
Explainable Artificial Intelligence to Enhance Data
Trustworthiness in Crowd-Sensing Systems

Sam Afzal-Houshmand∗, Dimitrios Papamartzivanos‡, Sajad Homayoun∗, Entso Veliou∗∗, Christian D. Jensen∗,

Athanasios (Thanos) Voulodimos†, Thanassis Giannetsos‡
∗Technical University of Denmark (DTU), Cyber Security Section, Denmark

‡Ubitech Ltd., Digital Security & Trusted Computing Group, Greece
∗∗ Department of Informatics and Computer Engineering, University of West Attica, Athens, Greece

† School of Electrical & Computer Engineering, National Technical Univ. of Athens, Greece

Email: saaf@dtu.dk, sajho@dtu.dk, {dpapamartz,agiannetsos}@ubitech.eu, eveliou@uniwa.gr, thanosv@mail.ntua.gr cdje@dtu.dk

Abstract—Around the world there has been an advancement
of IoT edge devices, that in turn have enabled the collection
of rich datasets as part of the Mobile Crowd Sensing (MCS)
paradigm, which in practice is implemented in a variety of
safety critical applications. In spite of the advantages of such
datasets, there exists an inherent data trustworthiness challenge
due to the interference of malevolent actors. In this context, there
has been a great body of proposed solutions which capitalize
on conventional machine algorithms for sifting through faulty
data without any assumptions on the trustworthiness of the
source. However, there is still a number of open issues, such as
how to cope with strong colluding adversaries, while in parallel
managing efficiently the sizable influx of user data. In this work
we suggest that the usage of explainable artificial intelligence
(XAI) can lead to even more efficient performance as we tackle
the limitation of conventional black box models, by enabling the
understanding and interpretation of a model’s operation. Our
approach enables the reasoning of the model’s accuracy in the
presence of adversaries and has the ability to shun out faulty or
malicious data, thus, enhancing the model’s adaptation process.
To this end, we provide a prototype implementation coupled with
a detailed performance evaluation under different scenarios of
attacks, employing both real and synthetic datasets. Our results
suggest that the use of XAI leads to improved performance
compared to other existing schemes.

Index Terms—Explainable AI, Adversarial Machine Learning,
Data Trustworthiness, Time-series analysis.

I. INTRODUCTION

Temporal data can be quite unpredictable to humans as

it can be hard for someone to understand and explain why

changes over time happen by just observing the data as an

instance in the form of a picture or text. That is why it can be

tricky to represent temporal data as a signal that varies as a

function of time due to the ubiquitous nature of temporal data.

To enable knowledge extraction out of such data we need to

leverage additional methods along with expert knowledge [1].

The abundance of devices worldwide has created a mobile

sensing landscape that requires users to feed information about

sensory data of the environment, within a sensing paradigm,

known as mobile crowd sensing (MCS) [2]. The generated data

often take the form of a temporal data set. In terms of security,

several issues arise on data quality and integrity due to the

openness of these platforms [3], while the same issue affects

significantly other domains which capitalize on the collection

of data from sensors, such as the smart manufacturing domain

[4], [5], [6]. Previous works aim to tackle these issues by

making use of Machine Learning. ML systems are trained

using MCS datasets that are assumed to be benign, whereas

malicious actors attempt to poison them by targeting training

data through simple or advanced manipulations or can directly

evade models’ inference process using “adversarial examples”

aiming to deceive completely the model.

There has been a plethora of research works trying to ad-

dress such security issues using adversarial machine learning

leveraging conventional ML-based techniques for distinguish-

ing between malicious and benign data [7]. However, those

conventional techniques have proven to be inefficient espe-

cially in cases where the discrimination between concept drift

and cases where untrustworthy data sources provide falsified

data (either as the result of an attack or a malfunctioning

sensor) is hard. In fact, the synthesis of concept drift and

false data injection can enable an intelligent attacker to hide

in the shadows and affect significantly the accuracy of both

clustering and classification processes.

In our research path, we have previously worked on apply-

ing advanced Deep learning schemes [8] that were capable

of distinguishing malicious and benign data, without any as-

sumptions regarding the trustworthiness of data sources, whilst

being robust against many colluding intelligent adversaries. In

this paper, we take a step forward by addressing the plausible

relation between the sensory input from devices over time

via the application and integration of explainable artificial

intelligence (XAI). XAI is exploited for the purpose of gaining

knowledge and insights regarding the temporal data set that

typically impose restrictions on human comprehension [1].

Capitalizing on the pipeline of FSD [8], we further expand our

method by introducing the aspect of XAI which enables the

more exhaustive investigation of the aforementioned security

challenges, leading to the proposed XFSD framework.

II. RELATED WORK

A great mass of works applied Machine learning and Deep

Learning (DL) in the mobile crowd sensing infrastructures,

568

2023 19th International Conference on Distributed Computing in Smart Systems and the Internet of Things (DCOSS-
IoT)

2325-2944/23/$31.00 ©2023 IEEE
DOI 10.1109/DCOSS-IoT58021.2023.00093

20
23

 1
9t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
ist

rib
ut

ed
 C

om
pu

tin
g

in
 S

m
ar

t S
ys

te
m

s a
nd

 th
e

In
te

rn
et

 o
f T

hi
ng

s (
DC

O
SS

-Io
T)

 |
 9

79
-8

-3
50

3-
46

49
-7

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

DC
O

SS
-IO

T5
80

21
.2

02
3.

00
09

3

Authorized licensed use limited to: University of Thrace (Democritus University of Thrace). Downloaded on March 14,2025 at 11:10:29 UTC from IEEE Xplore. Restrictions apply.

addressing issues pertaining to concept drift, data integrity,

sparse sensing [3] [9] [10]. In this paper, we focus on works

that applied XAI to sequential time-series data so we can

possibly incorporate it into the existing FSD framework [8]

[11]. There is a variety of works that apply XAI to time

series but it can be broken down to the distinct categories

of Convolutional Neural Network (CNN), Recurrent Neural

Network (RNN) and non-sequential Neural Network based

methodologies [1].

RNNs are a great fit for time series datasets which also

encompass the application of LSTM model that retains the

whole history of the time data. The XAI methodology used

typically within this context is some form of SHAP which is a

model-agnostic explanation method. Kim et al. [12] were the

first to suggest using SHAP algorithms to explain the output

of RNN used on time series data to produce highly accurate

outcomes. SHAP has been applied successfully to financial

time series prediction and explanation [13] [14] [15] [16].

Regarding CNN-based methods, the prevalent approach of

applying XAI to time series is class-activation mapping. This

is a post-hoc method that that highlights regions in the input

data which affect the CNN output with quite accurate results

[17] [18] [19]. Within the category of CNNs, there are other

interesting approaches, such as ConvTimeNet which occludes

part of the time series and computes the probability of the

predicted class [20]. Another approach is Gradient*Input to

identify the contribution of the input raw data in time series

classification tasks [21]. In terms of non-sequential methods,

explanations can be generated using LIME. This approach is

less accurate than the sequential explanatory methods but it is

more efficient [22], [23] [24].

