKey(𝐷)

𝐾𝐻𝐴𝐾 , 𝐴𝐾𝑝𝑢𝑏

𝑃𝑑 := hash(𝐶𝐶𝑃𝑜𝑙𝑖𝑐𝑦𝐴𝑢𝑡ℎ𝑜𝑟𝑖𝑧𝑒 | | 𝐴𝐾𝑛𝑎𝑚𝑒)

DefineSpace(𝑃𝑑 , 𝑟𝑖𝑛𝑑𝑒𝑥)

CreateSpace(𝑟𝑖𝑛𝑑𝑒𝑥 , 𝑃𝑑)
⇐⇒ SpaceNotDefined(𝑟𝑖𝑛𝑑𝑒𝑥)

guaranteed immutable and is prepared to act as a guard for limiting
the number of times the upcoming authorization key can be used.

4.2 Revocation Index

Before initializing the revocation index, we need to create the au-
thorization key and link it to the ACI. As seen in the first line in
Figure 5, the host builds a PolicySecret policy based on the ACI
name, meaning to use the key, the host needs to provide the secret
for the ACI, incrementing the authorization counter. This policy is
embedded in the template for the key, and in the future, only this
template with this specific policy will allow recreating the correct
authorization key.

As with other entities, the created key can be certified and signed
by the Endorsement Key for later verification. To create the index,
the host calculates a new policy digest that links the index’s use to
the authorization key using PolicyAuthorize, meaning any policy
signed by the authorization key is valid. As with the key, the index
can be certified to allow for verification. The index is now built
within the trusted component, and its policy depends on what the
authorization key signs in the next phase.

4.3 Generate Final Policy Digest

The policy digest to be authorized by the authorization key is cal-
culated as described in Algorithm 1. Recall that the policy is a
compound policy built by logical AND and OR statements. We can
visualize the logical composition as in Figure 6, where we see two
policies must both be true to produce 𝑙1 or 𝑙2. The first would be
setting the soft revocation bit and the latter for setting the hard
revocation bits. Either of these will satisfy the OR operation, pro-
ducing 𝑏1, which in turn is an input to a final OR operation. To say
that in other words: if the RA provided an authentic signature and
fed either a hard- or soft-revocation hash (that is unique to a key),
this is a valid branch for a single pseudonym, and its revocation
will take place. Each branch digest 𝑏 represents a valid soft- or hard-
revocation for a single pseudonym. An OR operation may have up
to 8 inputs, that’s why it can be necessary to have multiple layers
of these.

It is possible to calculate these by executing the commands in a
trial session of the TC, but we showcase this by calculating it on the
host. We start by initializing our variables and continue to define
our very first branch digest: the activation. Recall that we have

to write something to the index before it can be used. To ensure
this is only done once, we utilize the Authorization Key’s use-limit
property and allow an initial write to the index, assuming the AK
signs it. We continue into a loop where we iterate over all revocable
pseudonyms. For each of the keys, we create two leaf digests, 𝑙1 and
𝑙2. We also initiate 𝑆𝑑𝑎𝑡𝑎 and 𝐻𝑑𝑎𝑡𝑎 , representing the parameters
used in the SetBits command: the bits being set. We increment
the anonymizer and set the 𝐻𝑑𝑎𝑡𝑎 to that, thereby ensuring the
parameter hash is unique. Now that we have anonymized the data,
we can set the respective hard- and soft revocation bits in the data
and continue calculating the revocation hashes. We see 𝑘.𝑠𝑟𝑖 .𝑛𝑎𝑚𝑒 ,
the pseudonym 𝑘’s soft revocation index’s name, and ℎ𝑟𝑖 repre-
senting the hard revocation index. These might be the same index,
depending on the number of revocation domains.

With this data, we can calculate the soft- and hard revocation
leaf digests, 𝑙1, 𝑙2, and then calculate the branch digest 𝑏. This is
inserted into 𝛽 , the list of all branch digests, and then we loop again.
When all 𝑏’s is calculated and inserted into 𝛽 , we can calculate the
final digest to be authorized during the activation of the revocation
index.

Figure 6: Structure of the policy to be authorized

8

PolicySigned

PolicyCpHash

𝑙1

PolicySigned

PolicyCpHash 𝑙2

𝑏1

𝑏𝑥

P

4.4 Activate Revocation Index

Before we can use the index, we must write to it, in this case, set
everything to zero. Recall that the policy is built to allow a write
to the index, if the AK provides a signature over the command
to execute. The policy is not authorized yet, so the first thing the
host does is prepare the values to be hashed and signed: hashing
the final policy and generating the command parameter hash for
the initial write and hashing this. It then continues to gain access
to the authorizing key by providing the ACI’s secret, inherently
incrementing the authorization count. This process is redone for
the hashed command parameter hash.

Now the host can get a signature over the policy and asking for
a verification ticket by verifying the signature. A ticket guarantees
this particular TC has verified the signature, thereby guarantee-
ing the command and its parameters have been authorized. This
ticket can be saved and is needed every time PolicyAuthroize is
required.

To gainwriting authorization, the host initiates a new session and
executes one of the index’s valid policies, namely PolicySigned
with the previously acquired signature over the zero-write com-
mand parameter hash. The current session digest should nowmatch

6

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Direct Anonymous Attestation on the Road: Efficient and Privacy-Preserving Revocation in C-ITS

the branch digest𝑏0, and the host executes PolicyORwith 𝛽 . Assum-
ing the TC verifies this, it will replace the session digest with a con-
catenation of all provided branch digests in 𝛽 , which should be the
index’s authorized policy. The host finally executes PolicyAuthorize
with the previously acquired ticket and signature. The TC verifies
the ticket, the signature, and finally, the session digest matches the
authorized digest. In this case, the TC replaces the session digest
with the authorization key’s name: the policy digest for the index.
The host can now execute a write operation, and the index has now
been activated.

While it is possible for the host to write anything to the index, it
will not have any incentive to write anything but zeroes, as it would
set pseudonyms in an initially revoked state. At the end of this phase,
the index has been written to (it has been activated). The final policy
calculated in the previous step has been authorized. It is now ready
to be used to manage the revocation states of pseudonyms. As
with the primordial ACI, the index has been initialized with an
authorization limit and count and is immutable as the previous
authorization key does not have any authorizations left. The index
can now act as a protector for a new authorization key to regulate
the use-count of this, and an additional revocation index can now
be initialized.

4.5 Initialize New Authorization Counter Index

To initiate a new ACI, we must guarantee immutability by using
an old AK, as it will only have a single authorization left, based
on the previously defined ACI. So we start by creating a policy
digest based on PolicySigned and the name of the old AK. Then
we define a bit-space with that policy. As we should have a single
authorization left in our authorization key, we can now create this
key. Recall, to use this key, we must execute PolicySecret and
provide the PIN to the previous ACI, thereby allowing us to use the
key one last time. Therefore, we provide a signature by the old key
and execute the PolicySigned command that will allow us then
to write the authorization limit to the new ACI, if the TC can verify
the signature.