III. TOWARDS TRUSTWORTHY MCS TASKS

Mobile Crowd Sensing (MSC) information platforms allow

users to contribute by uploading their data to a central server,

where the collected information can be processed by analytic

algorithms for sharing knowledge with other applications of

different fields [25]. To put it mathematically, for a specific

time window with n time steps and m sensors, we gather

a dataset D containing a sequence (S) of values v for each

sensor j, having Sj = [v1,j , v2,j , · · · , vi,j , · · · , vn,j]. vi,j
represent the value of sensor j at time step i. D in (1)

shows how S sequences build the matrix as the dataset. The

sequential structure of the data makes the use of LSTMs a

interesting approach for extracting useful insights from the

relationships between the various sequence values.

D =

⎡
⎢⎢⎢⎢⎢⎢⎣

v1,1 . . . v1,j . . . v1,m
...

...
...

vi,1 . . . vi,j . . . vi,m
...

...
...

vn,1 . . . vn,j . . . vn,m

⎤
⎥⎥⎥⎥⎥⎥⎦

(1)

A. Threat modeling

Colluding adversaries aim to mislead MCS apps by incor-

porating an adversarial agent for generating malicious mea-

surement values that seem to be legitimate to the application.

There are two main adversarial models which must be taken

into consideration for such a platform [7], namely the: 1)

pre-training (poisoning) attacks, and 2) post-training (evasion)

attacks. With pre-training attacks, the adversaries attempt to

inject malicious data to poison the training dataset and, thus,

build a model which is formed based on misleading instances.

The post-training attacks occur in testing time, i.e. during the

inference mode of the model, where the adversaries can craft

adversarial data that prevent a machine learning model from

correctly identifying the contents of the data, i.e., to mislead

the already trained model to mis-classify the injected samples.

In principal, in any ML approach we try to minimize

False Positives and False Negatives. On the contrary, the

adversarial objective is to maximize the impact of the attack

by maximizing these metrics. For the remainder of the paper

we refer to the adversarial data as the positive class, and the

legitimate data as negative one.

B. Explainable AI

Explainable AI (XAI) is a set of processes and methods that

allows human users to comprehend and trust the results and

output created by machine learning algorithms in contrast to

typical black box approaches of some algorithms, especially

neural networks. Machine learning has a long history of being

applied to time series data, but most of the solutions make the

interpretation difficult, and without a quantitative assessment

it may be hard to understand areas of temporal data which

may affect the prediction. XAI can tackle this issue by adding

additional knowledge that may strengthen the overall model

prediction ability [1] [26] [22].

There is a wide spectrum of algorithms to use when

applying XAI on time series information. In this paper, we

deal with sequential time series data and we exploit two of the

most common XAI algorithms, namely the SHAP (SHapley

Additive exPlanations) and Class Activation Mapping (CAM).

Moreover, we evaluate the impact of a well-known non-

sequential based XAI algorithm called LIME (Local Inter-

pretable Model-agnostic Explanations) to study the difference

between sequential and non-sequential approaches.

Generally, the pipeline of applying XAI to the numerical

values of time series aim to identify the significance that

the input values have on the model prediction result. In our

model, we take as input the raw data and we obtain a vector

of fixed length, determined by a sliding-window, fed into a

DL model so that to acquire a prediction. Then, by using an

XAI method, we can calculate impact scores which reflect

the impact that a input value has on the prediction at a

given time. The outcome is a numerical representation which

denotes whether a given step in the raw dataset affects the

prediction negatively or positively considering the input and

the predicted values. In this way, XAI is applied in a holistic

manner to the model and explains which are the areas of

569

Authorized licensed use limited to: University of Thrace (Democritus University of Thrace). Downloaded on March 14,2025 at 11:10:29 UTC from IEEE Xplore. Restrictions apply.

importance of the input data. Then, this outcome, i.e., the

value obtained by the XAI model, can be used in order to

enrich or adjust the NN model accordingly. The rationale

behind this approach is that the XAI values are also affected

by the adversarial attack strategies and, intrinsically, they bear

the information for the presence of malicious data points in a

dataset. In this way, XAI can contribute to the identification

of attack vectors, which has been applied to the system and

the data, by utilizing the generated XAI values. Thus, having

these values, we can apply an aggregation model to generate

enhanced data vectors that combine the predictions and the

XAI importance values, aiming to make the adversarial inputs

more distinguishable. In fact, this is the key difference between

the FSD approach presented in [8] and the enhanced XAI-

assisted method, namely the XFSD, presented in this work.

IV. XFSD CONCEPTUAL ARCHITECTURE

The Fake Sequential Data (FSD) detection framework [8]

was created to benefit from the time-based relationships be-

tween dataset samples so as to accurately predict the values

of the next time step. That system utilized distance metrics

for comparing the predicted data and real data, at each time

step, in order to enable a one-class classification approach to

essentially draw a boundary around the allowed (expected)

deviations between predicted and real data values.

The XFSD approach augments the existing data with nu-

merical values from the XAI models which represents the

importance of each feature over time. The input to XAI is

the raw sequence of values for each feature along with a

trained model, while the output is a numerical vector which

denotes the importance score of the feature. Then, we apply

an aggregation model to concatenate the predictions and the

XAI importance values to one dataset. Like most deep learning

frameworks, our approach consists of two main phases, namely

the Training and Testing phases which are detailed below.

A. Training Phase

Figure 1 shows the steps followed by XFSD to train

the final one-class classifier to distinguish benign samples

(not generated by adversaries). Similar to FSD [8], XFSD

framework trains a sequence predictor (Pj) for every sensor j
that takes an input sequence and predicts the next step value

(Step 1 of Figure 1). Step 2, for each timestep, uses the trained

predictor (Pj) to estimate the expected value (ej) at time step

i by feeding the sequence (Sj) of all values of sensor j from

timestep 0 to timestep (i− 1). αi, then, is the distance vector

between the real values and the predictions. αi is of size K
which corresponds to the number of K distance metrics (e.g.

Cosine Distance, etc) used. At the same time, feeding the

sequence Sj and the predictor Pj to the XAI explainer Xj

will generate a vector of values (βi,j) as the explanation of

the data at the current step. Concatenating and flattening αi

and all βi,j will result to �Zi vector (for row i) of Z (2).

1) Step1: Train time-series predictors: This step trains a

predictor (P) for each sensor that is able to predict sensor

value of timestep i based on the sequence of values at previous

Train TSP Train TSP

Train
Dataset

Train
Dataset

Train One-Class
Classifier

STEP 2

STEP 3

STEP 1

Z

Trained Predictor
for time series

Training Time Series
Predictor (TSP)

Value

Vector

XAI Explainer

Trained Classifier

Vector Flow

Vector distance
operator

Vector concatenation
operator

Dataset

Sequence Flow

Value Flow

Model Flow

Trained
One-Class
Classifier

Figure 1: Training phase of XFSD

timesteps. Although this step is not limited to sequential based

algorithms, we recommend using Recurrent neural networks

(RNNs) and Convolutions neural networks (CNNs) as they

are widely used in predicting time series. The output of Step

1 (Predictors) will be used later in Step 2.

2) Step2: Explainable feature extraction: We apply an XAI

algorithm (any of the SHAP, CAN, LIME) which effectively

calculates a numerical representation of the important areas of

the data input based on the sequential model predictor. Step 2

of Figure 1 shows the procedure of computing �α and �β into
�Zi. The output of this step is matrix Z that will be used in

Step 3 to train the final one class classifier.

Z =

⎡
⎢⎢⎢⎢⎢⎢⎣

z1,1 . . . z1,k . . . z1,q
...

...
...

z2,1 . . . zi,k . . . zi,q
...

...
...

zn,1 . . . zn,k . . . zn,q

⎤
⎥⎥⎥⎥⎥⎥⎦

(2)

where q = K + (m× a) in (2).

3) Step3: Training one-class classifier: The completion of

step 2 means that all legitimate data have been fed to the

Predictors and the system calculated Z for each time step i
containing all allowed deviations between the predictions and

the real data plus the XAI values for all time steps. Z matrix

570

Authorized licensed use limited to: University of Thrace (Democritus University of Thrace). Downloaded on March 14,2025 at 11:10:29 UTC from IEEE Xplore. Restrictions apply.

Benign?

tim
el

in
e

Figure 2: Testing phase of XFSD

is suitable for a one-class classifiers as it is synthesized by

feeding only benign data to the predictors and the explainers.

The one-class classifier attempts to find a boundary around

the training samples (based on benign samples) in order to

distinguish them from data that follow other distributions. F
in Figure 1 represents the trained one-class classifier.

B. Testing phase

Figure 2 shows how XFSD works in real time to detect

adversarial samples. For each testing time step i, XFSD uses

predictor Pj to produce ej for sensor j. Then it concatenates

and flatten �α and �β into �Zi so that to feed the one-class

classifier F in order to specify if the data received in the

current time step follows the distribution of benign data. As

F is a trained one-class classifier on legitimate deviations

between real and predicted values as well as the XAI values,

the output dictates whether �Zi falls within the boundaries of

the legitimate behavior or not. If F suggests that �Zi is not in

the distribution of benign samples, then �Vi will be flagged as

malicious, as one or more sensor values at time step i in �Vi

were generated by adversaries.

V. EXPERIMENTAL SETUP

XFSD is an extension of FSD which introduces the use

of XAI on numerical values as a way of improving the

detection rate of malicious data. In this work, we offer an

experimental testbed with more advanced attack strategies in

order to witness the performance improvements of XFSD.

A. Adversarial Behavior

Following the threat model presented in section III-A, the

adversary may attempt to feed malicious data points which are

then included in the training of the deep learning model used

for the classification or sends malicious data points after the

model and the classifier has been trained on the real benign

data points. Therefore, we categorize the attack strategies into

pre-training and post-training attack strategies, respectively.

The performance of the framework was evaluated based

on different levels of distortion. In XFSD we consider two

main attack approaches for each attack strategy: 1) distribution
attacks (Attack Cases I & II) and (Attack Cases VI & VII),

which manipulate the mean or standard deviation to generate

adversarial samples which are different from the benign ones;

and 2) position attacks (Attack Cases III, IV & V), which

manipulate the position of injecting adversarial samples in the

sequence of values, which, in turn, targets the order of samples.

Position attacks can only be applied after a distribution attack

towards changing the order of samples to be injected.

Attack Case I: The adversaries may affect the system

uncertainty by setting σ′ = σ and μ′ �= μ which represents

a malicious standard deviation equal to the standard deviation

of the legitimate data points, but with smaller/larger μ. In

Equation (3), λ is a scalar value as the deviation factor.

Adversarial samples generated with λ > 2 are not attractive

as they are easier to detect due to their lower overlap with

benign samples. That is, we limit λ between 0 and 2 to study

more realistic data distributions.{
μ′ = μ+ (λ× σ) 0 < λ ≤ 2

σ′ = σ
(3)

To further illustrate what the actual structure of this attack

we refer to Figure 3a where there is a comparison of the

distributions of legitimate samples and adversarial samples

generated by Attack Case I for a simple dataset with only

two features, where λ = 1.0. The adversaries may choose

the λ value depending on the attack strategy (pre-training or

post-training) and the number of attacking samples they want

to inject/test notated as a percentage of the total number of

samples. As seen in the figure, changing the mean value would

have a greater impact on changing the distribution as it will

not have a huge overlapping region with the actual distribution

of the legitimate data. The intuition is that trained classifiers

should actually work better in detecting malicious data if they

were trained solely on a legitimate distribution.

Attack Case II: Adversaries may affect the system by

selecting an adversarial distribution based on equation 4 where

the adversary’s goal is to keep the same mean but changing

the standard deviation (SD).{
μ′ = μ

σ′ = σ + (λ× σ) 0 < λ ≤ 2
(4)

Similar to case I, we refer to Figure 3b where one can see the

571

Authorized licensed use limited to: University of Thrace (Democritus University of Thrace). Downloaded on March 14,2025 at 11:10:29 UTC from IEEE Xplore. Restrictions apply.

(a) (b)

Figure 3: Distributions of legitimate samples (class 0) vs.

adversarial samples (class 1) for two features with μ = 0
and σ = 1.0; (a) Attack Case I, and (b) Attack Case II.

distributions of a dataset with legitimate and adversarial data

from Attack Case II with λ = 1.0. This attack case is designed

to better reflect the real-world case scenarios where adversaries

attempt to gradually change the classification behavior by

performing concept drifting and by modifying the SD.

Attack Case III: In this case of a positional attack strategy,

the adversaries may affect the system by selecting a different

distribution by changing the order of legitimate and malicious

data points in the sequence of data. In this case all legitimate

data comes before malicious data points in the sequence.

Attack Case IV: The opposite of case III, in this case all

malicious data come before benign data points in the sequence.

Attack Case V: The adversaries attempt to affect the system

uncertainty by putting malicious batches of data in between

legitimate data batches. Variations of this approach inspired us

for the expansion of positional attacks including more specific

patters including randomization, normal and different sized

windows of malicious data batches inserted.