4.6 Revocation

Upon receiving a (potential) revocation message, the host loads the
corresponding RA’s public key into the TC. The received message
contains the public pseudonym key, 𝑝𝑘𝑝𝑠 , which needs to be re-
voked, and a revocation hash and signature; i.e., of the respective
revocation index, 𝑟𝑖𝑛𝑑𝑒𝑥 and (hard or soft) revocation bit, 𝑟𝑏𝑖𝑡 . Re-
call that the policy for gaining write-access to the revocation index
includes both PolicySigned (verifying that the message originates
from the correct RA responsible for the trust domain where the ve-
hicle also belongs to) and PolicyCpHash (correct revocation bit(s)):
both these policies must be correctly satisfied before the TC allows
the successful revocation. Executing these two, should produce
a valid leaf digest (the result of the hashing done in the TC after
PolicyCpHash is executed, also noted as 𝑙𝑥), validated by executing
PolicyORwith a reference list of the possible leaf digest (𝜆) for that
specific branch. Suppose the leaf digest matches a digest in the
reference list. In that case, the session digest is replaced by a hash
of the reference list: the branch digest, verified by an additional
PolicyOR. We depict the execution of these policy commands in

Figure 7: Activate Revocation Index

Provision revocation index: Tc ⇌ Host
𝐴𝐶𝐼, PIN, 𝐴TMP, P, 𝛽, 𝑟𝑖𝑛𝑑𝑒𝑥

CreatePrimary(𝐴TMP, Owner)

𝐷 := KDF(HierarchySeed(Owner), 𝐴TMP)
𝐾𝐻𝐴𝐾 , 𝐴𝐾 := CreateKey(𝐷)

𝐾𝐻𝐴𝐾 , 𝐴𝐾𝑝𝑢𝑏

𝐻𝑃 := hash(P)
𝐻𝑐𝑝 := hash(𝐶𝐶𝑁𝑉 _𝑆𝑒𝑡𝐵𝑖𝑡𝑠 | |
𝑟𝑖𝑛𝑑𝑒𝑥 .𝑛𝑎𝑚𝑒 | | 0, 0..0)
𝐻0 := hash(𝑇𝐶𝑑𝑎𝑡𝑎 | | 𝐻𝑐𝑝)

StartAuthSession

fresh 𝑆

PolicySecret(𝐴𝐶𝐼, PIN)

𝑃𝑎 := GetAuth(𝐴𝐶𝐼)
𝑆 := hash(𝑆 | | 𝐶𝐶𝑃𝑜𝑙𝑖𝑐𝑦𝑆𝑒𝑐𝑟𝑒𝑡 | | 𝐴𝐶𝐼 .name)
⇐⇒ 𝑃𝑎 = PIN ∧𝐴𝐶𝐼 .𝑝𝑖𝑛𝐶𝑜𝑢𝑛𝑡 + + < 𝐴𝐶𝐼 .𝑝𝑖𝑛𝐿𝑖𝑚𝑖𝑡

𝑆ign(𝐻𝑃 , 𝐾𝐻𝐴𝐾)

𝑃𝑑 := GetPolicy(𝐴𝐾)
𝜎𝑃 := 𝑆ign(𝐻𝑃 , 𝐴𝐾𝑝𝑟𝑖𝑣)
⇐⇒ 𝑃𝑑 = 𝑆

𝑃Auth

StartAuthSession

fresh 𝑆

PolicySecret(𝐴𝐶𝐼, PIN)

𝑃𝑎 := GetAuth(𝐴𝐶𝐼)
𝑆 := hash(𝑆 | | 𝐶𝐶𝑃𝑜𝑙𝑖𝑐𝑦𝑆𝑒𝑐𝑟𝑒𝑡 | | 𝐴𝐶𝐼 .name)
⇐⇒ 𝑃𝑎 = PIN ∧𝐴𝐶𝐼 .𝑝𝑖𝑛𝐶𝑜𝑢𝑛𝑡 + + < 𝐴𝐶𝐼 .𝑝𝑖𝑛𝐿𝑖𝑚𝑖𝑡

𝑆ign(𝐻𝑃 , 𝐾𝐻𝐴𝐾)

𝑃𝑑 := GetPolicy(𝐴𝐾)
𝜎𝑃 := 𝑆ign(𝐻0, 𝐴𝐾𝑝𝑟𝑖𝑣)
⇐⇒ 𝑃𝑑 = 𝑆

𝜎0

VerifySignature(𝜎𝑃 , 𝐾𝐻𝐴𝐾 , 𝐻𝑃)

𝑡 := ComputeTicket(𝐻𝑃 , 𝐴𝐾𝑛𝑎𝑚𝑒)
⇐⇒ VerifySignature(𝜎𝑃 , 𝐴𝐾𝑝𝑢𝑏 , 𝐻𝑃)

𝑡

StartAuthSession

fresh 𝑆

PolicySigned(𝜎0, 𝐻𝑐𝑝 , 𝐾𝐻𝐴𝐾)

𝑆 := hash(𝑆 | | 𝐶𝐶𝑃𝑜𝑙𝑖𝑐𝑦𝑆𝑖𝑔𝑛𝑒𝑑 | | 𝐴𝐾𝑛𝑎𝑚𝑒)
⇐⇒ VerifySignature(𝜎0, 𝐾𝐻𝐴𝐾 , 𝐻𝑐𝑝)

PolicyOR(𝛽)

𝑆 := hash(𝐶𝐶𝑃𝑜𝑙𝑖𝑐𝑦𝑂𝑅 | | 𝛽)
⇐⇒ 𝑆 ∈ 𝛽

PolicyAuthorize(𝑡,𝐴𝐾𝑛𝑎𝑚𝑒 , 𝐻𝑃)

𝑡 ′ := RecomputeTicket(𝐻𝑃 , 𝐴𝐾𝑛𝑎𝑚𝑒)
𝑆 := hash(𝐶𝐶𝑃𝑜𝑙𝑖𝑐𝑦𝐴𝑢𝑡ℎ𝑜𝑟𝑖𝑧𝑒 | | 𝐴𝐾𝑛𝑎𝑚𝑒)
⇐⇒ 𝑆 = 𝐻𝑃 ∧ 𝑡 ′ = 𝑡

SetBits(0..64 = 0)

𝑃𝑟 := GetPolicy(𝑟𝑖𝑛𝑑𝑒𝑥)
SetBits(0...64 = 0)
⇐⇒ 𝑆 = 𝑃𝑟

Figure 9 where it is highlighted that PolicyOR will replace the
current session digest with a hashed concatenation of all provided
reference branch digests (𝛽) if and only if the current session digest
is in the provided reference. If the reference list is unaltered, the

7

Anon.