Attack Case VI: In this case we perform an availability

attack which aims to maximize the error at the point where

the adversaries are not detected by the model. Practically,

this means that we feed the system a dataset during the pre-

training which will broaden the boundaries that the classifier

can draw for benign samples, and thus, making adversarial

inputs indistinguishable during the testing phase. The focus is

on increasing the variance in the data poisoning process. To

do so, we use bilevel optimization approach so that to define

the optimal attack strategy, i.e., to define the optimal shift,

distribution, and the number of malicious samples which will

shift the outcome as much as possible from the truth. We apply

this method on cases I and II i.e. shifting the μ and σ.

Attack Case VII: In this case we perform a targeted attack

focusing on steering the model estimation towards a certain

prediction. In this concept, the attacker poisons the model

so that to target a pre-determined outcome. In contrast to

availability attack of case VI, where the attacker’s objective is

to deviate the response of the model in an untargeted manner,

in the targeted attack, the attacker aims to have control over the

model’s prediction and this requires to develop an optimized

adversarial strategy. Practically, we generate a dataset for a

specific pre-determined target, we feed it during pre-training

and we observe the effects through the testing phase. To

achieve this, we make use of bilevel optimization to obtain

the optimal variable to be manipulated in order to steer the

model to the pre-determined target. We apply the targeted

attack considering the cases I and II i.e., shifting the μ and σ.

VI. RESULTS

In this section, we evaluate the performance of XFSD.

For that purpose we utilize F-measure metric as it considers

True/False positive rates, recall and precision. We divided the

dataset into two subsets with a 60%-40% split for the training

and testing respectively. The dataset considered in this paper

originates from real world measurements collected from Data

Sensing Lab [27] by sensors deployed at the Strata Clara

convention center in 2013.

In addition, before converging to a specific configuration

setup for our testbed, we performed a number of experiments

in order to define the “optimal” size of the sliding-window.

A sliding window of 1000 instances was the best fit for our

model based on the acquired F-measure performance results.

Thus, with the optimal setup and by incorporating the XAI

methods, we report the results and we perform a comparative

analysis against FSD [8] in order to advocate the merit of

XFSD.

Note that for attack cases VI and VII we have considered

only pre-training attacks so that to evaluate the performance

of XFSD framework against more advanced poisoning attacks

compared to the more simple poisoning approaches of cases

I and II. The following sections are structured as follows:

Firstly, we focus on distribution attack cases (i.e. I and II).

An analysis on the positional attacks follows (i.e. attack cases

III, IV and V). The analysis concludes with a section focusing

on the advanced attack cases (i.e. VI and VII) where both cases

include manipulation of both μ and σ.

A. Results of XFSD Distribution attacks

1) XFSD case I and II in pre-training attack strategy: With

the pre-training attack strategy the adversaries try to poison the

training datasets. It is generally harder to detect malicious sam-

ples in the pre-training than the post-training since classifiers

are trained to recognize the adversarial samples as legitimate.

Increasing the rate of adversarial inputs in pre-training has a

higher impact on classifiers. For the same reason an attacker

would chose a higher deviation factor as the end-goal is to

mislead the classifier’s perception in that scenario.

Tables I and II summarize the results for attack cases I and

II, respectively for the pre-training attack strategy. Each row

of the tables show F-measure for a specific λ value used by

the attacker to generate malicious data. It is expected that by

increasing λ or the adversarial data rate, this should lead to

less accurate classification in the pre-training strategy, as this

would skew the perception of the classifier. This F-measure

degradation tendency is in fact reflected in the results of

Tables I and II. All these reflections are as expected from

572

Authorized licensed use limited to: University of Thrace (Democritus University of Thrace). Downloaded on March 14,2025 at 11:10:29 UTC from IEEE Xplore. Restrictions apply.

what we know from FSD without the XAI values. The inter-

esting aspect is the positive impact of applying different XAI

methods. As showcased in the tables the tendencies are more

or less the same across the different algorithms, implying that

the impact of different attack cases in pre-training strategies

is the same regardless of the algorithm applied. The only

difference is the scale of accuracy among their different XAI

methods. Generally, the introduction XAI to FSD provides

a proportional improvement as degradation is the same with

respect to the different configurations of adversarial attacks

between FSD and XFSD. However, the F-measure is clearly

higher for XFSD showcasing a significant improvement when

adding XAI values, advocating the motivation of this work

for introducing XAI values as the additional information to

improve the overall performance of classifiers.

The reasoning behind this improved performance is that

the adversarial strategies also impact the explanation val-

ues obtained by XAI. That is, the explanation values are a

valuable addition for better distinguishing between legitimate

and malicious instances. Furthermore, in its foundation, XAI

provides values that explain the impact of input to a NN model.

With that knowledge it is possible to adjust weights that may

improve a model mitigating issues like concept-drift.

Another part of the experimentation of this project was to

find the best XAI algorithm to employ. We had some insights

why certain algorithms may perform better given the dataset

we are working with. In fact, we expected SHAP to outperform

the other methods as it is designed for scenarios using RNN or

LSTM, which is the basis of FSD, which is widely recognized

as the conventional way of handling time-series information.

To illustrate this performance lets take an example of λ = 2
and 40% adversarial rate for all algorithms in case I in pre-

training strategy. SHAP is clearly the most accurate method

in terms of F-measure. However, it is interesting to note that

LIME achieves worse performance than FSD. The reasoning

is that LIME is a non-sequential algorithm which indicate

that there is a significant amount of information that can be

extracted from the sequential order of our data, and LIME fails

to capture this behavior.

2) XFSD case I and II in post-training attack strategy: In

post-training scenario the attacker attempt to generate samples

for bypassing the classifiers during testing time without any

access to the training data. Thus, for this attack strategy the

models are trained on legitimate data and then the overall

classification is evaluated using manipulated data. In the post-

training strategy it should be easier for a classifier to detect

non-overlapping malicious samples as the classifier has the

knowledge to cover the legitimate area. Therefore, adversaries

will tend to not deviate the incoming poisoned dataset from

the legitimate dataset i.e. not change λ much.

As shown in III and IV we can see that we achieve higher

F-measure scores when the malicious samples are increased

and the deviation λ is larger. This makes sense since the

malicious data points in those cases are far from the boundaries

of the legitimate behavior, making it easier to be detected

by the classifier. Again these are expected results for XFSD

from what we have previously learned from FSD and, as in

the scenario of pre-training strategy, the post-training strategy

shows similar tendencies across models for all configurations

in both attack cases in post-training.

When focusing on the behavior of the different XAI al-

gorithms, unsurprisingly the tendencies are the same as they

were for the pre-training cases. XFSD-SHAP is the strongest

and performs with a higher F-measure than base FSD proving

that adding XAI-values can have a positive effect as discussed

throughout this paper. The dominance of SHAP is evident

across the results of Tables III and IV regardless the λ and

the adversarial rate configurations. The same highlights can

be extracted for the post-training case as for the pre-taining

one, suggesting that SHAP is more accurate, as it is destined

to work well with RNN and time series data, while the

contribution of XAI is evident based on the performance

results of XFSD against FSD.

B. Results of XFSD positional attacks

With the architecture settled in terms of scenario and

algorithms, we are using similar visualization of aggregates

to review the difference of different positional attacks.

1) Attack case III, IV, V in pre-training: Our approach

takes advantage of the sequential relationship between the data

samples from different time steps. That is, an adversary could

launch positional attacks to bypass the classifier. To emulate

this behavior we consider that in attack case III all legitimate

data appear before the malicious data, in case IV all legitimate

samples appear after the malicious data, while in case V

malicious data distributed in between legitimate samples.

Depending on the adversarial rate, the model may ignore

parts of adversarial samples, e.g., with 5% of adversarial data,

a model for attack case III learns 95% of legitimate data before

learning from the 5% of malicious data, which has less impact

on the final performance in comparison to 55% legitimate and

45% malicious samples. This impact is shown in Tables V, VI

and VII. It is evident that the higher adversarial rates cause

higher negative impact on the model.

Among the different attack cases, the lowest impact is for

attack case IV, in which the model learns first on malicious

data. The highest negative impact appears for attack case III,

while attack case V, as expected is in between the other two

attack cases. Overall, based on the experimentation results

across all cases, XFSD is proved to perform better, advocating

the beneficial impact of the XAI over the FSD approach.

2) Attack case III, IV, V in Post-training: The results are

reflected in Tables VIII, IX and X and as before the com-

parative tendencies reveal that XAI algorithms do not differ

much depending on the order or the distribution of malicious

samples. SHAP is the most accurate variant showcasing the

best performance especially for the attack case V.

C. Advanced data poisoning

Taking inspiration from Miao et al. [28] we added more

advanced adversarial techniques based on their optimal attack

framework which uses a bilevel optimization. The two types

573

Authorized licensed use limited to: University of Thrace (Democritus University of Thrace). Downloaded on March 14,2025 at 11:10:29 UTC from IEEE Xplore. Restrictions apply.

of data poisoning attacks i.e., the availability attack (case

VI) and the target attack (case VII) were applied to evaluate

XFSD effectiveness. The outcomes which are mainly on the

pre-training strategy (data poisoning) showcase that the opti-

mization and these types of attacks are highly efficient, even

with the addition of XAI values, rendering the system beneath

random guessing during some adversarial configurations. The

order in which the results are presented in Tables XI, XII, XIII

and XIV are 1) SHAP, 2) CAM, 3) LIME, and 4) FSD.

The outcome for this experimentation using optimal stan-

dard deviation and different adversarial rates based on the

newly introduced optimized strategy is a great opportunity

to gain more insight into the robustness of our model. Our

model is still performing well within the area, but for these

challenging attack cases it dips beneath random guessing in

certain configurations. It is evident again that XAI gives an

advantage to the XFSD approach, while SHAP remains the

most prominent XAI method. It is noted that the advanced

attack strategies with the optimization is more effective in

skewing the perception of the classifiers.

D. Aggregation Method

In an effort to reduce the dimmentionality of the problem

and to explore whether a different aggregation approach of

the XAI values may have a positive impact to the model,

we extended attack case I, as reported in Table XV. We

proceeded to an aggregation before the concatenation of the

fixed length vectors from the time window. However, as can

be seen in Table XV, no improvement is reported, implying

that a different aggregation approach cannot be considered a

prominent method for improving the model.

VII. CONCLUSION

The purpose of XFSD was to improve the existing FSD

framework. The landscape of MCS for IoT present a plethora

of research challenges with one of the more prominent ones

being to address data trustworthiness. With FSD we took a

first step, while with XFSD we attempt to find a way for

improving the robustness of the models that can be derived

from the framework by leveraging advanced deep learning

capabilities with explainability qualities. The XAI extension

provided an notable improvement, making classifiers able

to distinguish between legit and malicious samples. In our

work we showcased that, for time series data, the use of

LSTM/RNN in combination with SHAP was more accurate

than applying it with CAM. This can be explained by the way

CAM works in combination with CNN for time-series i.e.,

CAM considers areas of importance, whereas SHAP considers

the whole ordinal information sequence. This is observed

to be advantageous in dataset such as ours in which one

has to consider the issues pertaining to concept drift, i.e.,

unforeseen changes over time. The information that can be

extracted from sequential order of data is proven important

considering the improvement in the accuracy of the classifiers

when introducing XAI values and the better performance when

compared to non-sequential algorithms, such as LIME which

failed to contribute in the XFSD setup. As future work, we aim

to explore more robust approaches in XFSD that could tackle

the challenging availability and targeted adversarial attacks.

VIII. ACKNOWLEDGMENT

This work was supported by European Commission under

the STAR project GA No. 956573.

REFERENCES

[1] T. Rojat, R. Puget, D. Filliat, J. Del Ser, R. Gelin, and N. Diaz Ro-
driguez, “Explainable artificial intelligence (xai) on timeseries data: A
survey,” 04 2021.

[2] S. Gisdakis, T. Giannetsos, and P. Papadimitratos, “Shield: a data
verification framework for participatory sensing systems,” 07 2015.

[3] N. Banerjee, T. Giannetsos, E. Panaousis, and C. Cheong Took, “Unsu-
pervised learning for trustworthy iot,” 07 2018, pp. 1–8.

[4] E. Veliou, D. Papamartzivanos, S. A. Menesidou, P. Gouvas, T. Giannet-
sos et al., “Artificial intelligence and secure manufacturing: Filling gaps
in making industrial environments safer,” Trusted Artificial Intelligence
in Manufacturing, p. 30, 2021.

[5] J. M. Rožanec, D. Papamartzivanos, E. Veliou, T. Anastasiou, J. Keizer,
B. Fortuna, and D. Mladenić, “Machine beats machine: Machine learn-
ing models to defend against adversarial attacks,” 2022.

[6] T. Anastasiou, S. Karagiorgou, P. Petrou, D. Papamartzivanos, T. Gian-
netsos, G. Tsirigotaki, and J. Keizer, “Towards robustifying image clas-
sifiers against the perils of adversarial attacks on artificial intelligence
systems,” Sensors, vol. 22, no. 18, 2022.

[7] N. Pitropakis, E. Panaousis, T. Giannetsos, E. Anastasiadis, and
G. Loukas, “A taxonomy and survey of attacks against machine learn-
ing,” Computer Science Review, vol. 34, p. 100199, Nov. 2019.

[8] S. Afzal-Houshmand, S. Homayoun, and T. Giannetsos, “A perfect
match: Deep learning towards enhanced data trustworthiness in crowd-
sensing systems,” in 2021 IEEE International Mediterranean Conference
on Communications and Networking (MeditCom), 2021, pp. 258–264.