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Figure 8: Initialize New Authorization Counter Index

Initialize ephemeral index: Tc ⇌ Host
𝐸TMP, 𝐴𝐶𝐼,𝐴𝐾𝑜𝑙𝑑 , 𝐴TMP, 𝐴LIMIT

𝑃𝑑 := hash(𝐶𝐶𝑃𝑜𝑙𝑖𝑐𝑦𝑆𝑖𝑔𝑛𝑒𝑑 | | 𝐴𝐾𝑜𝑙𝑑name)
PIN := Rand()

DefineSpace(𝑃𝑑 , 𝐴𝐶𝐼, PIN)

CreateSpace(𝐴𝐶𝐼, PIN, 𝑃𝑑)
⇐⇒ SpaceNotDefined(𝐴𝐶𝐼)

CreatePrimary(𝐴TMP, Owner)

𝐷 := KDF(HierarchySeed(Owner), 𝐴TMP)
𝐾𝐻𝐴𝐾 , 𝐴𝐾 := CreateKey(𝐷)

𝐾𝐻𝐴𝐾 , 𝐴𝐾𝑝𝑢𝑏

𝐻1 := hash(𝑇𝐶𝑑𝑎𝑡𝑎)

StartAuthSession

fresh 𝑆

PolicySecret(𝐴𝐶𝐼𝑜𝑙𝑑 , PIN𝑜𝑙𝑑)

𝑃𝑎 := GetAuth(𝐴𝐶𝐼𝑜𝑙𝑑)
𝑆 := hash(𝑆 | | 𝐶𝐶𝑃𝑜𝑙𝑖𝑐𝑦𝑆𝑒𝑐𝑟𝑒𝑡 | | 𝐴𝐶𝐼𝑜𝑙𝑑 .name)
⇐⇒ 𝑃𝑎 = PIN ∧𝐴𝐶𝐼𝑜𝑙𝑑 .𝑝𝑖𝑛𝐶𝑜𝑢𝑛𝑡 + + < 𝐴𝐶𝐼𝑜𝑙𝑑 .𝑝𝑖𝑛𝐿𝑖𝑚𝑖𝑡

Sign(𝐻1, 𝐾𝐻𝐴𝐾)

𝜎𝑤 := Sign(𝐻1, 𝐴𝐾𝑝𝑟𝑖𝑣)
⇐⇒ 𝑃𝑑 = 𝑆

𝜎𝑤

PolicySigned(𝐾𝐻𝐴𝐾 , 𝜎𝑤)

𝑆 := hash(𝑆 | | 𝐶𝐶𝑃𝑜𝑙𝑖𝑐𝑦𝑆𝑖𝑔𝑛𝑒𝑑 | | 𝐴𝐾𝑛𝑎𝑚𝑒)
⇐⇒ VerifySignature(𝐴𝐾𝑝𝑢𝑏 , 𝜎𝑤)

Write(𝐴𝐶𝐼, PIN, 𝐴LIMIT)

𝑃𝑑 := GetPolicy(𝐴𝐶𝐼)
𝑃𝑎 := GetAuth(𝐴𝐶𝐼)
Write(𝐴𝐶𝐼,𝐴LIMIT)
⇐⇒ 𝑆 = 𝑃𝑑 ∧ 𝑃𝑎 = PIN

AuthCounter(𝐴𝐶𝐼) := AuthCounter(𝐴𝐶𝐼) + 1

hashed concatenation should be the authorized policy, which is ver-
ified by executing PolicyAuthorize with a ticket (that proves the
authorization), the name of the authorizing key, and, of course, the
authorized policy. Suppose the session digest matches the approved
policy: In that case, the session digest is changed to the hash of
the command code of PolicyAuthorize and the authorizing key’s
name, which is the policy for the revocation index. The host can
now execute a write to the index, but only with the parameters
used in the PolicyCpHash command, ensuring the correct bits are
set; hence the right pseudonym(s) are revoked.

Once all required pseudonyms, and their DAA key pairs, are
deleted, the TC responds to the vehicle with a signed revocation
confirmation 𝜎𝑟 𝑣𝑘 which is then sent to the RA. Upon reception of
the revocation confirmation, the RA verifies that this is signed by
the same TC that issued the pseudonym certificate that was revoked,
thus, implying that the correct vehicle has revoked itself. The entire
signature can be verified using the DAA Verify operation as being
signed by the TC that belongs to the misbehaving vehicle. By the
end of this protocol, there are strong guarantees that the vehicle
in question has been revoked without the need of any pseudonym
resolution. The RA has verifiable evidence, from the vehicle, that it
has performed the revocation enforced by the TC.

We have to note here that in case an attacker intercepts this re-
vocation message, or a malicious vehicle host blocks the revocation
message intended for the TC, then the revocation process will not
be triggered and the vehicle’s TC will not respond back with a revo-
cation confirmation (note that this is also an issue for Rewire [6]
and O-token [25]). In order for revocation to take effect in this
case, the TC needs to detect that this has occurred. This can be
achieved by a heartbeat mechanism, such that the TC periodically

Figure 9: Revoking Vehicle’s Pseudonyms & DAA Key Pairs

Revoke: Tc ⇌ Host
𝑡, 𝑃Auth𝐴𝐾, 𝑟𝑖𝑛𝑑𝑒𝑥

𝑃Auth, 𝑟𝑏𝑖𝑡 , 𝑅𝐴𝐾𝑝𝑢𝑏

𝐻𝑥 , 𝜎𝑟 , 𝜆 ∈ 𝛽, ∈ P

LoadExternal(𝑅𝐴𝐾𝑝𝑢𝑏)

𝐾𝐻𝑅𝐴 := LoadExternal(𝑅𝐴𝐾𝑝𝑢𝑏)

𝐾𝐻𝑅𝐴

StartAuthSession

fresh 𝑆

PolicySigned(𝐾𝐻𝑅𝐴, 𝜎𝑟 , 𝐻𝑥)

𝑆 := hash(𝑆 | | 𝐶𝐶𝑃𝑜𝑙𝑖𝑐𝑦𝑆𝑖𝑔𝑛𝑒𝑑 | | 𝑅𝐴𝑛𝑎𝑚𝑒)
⇐⇒ VerifySignature(𝑅𝐴𝐾𝑝𝑢𝑏 , 𝜎𝑟 , 𝐻𝑥)

PolicyCpHash(𝐻𝑥)