[9] B. Guo, Z. Yu, X. Zhou, and D. Zhang, “From participatory sensing
to mobile crowd sensing,” in 2014 IEEE International Conference
on Pervasive Computing and Communication Workshops (PERCOM
WORKSHOPS), 2014, pp. 593–598.

[10] X. Li, K. Xie, X. Wang, G. Xie, D. Xie, Z. Li, J. Wen, Z. Diao, and
T. Wang, “Quick and accurate false data detection in mobile crowd
sensing,” IEEE/ACM Transactions on Networking, vol. 28, no. 3, pp.
1339–1352, 2020.

[11] L. Cheng, L. Kong, C. Luo, J. Niu, Y. Gu, W. He, and S. Das, “Deco:
False data detection and correction framework for participatory sensing,”
in 2015 IEEE 23rd International Symposium on Quality of Service
(IWQoS). IEEE, Jun. 2015.

[12] J.-Y. Kim and S.-B. Cho, “Electric energy consumption prediction by
deep learning with state explainable autoencoder,” Energies, vol. 12, p.
739, 02 2019.

[13] K. E. Mokhtari, B. P. Higdon, and A. Başar, “Interpreting financial time
series with shap values,” in Proceedings of the 29th Annual Interna-
tional Conference on Computer Science and Software Engineering, ser.
CASCON ’19. USA: IBM Corp., 2019, p. 166–172.

[14] P. Linardatos, V. Papastefanopoulos, and S. Kotsiantis, “Explainable ai:
A review of machine learning interpretability methods,” Entropy, vol. 23,
p. 18, 12 2020.

[15] D. Dataman. Explain your model with the shap
values. [Online]. Available: https://towardsdatascience.com/
explain-your-model-with-the-shap-values-bc36aac4de3d

[16] B. Khaleghi. The how of explainable ai: Post-modelling
explainability. [Online]. Available: https://towardsdatascience.com/
the-how-of-explainable-ai-post-modelling-explainability-8b4cbc7adf5f

[17] Z. Wang, W. Yan, and T. Oates, “Time series classification from scratch
with deep neural networks: A strong baseline,” in 2017 International
Joint Conference on Neural Networks (IJCNN), 2017, pp. 1578–1585.

[18] H. Ismail Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller,
“Accurate and interpretable evaluation of surgical skills from kinematic
data using fully convolutional neural networks,” 08 2019.

574

Authorized licensed use limited to: University of Thrace (Democritus University of Thrace). Downloaded on March 14,2025 at 11:10:29 UTC from IEEE Xplore. Restrictions apply.

[19] F. Oviedo, Z. Ren, S. Sun, C. M. Settens, Z. Liu, N. T. P. Hartono,
R. Savitha, B. L. DeCost, S. I. P. Tian, G. Romano, A. G. Kusne, and
T. Buonassisi, “Fast classification of small x-ray diffraction datasets
using data augmentation and deep neural networks,” ArXiv, vol.
abs/1811.08425, 2018.

[20] K. Kashiparekh, J. Narwariya, P. Malhotra, L. Vig, and G. Shroff,
“Convtimenet: A pre-trained deep convolutional neural network for time
series classification,” 07 2019, pp. 1–8.

[21] L. Zhou, C. Ma, X. Shi, D. Zhang, W. Li, and L. Wu, “Salience-cam:
Visual explanations from convolutional neural networks via salience
score,” 07 2021, pp. 1–8.

[22] M. T. Ribeiro, S. Singh, and C. Guestrin, “”why should i trust you?”:
Explaining the predictions of any classifier,” in Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, ser. KDD ’16. New York, NY, USA: Association
for Computing Machinery, 2016, p. 1135–1144. [Online]. Available:
https://doi.org/10.1145/2939672.2939778

[23] L. Hulstaert. Understanding model predictions with
lime. [Online]. Available: https://towardsdatascience.com/
understanding-model-predictions-with-lime-a582fdff3a3b

[24] A. Sharma. Decrypting your machine learning model
using lime. [Online]. Available: https://towardsdatascience.com/
decrypting-your-machine-learning-model-using-lime-5adc035109b5

[25] R. Ganti, F. Ye, and H. Lei, “Mobile crowdsensing: current state and
future challenges,” IEEE Communications Magazine, vol. 49, no. 11,
pp. 32–39, Nov. 2011.

[26] D. Mercier, A. Dengel, and S. Ahmed, “Patchx: Explaining deep models
by intelligible pattern patches for time-series classification,” 02 2021.

[27] D. sensing Lab, ““strata santa clara dataset”.” [Online]. Available:
http://datasensinglab.com/

[28] C. Miao, Q. Li, H. Xiao, W. Jiang, M. Huai, and L. Su, “Towards data
poisoning attacks in crowd sensing systems,” 06 2018, pp. 111–120.

APPENDIX A

EXPERIMENTAL RESULTS

λ
Adversarial Rate

5% 10% 15% 20% 25% 30% 35% 40% 45%

S
H

A
P 0.5 0.963 0.929 0.941 0.933 0.915 0.881 0.865 0.848 0.826

1 0.952 0.882 0.909 0.889 0.895 0.856 0.823 0.804 0.771
2 0.914 0.837 0.876 0.849 0.828 0.819 0.792 0.769 0.719

C
A

M

0.5 0.886 0.841 0.8 0.791 0.777 0.741 0.725 0.707 0.686
1 0.841 0.81 0.769 0.749 0.752 0.716 0.681 0.664 0.631
2 0.794 0.774 0.735 0.708 0.686 0.674 0.652 0.629 0.579

L
IM

E 0.5 0.85 0.805 0.764 0.755 0.741 0.705 0.689 0.671 0.65
1 0.805 0.774 0.733 0.713 0.716 0.68 0.645 0.628 0.595
2 0.758 0.738 0.699 0.672 0.65 0.638 0.616 0.593 0.543

F
S

D

0.5 0.843 0.797 0.756 0.747 0.733 0.695 0.682 0.663 0.642
1 0.797 0.765 0.725 0.703 0.707 0.672 0.637 0.619 0.587
2 0.749 0.729 0.691 0.664 0.641 0.629 0.608 0.583 0.533

Table I: Results of various XAI algorithms + FSD for Attack

Case I in pre-training attack strategy

λ
Adversarial Rate

5% 10% 15% 20% 25% 30% 35% 40% 45%

S
H

A
P 0.5 0.875 0.861 0.839 0.821 0.802 0.782 0.762 0.718 0.684

1 0.836 0.811 0.802 0.789 0.769 0.753 0.719 0.669 0.635
2 0.799 0.789 0.784 0.779 0.742 0.727 0.684 0.638 0.589

C
A

M

0.5 0.866 0.852 0.83 0.811 0.792 0.772 0.752 0.708 0.675
1 0.827 0.801 0.792 0.779 0.759 0.743 0.709 0.659 0.625
2 0.789 0.779 0.776 0.769 0.732 0.718 0.676 0.627 0.579