𝑆 := hash(𝑆 | | 𝐶𝐶𝑃𝑜𝑙𝑖𝑐𝑦𝐶𝑝𝐻𝑎𝑠ℎ | | 𝐻𝑥)

PolicyOR(𝜆)

𝑆 := hash(𝐶𝐶𝑃𝑜𝑙𝑖𝑐𝑦𝑂𝑅 | | 𝜆)
⇐⇒ 𝑆 ∈ 𝜆

PolicyOR(𝛽)

𝑆 := hash(𝐶𝐶𝑃𝑜𝑙𝑖𝑐𝑦𝑂𝑅 | | 𝛽)
⇐⇒ 𝑆 ∈ 𝛽

PolicyAuthorize(𝑡,𝐴𝐾𝑛𝑎𝑚𝑒 , 𝑃Auth)

𝑡 ′ := RecomputeTicket(𝑃Auth, 𝐴𝐾𝑛𝑎𝑚𝑒)
𝑆 := hash(𝐶𝐶𝑃𝑜𝑙𝑖𝑐𝑦𝐴𝑢𝑡ℎ𝑜𝑟𝑖𝑧𝑒 | | 𝐴𝐾𝑛𝑎𝑚𝑒)
⇐⇒ 𝑆 = 𝑃Auth ∧ 𝑡 ′ = 𝑡

SetBit(𝑟𝑏𝑖𝑡 , 𝑟𝑖𝑛𝑑𝑒𝑥)

𝑃𝑑 := GetPolicy(𝑟𝑖𝑛𝑑𝑒𝑥)
𝑁𝑉 (𝑟𝑖𝑛𝑑𝑒𝑥)𝑟𝑏𝑖𝑡 := 1 ⇐⇒ 𝑃𝑑 = 𝑆

expects either a revocation message or a heartbeat (which may be
a revocation intended for some other TC, or else a timed message).
Revocation messages and heartbeats include information about the
period they are intended for, thus, a heartbeat for one period cannot
be used at a different time. They are signed by the RA so they cannot
be tampered with or spoofed, and only one message is generated by
the RA for each time period. Failure to receive a heartbeat message
(or a series of messages so as to allow possible limited connectiv-
ity) can act as indication for potential misbehaviour that can also
trigger revocation by the TC. In order to improve the safety level
provided, this mechanism can make use of the types of heartbeat
messages already provided for monitoring the status of one-hop
vehicular topologies so as to produce indistinguishable communi-
cations and diminish the revocation vulnerability window existing
in conventional CRLs [12].

5 PERFORMANCE EVALUATION

In this section, we evaluate analytically the computational com-
plexity and overhead posed by our protocol and compare its per-
formance with the current state-of-the-art in revocation solutions,
being proposed by ETSI [5], based on the use of PKIs [6, 10, 19].
Recall that in most existing approaches to revocation, first, infor-
mation about the misbehaving vehicle’s long-term credentials (i.e.,
pseudonyms) is disseminated to the other vehicles through CRLs

8

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Direct Anonymous Attestation on the Road: Efficient and Privacy-Preserving Revocation in C-ITS

or other means [8]. This is supported only if the leveraged pseudo-
nym scheme supports resolution of participants’ long-term identities
from their pseudonyms; thus, enabling message- and identity-based
hard revocation. As aforementioned in Section 2, besides such ap-
proaches being detrimental to the protection of all participating
vehicles privacy, they also suffer from scalability issues - in the
context of bandwidth limitation and network latency as continuous
connection to the infrastructure RA(s) is needed.

In our DAA-enabled C-ITS, the RA broadcasts the revocation
message which is received by all vehicles since the hosts are re-
quired to forward them to their trusted component, therefore, min-
imizing the bandwidth requirement; i.e., the vehicles do not need
to periodically connect to the RA for “pulling” the latest version of
the revocation blacklist. Even in the case of a threat model where
vehicles are also allowed to block messages intended for the TC,
this will lead to the RA re-broadcasting the revocation message
until it receives a revocation confirmation (Section 4.6) - which
poses an additional network overhead, however, minimal since the
size of the revocation message is 128 bits.

In what follows, we consider all of the core phases as detailed
in Section 4, including the Initialization of the ACI and the Re-
vocation Index (RI) and the Activation of the RI followed by the
actual (hard- or soft-) revocation process. To analyze the compu-
tational complexity, we divide the operations into two classes -
(1) offline, and (2) online. All the operations which can be either
pre-computed or not need to be executed in real-time are classified
as offline operations. These include the computations at the TPM
and the vehicle host needed for both bootstrapping the entire

revocation process, i.e., initializing the Authorization and Revo-
cation Indexes (Section 4.1) as well as registering the revocation
hashes to the RA (Sections 4.3 and 4.4), and for generating hard-

and soft-revocation bits linked to a newly produced set of

pseudonyms - this phase, as detailed in Section 4.5, is invoked
when the vehicle needs to securely create a new bunch of short-term
anonymous credentials (more pseudonyms are needed to support
the privacy-preserving authentication and verification of broad-
casted CAM messages), thus, a new ACI needs to be created and
initialized in a secure and immutable way. The operations which
need to be performed in real-time are classified as online operations.
These include the computations at the TPM and the vehicle host
for performing the actual hard- and/or soft-revocation based on
the received revocation message from the RA; more specifically,
the execution of a series of policy authorization commands so as to
check the revocation parameters received by the RA (Section 4.6).

5.1 Implementation Results

EvaluationEnvironment Setup&TestingMethods: Implemen-
tation was straightforward once the protocols were designed and
written in terms of the appropriate TPM calls (see Tables 2 to 5)
which also constitutes one of the novelties of this work since, to the
best of our knowledge, it is one of the first complete instantiations
of such a strong and provable revocation mechanism. The protocols
were implemented in C/C++, using the GNU compiler and the IBM
implementation of a TPM software stack (IBM TSS v. 1.6.0) [15].

The experiments’ goal is to verify that the proposed solution is
functional and outline the phases needed to support it, and most
importantly, verify that near-constant revocation time is achievable

Table 2: Initialize Primordial Authorization Counter Index

Activity Mean ± (95% CI)

Total Application Stack 578.20 ms 0.87 ms

Total TPM Stack 583.92 ms 0.67 ms

TPM2_CreatePrimary 259.69 ms 0.27 ms
TPM2_DefineSpace 30.04 ms 0.22 ms
TPM2_Sign 86.86 ms 0.20 ms
TPM2_StartAuthSession 18.22 ms 0.20 ms
TPM2_PolicySigned 132.57 ms 0.20 ms
TPM2_NV_Write 38.05 ms 0.30 ms
TPM2_FlushContext 9.14 ms 0.19 ms
TPM2_FlushContext 9.35 ms 0.21 ms

even with numerous pseudonyms managed by a wide set of vehi-
cles. It is, therefore, implemented as a single binary with multiple
entities since we opted out from considering the network latency in-
duced by vehicular mobility which usually implies volatile network
connectivity. In all cases, our goal is to provide strong evidence
on efficient revocation service provision, based on the use of DAA.
and demonstrate its efficiency in comparison to other DAA-based
approaches where the process execution time and overhead is linear
to the size of the revocation list [16].

The results are generated using a laptop with Intel(R) Core(TM)
i7-8665U CPU @ 1.90-2.11GHz. The protocols were then tested
on two hardware-based trusted component platforms: an Infineon
SLB9670 TPM [14] and a Nuvoton TPM so as to conduct a detailed
investigation of the parameters that may affect the execution time
of our revocation protocols. As can be seen in Section A.2, there is
a strong interdependence of the optimal correctness of the results
to the execution environmental setup and more specifically on
the type of TC leveraged and subsequently on the crypto engine
provided by the respective TC.

Performance Analysis: Although not the focus of the paper,
we also opted to measure the actual timings for each one of the
DAA Phases in order to provide a more comprehensive overview
of the entire pseudonym lifecyle; from the creation to its secure
and privacy-preserving revocation (when needed). The DAA JOIN
and ISSUE protocols take up around 820 ms while the creation and
certification of a pseudonym key (DAA CREATE) takes up 420ms.
The DAA SIGN operation is rather fast and requires 80ms whereas
the DAA VERIFY is split into two operations: the verification of the
pseudonym key takes up 200ms and the verification of the ECDSA
signature takes up 10ms.

As aforementioned, the most performance heavy operations, of
our protocol, are the offline operations for initializing both the
ACI and RI as well as registering the revocation hashes to the RA.
Initializing the ACI, it’s evident that the TPM is responsible for
most of the incured time overhead (Table 2). Indeed, the host’s
only operation is a simple hashing operation for the policy digest.
Interestingly enough, the accumulated time for TPM execution is
larger than the whole operation. This might be due to the multiple
initialization and deinitialization of the internal timing interfaces
used. However, the combined time of creating the primordial ACI is

9

Anon.

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Table 3: Initialize Revocation Index

Activity Mean ± (95% CI)

Total Application Stack 317.81 ms 0.53 ms

Total TPM Stack 312.88 ms 0.42 ms

TPM2_NV_ReadPublic 12.68 ms 0.19 ms
TPM2_CreatePrimary 260.62 ms 0.42 ms
TPM2_FlushContext 9.63 ms 0.19 ms
TPM2_DefineSpace 29.94 ms 0.23 ms

Table 4: Activate Revocation Index

Activity Mean ± (95% CI)

Total Application Stack 920.28 ms 1.02 ms

Total TPM Stack 931.99 ms 0.15 ms

TPM2_CreatePrimary 260.26 ms 0.27 ms
TPM2_StartAuthSession 17.78 ms 0.24 ms
TPM2_PolicySecret 25.01 ms 0.19 ms
TPM2_Sign 96.85 ms 0.30 ms
TPM2_FlushContext 9.23 ms 0.19 ms
TPM2_StartAuthSession 17.37 ms 0.25 ms
TPM2_PolicySecret 24.91 ms 0.19 ms
TPM2_Sign 97.28 ms 0.32 ms
TPM2_FlushContext 9.18 ms 0.19 ms
TPM2_VerifySignature 132.71 ms 0.21 ms
TPM2_StartAuthSession 17.94.67 ms 0.29 ms
TPM2_PolicySigned 132.82 ms 0.0.20 ms
TPM2_PolicyOR 9.89 ms 0.19 ms
TPM2_PolicyAuthorize 25.72 ms 0.21 ms
TPM2_FlushContext 9.32 ms 0.19 ms
TPM2_NV_SetBits 36.80 ms 0.26 ms
TPM2_FlushContext 8.90 ms 0.18 ms

Table 5: Revocation - Soft (S) and Hard (H)

Activity Mean (S) Mean (H) ± (95% CI)

Total App. Stack 327.71 ms 323.91 ms 0.93/0.98 ms

Total TPM Stack 349.66 ms 348.28 ms 0.71/0.65 ms

TPM2_LoadExternal 92.29 ms 92.31 ms 0.22/0.22 ms
TPM2_StartAuthSession 17.73 ms 17.56 ms 0.25/0.22 ms
TPM2_PolicySigned 133.62 ms 132.90 ms 0.22/0.20 ms
TPM2_PolicyCpHash 9.18 ms 8.90 ms 0.19/0.18 ms
TPM2_PolicyOR 9.51 ms 9.55 ms 0.19/0.19 ms
TPM2_PolicyOR 9.87 ms 9.75 ms 0.19/0.19 ms
TPM2_PolicyAuthorize 25.57 ms 25.66 ms 0.19/0.19 ms
TPM2_NV_SetBits 34.06 ms 33.31 ms 0.35/0.25 ms
TPM2_FlushContext 9.35 ms 9.20 ms 0.19/0.18 ms
TPM2_FlushContext 9.04 ms 9.14 ms 0.19/0.19 ms

rather efficient and applicable to environments where this is needed
to be executed multiple times. If new ACIs are needed, this time
will increase slightly, as the previous AK’s policies must be satisfied.
These include starting a new session and executing PolicySigned
and can be estimated to add a timing overhead of 45ms.

Moving towards the initialization of the revocation index (Ta-
ble 3), this requires even less resources. This is mainly due to the
limited operations taking place: the only actual operation being
executed is the creation of the revocation index itself. This is shown
in the context of a “worst-case” scenario where the ACI has to
be read, and the Authorization Key has to be recreated; in actual
operations, the AK would not have been flushed from the TPM
in the previous stage. The time required for the host operations
is slightly higher since more hashing operations are needed for
creating the policy digest (yet it is small enough to be able to run
even in resource-constrained vehicle ECUs).

Activating the revocation index is the heaviest phase of the
protocol as seen in Table 4. Obviously, the TPM is again consuming
most of the required resources. As described in Section 4.4, the AK’s
policy has to be satisfied twice: first for signing (authorizing) the
final digest and secondly for providing the signature for the initial
write in the revocation bits. However, recall that this is an offline
operation which means that there is no need for a vehicle to wait
till the previously created bunch of pseudonyms runs out before
creating and activating new pseudonyms and their RBs.

Finally, and more interestingly, we can see that both soft- and
hard-revocation takes an equal amount of time, as shown in Table 5.
This is mainly due to the fact that the timing required is independent
from the number of bits to be set; 1 for hard revocation or multiple
in the case of a soft revocation as it is essentially an OR operation of
64 bits. Even if soft- and hard revocation bits lie in different indexes
(Section 3.1), this will still be the case, as hard revocation works on
a single index, and the same goes for a soft revocation.