L
IM

E 0.5 0.858 0.844 0.822 0.803 0.784 0.764 0.744 0.7 0.667
1 0.819 0.793 0.784 0.771 0.751 0.735 0.701 0.651 0.617
2 0.781 0.771 0.768 0.761 0.724 0.71 0.668 0.619 0.571

F
S

D

0.5 0.791 0.777 0.755 0.736 0.717 0.697 0.677 0.633 0.6
1 0.752 0.726 0.717 0.704 0.684 0.668 0.634 0.584 0.55
2 0.714 0.705 0.701 0.694 0.657 0.644 0.601 0.552 0.504

Table II: Results of various XAI algorithms + FSD for Attack

Case II in pre-training attack strategy

λ
Adversarial Rate

5% 10% 15% 20% 25% 30% 35% 40% 45%

S
H

A
P 0.5 0.698 0.709 0.738 0.759 0.782 0.804 0.832 0.862 0.901

1 0.72 0.738 0.755 0.774 0.796 0.839 0.853 0.905 0.945
2 0.729 0.747 0.763 0.795 0.815 0.857 0.871 0.939 0.986

C
A

M

0.5 0.647 0.66 0.687 0.71 0.734 0.755 0.782 0.813 0.853
1 0.671 0.69 0.708 0.725 0.747 0.79 0.803 0.855 0.896
2 0.678 0.699 0.713 0.746 0.766 0.807 0.823 0.89 0.947

L
IM

E 0.5 0.579 0.592 0.619 0.642 0.666 0.687 0.714 0.745 0.785
1 0.603 0.622 0.64 0.657 0.679 0.722 0.735 0.787 0.828
2 0.61 0.631 0.645 0.678 0.698 0.739 0.755 0.822 0.879

F
S

D

0.5 0.578 0.609 0.623 0.633 0.654 0.675 0.703 0.723 0.769
1 0.599 0.622 0.646 0.669 0.705 0.714 0.74 0.761 0.789
2 0.617 0.627 0.669 0.693 0.724 0.727 0.771 0.791 0.842

Table III: Results of various XAI algorithms + FSD for Attack

Case I in post-training attack strategy

λ
Adversarial Rate

5% 10% 15% 20% 25% 30% 35% 40% 45%

S
H

A
P 0.5 0.668 0.688 0.712 0.739 0.791 0.843 0.868 0.897 0.942

1 0.738 0.756 0.769 0.787 0.807 0.856 0.877 0.921 0.967
2 0.78 0.787 0.801 0.817 0.841 0.872 0.888 0.932 0.982

C
A

M

0.5 0.665 0.685 0.709 0.737 0.788 0.842 0.865 0.895 0.94
1 0.735 0.755 0.766 0.783 0.805 0.855 0.875 0.918 0.965
2 0.779 0.784 0.798 0.815 0.839 0.869 0.884 0.928 0.978

L
IM

E 0.5 0.651 0.671 0.695 0.723 0.774 0.828 0.851 0.881 0.926
1 0.721 0.741 0.752 0.769 0.791 0.841 0.861 0.904 0.951
2 0.765 0.77 0.784 0.801 0.825 0.855 0.87 0.914 0.991

F
S

D
0.5 0.568 0.588 0.612 0.64 0.691 0.745 0.768 0.798 0.843
1 0.638 0.658 0.669 0.686 0.708 0.758 0.778 0.821 0.868
2 0.682 0.687 0.701 0.718 0.742 0.772 0.787 0.831 0.908

Table IV: Results of various XAI algorithms + FSD for Attack

Case II in post-training attack strategy

λ
Adversarial Rate

5% 10% 15% 20% 25% 30% 35% 40% 45%

S
H

A
P 0.5 0.971 0.865 0.83 0.816 0.801 0.78 0.775 0.755 0.69

1 0.882 0.846 0.804 0.788 0.764 0.755 0.754 0.73 0.645
2 0.847 0.817 0.78 0.76 0.745 0.737 0.725 0.694 0.611

C
A

M

0.5 0.901 0.856 0.815 0.806 0.792 0.756 0.74 0.722 0.701
1 0.856 0.825 0.784 0.764 0.767 0.731 0.696 0.679 0.646
2 0.809 0.789 0.75 0.723 0.701 0.689 0.667 0.644 0.594

L
IM

E 0.5 0.83 0.785 0.744 0.735 0.721 0.685 0.669 0.651 0.63
1 0.785 0.754 0.713 0.693 0.696 0.66 0.625 0.608 0.575
2 0.738 0.718 0.679 0.652 0.63 0.618 0.596 0.573 0.523

F
S

D

0.5 0.842 0.736 0.701 0.687 0.672 0.651 0.646 0.626 0.561
1 0.753 0.717 0.675 0.659 0.635 0.626 0.625 0.601 0.516
2 0.718 0.688 0.651 0.631 0.616 0.608 0.596 0.565 0.482

Table V: F-measures for Attack Case III (benign first) with

attack samples generated by Attack Case I in pre-training for

different XAI algorithms.

λ
Adversarial Rate

5% 10% 15% 20% 25% 30% 35% 40% 45%

S
H

A
P 0.5 0.958 0.894 0.858 0.851 0.838 0.822 0.813 0.787 0.729

1 0.904 0.858 0.824 0.814 0.797 0.777 0.786 0.756 0.672
2 0.877 0.822 0.787 0.766 0.76 0.76 0.746 0.734 0.646

C
A

M

0.5 0.841 0.796 0.755 0.746 0.732 0.696 0.68 0.662 0.641
1 0.796 0.765 0.724 0.704 0.707 0.671 0.636 0.619 0.586
2 0.749 0.729 0.69 0.663 0.641 0.629 0.607 0.584 0.534

L
IM

E 0.5 0.77 0.725 0.684 0.675 0.661 0.625 0.609 0.591 0.57
1 0.725 0.694 0.653 0.633 0.636 0.6 0.565 0.548 0.515
2 0.678 0.658 0.619 0.592 0.57 0.558 0.536 0.513 0.463

F
S

D

0.5 0.783 0.719 0.683 0.676 0.663 0.647 0.638 0.612 0.554
1 0.729 0.683 0.649 0.639 0.622 0.602 0.611 0.581 0.497
2 0.702 0.647 0.612 0.591 0.585 0.585 0.571 0.559 0.471

Table VI: F-measures for Attack Case IV (malicious first) with

attack samples generated by Attack Case I in pre-training.

575

Authorized licensed use limited to: University of Thrace (Democritus University of Thrace). Downloaded on March 14,2025 at 11:10:29 UTC from IEEE Xplore. Restrictions apply.