6 CONCLUSIONS

In this paper, we proposed a novel revocation scheme based on
the use of trusted computing technologies and more specifically
the Direct Anonymous Attestation (DAA) protocol. This secure
and privacy-preserving scheme supports trustworthy vehicle-local
verification, thus, overcoming the challenges of current solutions
that have been proposed in the standards based on the use of tradi-
tional PKIs. We have shown that our protocol achieves a significant
performance improvement over the prior state of the art by veri-
fying that near-constant revocation time is achievable even when
multiple pseudonyms are entailed. We have evaluated all of the
internal protocol phases through a qualitative analysis as well as
through an actual implementation on two TPM variants, i.e., an
Infineon and Nuvoton cryptoprocessor.

REFERENCES

[1] 5GAA Automotive Association. Oct. 2020. Privacy-by-Design Aspects of C-V2X.
White Paper. Available online at https://5gaa.org/wp-content/uploads/2020/11/
5GAA_White-Paper_Privacy_by_Design_V2X.pdf.

[2] Ernie Brickell, Jan Camenisch, and Liqun Chen. 2004. Direct Anonymous Attesta-
tion. In Proceedings of the 11th ACM Conference on Computer and Communications
Security. 132–145.

[3] Liqun Chen, Dan Page, and Nigel P. Smart. 2010. On the Design and Imple-
mentation of an Efficient DAA Scheme. In Smart Card Research and Advanced

10

https://5gaa.org/wp-content/uploads/2020/11/5GAA_White-Paper_Privacy_by_Design_V2X.pdf
https://5gaa.org/wp-content/uploads/2020/11/5GAA_White-Paper_Privacy_by_Design_V2X.pdf

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Direct Anonymous Attestation on the Road: Efficient and Privacy-Preserving Revocation in C-ITS

Application, Dieter Gollmann, Jean-Louis Lanet, and Julien Iguchi-Cartigny (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 223–237.

[4] Liu Chunli and Tang Li Fang. 2012. The Application Mode in Urban Trans-
portation Management Based on Internet of Things. In Proceedings of the 2nd
International Conference on Electric Technology and Civil Engineering (ICETCE)
(Three Gorges, China).

[5] European Commission. June 2018. Certificate Policy for Deployment and Opera-
tion of European Cooperative Intelligent Transport Systems (C-ITS).

[6] David Förster, Hans Löhr, Jan Zibuschka, and Frank Kargl. 2015. REWIRE –
Revocation Without Resolution: A Privacy-Friendly Revocation Mechanism for
Vehicular Ad-Hoc Networks. In Trust and Trustworthy Computing.

[7] D. Förster, F. Kargl, and H. Löhr. 2014. PUCA: A pseudonym scheme with user-
controlled anonymity for vehicular ad-hoc networks (VANET). In IEEE Vehicular
Networking Conference (VNC). 25–32.

[8] Thanassis Giannetsos and Ioannis Krontiris. 2019. Securing V2X Communica-
tions for the Future: Can PKI Systems Offer the Answer?. In Proceedings of the
14th International Conference on Availability, Reliability and Security (ARES ’19)
(Canterbury, CA, United Kingdom).

[9] Stylianos Gisdakis, Thanassis Giannetsos, and Panos Papadimitratos. 2014. SP-
PEAR: Security & Privacy-preserving Architecture for Participatory-sensing
Applications. In Proceedings of the 2014 ACM Conference on Security and Privacy
in Wireless & Mobile Networks (Oxford, United Kingdom) (WiSec ’14). ACM,
New York, NY, USA, 39–50.

[10] Stylianos Gisdakis, Marcello Lagana, Thanassis Giannetsos, and Panos Papadim-
itratos. 2013. SEROSA: SERvice oriented security architecture for Vehicular
Communications. In VNC. IEEE, 111–118.

[11] Philippe Golle and Kurt Partridge. 2009. On the Anonymity of Home/Work
Location Pairs. In Proceedings of the 7th International Conference on Pervasive
Computing (Nara, Japan) (Pervasive ’09). 390–397.

[12] J. J. Haas, Yih-Chun Hu, and K. P. Laberteaux. 2011. Efficient Certificate Revo-
cation List Organization and Distribution. IEEE J.Sel. A. Commun. 29, 3 (March
2011), 595–604.

[13] C. Hicks and F. D. Garcia. 2020. A Vehicular DAA Scheme for Unlinkable ECDSA
Pseudonyms in V2X. In 2020 IEEE European Symposium on Security and Privacy
(EuroS P). 460–473. https://doi.org/10.1109/EuroSP48549.2020.00036

[14] Infineon Technologies AG. [n.d.]. Iridium SLB 9670 TPM2.0 Linux.
https://www.infineon.com/cms/en/product/evaluation-boards/iridium9670-
tpm2.0-linux// [Online; accessed 03-May-2019].

[15] International Business Machines. [n.d.]. IBM’s TPM 2.0 TSS Version 1119. https:
//sourceforge.net/projects/ibmtpm20tss/ [Online; accessed 03-May-2019].

[16] Vireshwar Kumar, He Li, Noah Luther, Pranav Asokan, Jung-Min (Jerry) Park,
Kaigui Bian, Martin B. H. Weiss, and Taieb Znati. 2018. Direct Anonymous
Attestation with Efficient Verifier-Local Revocation for Subscription System. In
Proceedings of the 2018 on Asia Conference on Computer and Communications
Security (Incheon, Republic of Korea) (ASIACCS ’18). Association for Computing
Machinery, New York, NY, USA, 567–574.

[17] Virendra Kumar, Jonathan Petit, and William Whyte. 2017. Binary Hash Tree
Based Certificate Access Management for Connected Vehicles. In Proceedings of
the 10th ACM Conference on Security and Privacy in Wireless and Mobile Networks
(WiSec ’17). 145–155.

[18] M. E. Nowatkowski, J. E.Wolfgang, C.McManus, andH. L. Owen. 2010. The effects
of limited lifetime pseudonyms on certificate revocation list size in VANETS. In
Proceedings of the IEEE SoutheastCon 2010 (SoutheastCon). 380–383.

[19] J. Petit, F. Schaub, M. Feiri, and F. Kargl. 2015. Pseudonym Schemes in Vehicular
Networks: A Survey. IEEE Communications Surveys Tutorials 17, 1 (2015), 228–
255.

[20] Marcos A. Simplicio, Eduardo Lopes Cominetti, Harsh Kupwade Patil, Jefferson E.
Ricardini, and Marcos Vinicius M. Silva. 2019. ACPC: Efficient revocation of
pseudonym certificates using activation codes. Ad Hoc Networks 90 (2019).

[21] Trusted Computing Group. [n.d.]. Trusted Computing Platform Alliance (TCPA)
main specification. http://www.trustedcomputinggroup.org.

[22] Trusted Computing Group. [n.d.]. Trusted Platform Module Library Family "2.0"
Specification - Parts 1-4 and Code, Revision 1.59. https://trustedcomputinggroup.
org/resource/tpm-library-specification/.

[23] J. Whitefield, L. Chen, T. Giannetsos, S. Schneider, and H. Treharne. 2017. Privacy-
enhanced capabilities for VANETs using direct anonymous attestation. In 2017
IEEE Vehicular Networking Conference (VNC). 123–130.

[24] Jorden Whitefield, Liqun Chen, Frank Kargl, Andrew Paverd, Steve Schneider,
Helen Treharne, and Stephan Wesemeyer. 2017. Formal Analysis of V2X Revo-
cation Protocols. In International Workshop on Security and Trust Management,
Giovanni Livraga and Chris Mitchell (Eds.). Springer International Publishing,
147–163.

[25] J. Whitefield, L. Chen, F. Kargl, A. Paverd, S. Schneider, H. Treharne, and S.
Wesemeyer. 2017. Formal Analysis of V2X Revocation Protocols. In Security and
Trust Management - 13th International Workshop, STM (Oslo, Norway), Vol. 10547.
Springer.

[26] W. Whyte, A. Weimerskirch, V. Kumar, and T. Hehn. 2013. A security credential
management system for V2V communications. In 2013 IEEE Vehicular Networking

Conference ((VNC’13). 1–8.
[27] L. Xi, D. Feng, Y. Qin, F. Wei, J. Shao, and B. Yang. 2014. Direct Anonymous

Attestation in practice: Implementation and efficient revocation. In 2014 Twelfth
Annual International Conference on Privacy, Security and Trust. 67–74.

[28] Zhang Xiong, Hao Sheng, WenGe Rong, and Dave E. Cooper. 2012. Intelligent
transportation systems for smart cities: a progress review. Science China Infor-
mation Sciences (2012).

A APPENDIX

A.1 Building Blocks

A.1.1 Trusted Components. Trusted Components are reliable, tamper-
evident, and secure processing units and can be present both in
software or hardware. They can provide a variety of functions, such
as cryptographic operations, key storage, and authentication. In
this paper, we are showcasing the use of a Trusted Component
by using a Trusted Platform Module (TPM), a physical hardware
chip that provides both cryptographic functions, secure long- and
short-term storage, and policy-based safeguards. In the following
sections, we outline the essential properties of the TPM, enabling
it to support vehicular revocation.

A.1.2 Key Storage and Hierarchies. A TPM hierarchy contains a
cryptographic seed that forms a foundation for key generation.
Using the seed and input parameters (key template), the TPM can
generate a Primary Key, a key that de facto lies in the volatile
memory but can be made persistent. As long as the template and
seed remain the same, the key is recreatable ad hoc - an essential
property due to the TPM’s limited memory size. The TPM can
create a new key as a child of a primary key, and these will always
be unique. The parent key will encrypt such a key’s private area
and eject it onto the host, meaning it is unusable outside the TPM
(a public part of the key is still functional, e.g., to verify signatures).
The primary key must be present in the TPM memory to decrypt
the key’s private part, making it functional. The private area of a
key can contain a password for use, and the public area can contain
a policy, which we will talk about in the next section. The hash of
the public area is the key’s fingerprint and is called the name of the
key.

A.1.3 Policies and Sessions. The TPM 2.0 specification [22] allows
one to define a policy and require specific assertions or actions to
take place before access to a protected object is allowed. The policy
associated with an object is represented internally with a single
statistically unique digest value known as the policy digest. Access
to all objects making use of this enhanced authorization takes place
via a session-based authorization procedure, during which the caller
issues a sequence of policy commands to the TPM. Each policy com-
mand is an assertion that a particular statement is true in order for
the policy to be satisfied. In this case, the policy command modifies
a digest value associated with the session, characteristic of the par-
ticular policy expressed via the sequence of policy commands. This
running accumulation of the digest value is called the session digest.
Multiple policy commands will form a unique session digest based
on the policy parameters and the TPM’s internal checks. After the
policy command sequence has been completed, the final value of
the session digest is compared to the policy digest of the object
being accessed. A match indicates that the sequence of invoked

11

https://doi.org/10.1109/EuroSP48549.2020.00036
https://www.infineon.com/cms/en/product/evaluation-boards/iridium9670- tpm2.0-linux//
https://www.infineon.com/cms/en/product/evaluation-boards/iridium9670- tpm2.0-linux//
https: //sourceforge.net/projects/ibmtpm20tss/
https: //sourceforge.net/projects/ibmtpm20tss/
http://www.trustedcomputinggroup.org
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://trustedcomputinggroup.org/resource/tpm-library-specification/

Anon.

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Table 6: Experiment with two Nuvoton TPMs

Command NPCT650 NPCT750

TPM2_CreatePrimary 65.68 ms 45.50 ms
TPM2_StartAuthSession 5.04 ms 10.70 ms
TPM2_PolicySecret 4.29 ms 11.60 ms
TPM2_Sign 204.38 ms 27.30 ms
TPM2_VerifySignature 263.68 ms 53.90 ms
TPM2_FlushContext (Session) 3.16 ms 9.80 ms
TPM2_FlushContext (Key) 2.71 ms 11.10 ms

policy commands satisfies the assertions expressed by the policy,
and authorization is granted.

A.2 Experimentation Summary

In general, we see fast execution, and most of the work is done by
the underlying trusted component. This implies that these timings
are close to the most optimal, as optimizing the code will only have
a non-essential impact. Furthermore, it is evident that re-creating
the AK is a relatively heavy operation and should be kept in TPM
volatile memory for as long as needed. Regarding a large number of
pseudonyms, more PolicyOR’s are needed during revocation. This
timing represents the first 6 pseudonyms, though just by adding two
levels more (20ms added), we can support 6 · 82 = 384 pseudonyms.
Adding one more (30ms) will support 6 · 83 = 3072 pseudonyms.

Interestingly, we noticed relatively large timings when it came
to creating primary keys and verifying signatures. Therefore, an
experiment was concluded in a different environment with two
different TPMs. The following timings are acquired from a Dell
desktop, x86, Ubuntu16.04 Xenial.

The results in Table 6 is an obvious example that both the en-
vironment and TPM will have an impact on the timings. In the
latter example, we saw faster timings on creating keys but slower
timings on signing and verifying signatures using an older Nuvoton
TPM. The more modern Nuvoton TPM reduced the key operation’s
timings by a great deal, though more time is taken on non-key op-
erations. This can be suspected due to Nuvoton potentially adding
hardware support for ECC operations in their newer silicon. It is a
prime example of timings being dependent on the physical imple-
mentation. These timings are extracted from the application layer,
environmental factors such as operating system, workloads, and
communication busses (𝐼2𝐶 , SPI, LPC) can impact timings. Despite
the additional uncertainty revolving around timings in desktop
environments, the revocation timings retain a small operation time.
With only minimal added time when including an immense num-
ber of pseudonyms, it significantly improves traditional public key
infrastructures, see section 8. Creating new pseudonyms dynami-
cally is an operation that one must assume to happen often. This
will include the three preparation phases: initializing a new ACI,
initializing and activating a new revocation index. The new ACI is
estimated to have only a slight increase in time, why the preparation
to create new pseudonyms only takes in the order of around two
seconds. As the host can execute these operations at any time, the
host should do it before running out of pseudonyms, for example,
when half of the existing pseudonyms have been used.

Algorithm 1 Calculate Final Policy Digest

(1) InitializeP as an array of hashes (capable of holding𝑛 hashes
where 𝑛 is the number of pseudonyms) and anonymizer
as clear byte. Calculate activation branch digest 𝑏0 :=
𝐻 (𝐻 (𝑏0 | | 𝐶𝐶𝑃𝑜𝑙𝑖𝑐𝑦𝑆𝑖𝑔𝑛𝑒𝑑 | | 𝐴𝐾𝑛𝑎𝑚𝑒)) and add to 𝛽

(2) For 𝑘 ∈ K :
(a) Initialize 𝑙1, 𝑙2 as a two digest buffers. Initialize 𝑆𝑑𝑎𝑡𝑎 and

𝐻𝑑𝑎𝑡𝑎 as 8 byte buffers and set all bytes to zero.
(b) Set bit identified by 𝑘.𝑠𝑏𝑖𝑡 high in byte number 8 in 𝑆𝑑𝑎𝑡𝑎
(c) Increment anonymizer and set 𝐻𝑑𝑎𝑡𝑎 to be the binary

representation if it. Set bit identified by 𝑘.ℎ𝑏𝑖𝑡 high in byte
number 8 in 𝐻𝑑𝑎𝑡𝑎

(d) Compute soft- and hard revocation hashes
𝐻𝑠 := 𝐻 (𝐶𝐶𝑁𝑉 _𝑆𝑒𝑡𝐵𝑖𝑡𝑠 | | 𝑥, | | 𝑘.𝑠𝑟𝑖 .𝑛𝑎𝑚𝑒 | | 𝑠𝑑𝑎𝑡𝑎)
𝐻ℎ := 𝐻 (𝐶𝐶𝑁𝑉 _𝑆𝑒𝑡𝐵𝑖𝑡𝑠 | | 𝑘.ℎ𝑟𝑖 .𝑛𝑎𝑚𝑒, | | 𝑘.ℎ𝑟𝑖 .𝑛𝑎𝑚𝑒 | | ℎ𝑑𝑎𝑡𝑎)

(e) Compute soft revocation leaf digest as
𝑙1 := 𝐻 (𝐻 (𝑙1 | | 𝐶𝐶𝑃𝑜𝑙𝑖𝑐𝑦𝑆𝑖𝑔𝑛𝑒𝑑 | | 𝑘.𝑅𝐴.𝑛𝑎𝑚𝑒))
𝑙1 := 𝐻 (𝑙1 | | 𝐶𝐶𝑃𝑜𝑙𝑖𝑐𝑦𝐶𝑝𝐻𝑎𝑠ℎ | | 𝐻𝑠)

(f) Compute hard revocation leaf digest as
𝑙2 := 𝐻 (𝐻 (𝑙2 | | 𝐶𝐶𝑃𝑜𝑙𝑖𝑐𝑦𝑆𝑖𝑔𝑛𝑒𝑑 | | 𝑘.𝑅𝐴.𝑛𝑎𝑚𝑒))
𝑙2 := 𝐻 (𝑙2 | | 𝐶𝐶𝑃𝑜𝑙𝑖𝑐𝑦𝐶𝑝𝐻𝑎𝑠ℎ | | 𝐻ℎ)

(g) Add branch digest 𝑏 := 𝐻 (𝐶𝐶𝑃𝑜𝑙𝑖𝑐𝑦𝑂𝑅 | | 𝑙1 | | 𝑙2) to 𝛽
(3) Compute finalPolicy := 𝐻 (𝐶𝐶𝑃𝑜𝑙𝑖𝑐𝑦𝑂𝑟 | | 𝛽1 | | 𝛽2 ... | | 𝛽𝑛)
(4) Output finalPolicy

A.3 Towards Near Zero-Trust Assumptions

Assuming near-zero trust assumptions for the vehicle requires ad-
ditional validation of a number of processes that are executed in
the host so as to be able to protect against compromised vehicle
hosts (e.g., ECUs) that try to manipulate the parameters given to the
attached trusted component. This essentially considers a Dolev-Yao
adversarial model which essentially allows an adversary to monitor
and modufy all interactions between the host and the TC. The criti-
cal operation to verify is the management of the policies generated
on the host and that these have been correctly calculated for protect-
ing the appropriate indexes and keys linked to active pseudonyms
(an adversary can create a policy for inactive pseudonyms in which
case a revocation message will be received and handled correctly
but without any actual revocation results). The second operation to
protect is the content of the ACI in order to validate the authoriza-
tion limit. Finally, pseudonyms should be verified as to be governed
by the correct RIs whose revocation hashes have been calculated
correctly. These proofs can be done using the TPMs certification
functionality and validated by a trusted entity, such as the Issuer.
However, in order to acquire a high level of trust, the trusted party
should not immediately release the correct pseudonym certificates.
Instead, it should verify that the AK has been used to replace an
ephemeral key and use its last authorization to write to the next-
round ACI. Once finalized, it is impossible for the host to misuse
the last authorization, and the system can be trusted completely
without considering any other inherent trust assumptions.

12

	Abstract
	1 Introduction
	2 Motivation and Contribution
	2.1 Overview of Revocation using DAA

	3 Conceptual Protocol Overview
	3.1 Soft- and Hard Revocation
	3.2 Building the protocol

	4 Architectural Details & Protocols
	4.1 Authorization Counter Index
	4.2 Revocation Index
	4.3 Generate Final Policy Digest
	4.4 Activate Revocation Index
	4.5 Initialize New Authorization Counter Index
	4.6 Revocation

	5 Performance Evaluation
	5.1 Implementation Results

	6 Conclusions
	References
	A Appendix
	A.1 Building Blocks
	A.2 Experimentation Summary
	A.3 Towards Near Zero-Trust Assumptions