λ
Adversarial Rate

5% 10% 15% 20% 25% 30% 35% 40% 45%

S
H

A
P 0.5 0.954 0.907 0.871 0.82 0.796 0.782 0.773 0.743 0.664

1 0.93 0.855 0.818 0.795 0.765 0.746 0.739 0.706 0.615
2 0.889 0.827 0.783 0.761 0.735 0.713 0.683 0.658 0.593

C
A

M

0.5 0.814 0.769 0.728 0.719 0.705 0.669 0.653 0.635 0.614
1 0.769 0.738 0.697 0.677 0.68 0.644 0.609 0.592 0.559
2 0.722 0.702 0.663 0.636 0.614 0.602 0.58 0.557 0.507

L
IM

E 0.5 0.77 0.725 0.684 0.675 0.661 0.625 0.609 0.591 0.57
1 0.725 0.694 0.653 0.633 0.636 0.6 0.565 0.548 0.515
2 0.678 0.658 0.619 0.592 0.57 0.558 0.536 0.513 0.463

F
S

D

0.5 0.782 0.735 0.699 0.648 0.624 0.610 0.601 0.571 0.492
1 0.758 0.683 0.646 0.623 0.593 0.574 0.567 0.534 0.443
2 0.717 0.655 0.611 0.589 0.563 0.541 0.511 0.486 0.421

Table VII: F-measures for Attack Case V with attack samples

generated by Attack Case I in pre-training.

λ
Adversarial Rate

5% 10% 15% 20% 25% 30% 35% 40% 45%

S
H

A
P 0.5 0.698 0.714 0.75 0.78 0.814 0.833 0.88 0.899 0.931

1 0.731 0.754 0.78 0.812 0.858 0.876 0.909 0.932 0.965
2 0.777 0.78 0.801 0.833 0.873 0.894 0.931 0.95 0.981

C
A

M

0.5 0.656 0.669 0.696 0.719 0.743 0.764 0.791 0.822 0.862
1 0.68 0.699 0.717 0.734 0.756 0.799 0.812 0.864 0.905
2 0.687 0.708 0.722 0.755 0.775 0.816 0.832 0.899 0.956

L
IM

E 0.5 0.585 0.598 0.625 0.648 0.672 0.693 0.72 0.751 0.791
1 0.609 0.628 0.646 0.663 0.685 0.728 0.741 0.793 0.834
2 0.616 0.637 0.651 0.684 0.704 0.745 0.761 0.828 0.885

F
S

D

0.5 0.599 0.615 0.651 0.681 0.715 0.734 0.781 0.800 0.832
1 0.632 0.655 0.681 0.713 0.759 0.777 0.810 0.833 0.866
2 0.678 0.681 0.702 0.734 0.774 0.795 0.832 0.851 0.903

Table VIII: F-measures for Attack Case III (benign first) with

attack samples generated by Attack Case I in post-training.

λ
Adversarial Rate

5% 10% 15% 20% 25% 30% 35% 40% 45%

S
H

A
P 0.5 0.617 0.666 0.718 0.739 0.767 0.796 0.826 0.873 0.915

1 0.664 0.727 0.731 0.782 0.835 0.848 0.897 0.899 0.93
2 0.727 0.737 0.778 0.809 0.852 0.871 0.913 0.929 0.981

C
A

M

0.5 0.596 0.609 0.636 0.659 0.683 0.704 0.731 0.762 0.802
1 0.62 0.639 0.657 0.674 0.696 0.739 0.752 0.804 0.845
2 0.627 0.648 0.662 0.695 0.715 0.756 0.772 0.839 0.896

L
IM

E 0.5 0.525 0.538 0.565 0.588 0.612 0.633 0.66 0.691 0.731
1 0.549 0.568 0.586 0.603 0.625 0.668 0.681 0.733 0.774
2 0.556 0.577 0.591 0.624 0.644 0.685 0.701 0.768 0.825

F
S

D

0.5 0.487 0.536 0.588 0.609 0.637 0.666 0.696 0.743 0.785
1 0.534 0.597 0.601 0.652 0.705 0.718 0.767 0.769 0.800
2 0.597 0.607 0.648 0.679 0.722 0.741 0.783 0.799 0.851

Table IX: F-measures for Attack Case IV (malicious first) with

samples generated by Attack Case I in post-training.

λ
Adversarial Rate

5% 10% 15% 20% 25% 30% 35% 40% 45%

S
H

A
P 0.5 0.699 0.731 0.778 0.803 0.849 0.869 0.9 0.923 0.98

1 0.712 0.751 0.796 0.824 0.868 0.891 0.934 0.958 0.981
2 0.726 0.781 0.8 0.852 0.891 0.91 0.959 0.979 0.989

C
A

M

0.5 0.616 0.629 0.656 0.679 0.703 0.724 0.751 0.782 0.822
1 0.64 0.659 0.677 0.694 0.716 0.759 0.772 0.824 0.865
2 0.647 0.668 0.682 0.715 0.735 0.776 0.792 0.859 0.916

L
IM

E 0.5 0.535 0.548 0.575 0.598 0.622 0.643 0.67 0.701 0.741
1 0.559 0.578 0.596 0.613 0.635 0.678 0.691 0.743 0.784
2 0.566 0.587 0.601 0.634 0.654 0.695 0.711 0.778 0.835

F
S

D

0.5 0.579 0.611 0.658 0.683 0.729 0.749 0.780 0.803 0.860
1 0.592 0.631 0.676 0.704 0.748 0.771 0.814 0.838 0.878
2 0.606 0.661 0.680 0.732 0.771 0.790 0.839 0.859 0.901

Table X: F-measures for Attack Case V post-training attack

strategy with attack samples generated by Attack Case I.

λ Adversarial Rate
5% 10% 15% 20% 25% 30% 35% 40% 45%

Optimal 0.701 0.681 0.642 0.615 0.593 0.581 0.559 0.536 0.486
Optimal 0.686 0.666 0.627 0.6 0.578 0.566 0.544 0.521 0.471
Optimal 0.674 0.654 0.615 0.588 0.566 0.554 0.532 0.509 0.459
Optimal 0.661 0.641 0.602 0.575 0.553 0.541 0.519 0.496 0.446

Table XI: Optimized Data poisoning availability attack case

VI for the scenario of μ

λ Adversarial Rate
5% 10% 15% 20% 25% 30% 35% 40% 45%

Optimal 0.687 0.677 0.674 0.667 0.63 0.616 0.574 0.525 0.477
Optimal 0.674 0.664 0.661 0.654 0.617 0.603 0.561 0.512 0.464
Optimal 0.662 0.652 0.649 0.642 0.605 0.591 0.549 0.5 0.452
Optimal 0.647 0.637 0.634 0.627 0.59 0.576 0.534 0.485 0.437

Table XII: Optimized Data poisoning availability attack case

VI for the scenario with σ

λ Adversarial Rate
5% 10% 15% 20% 25% 30% 35% 40% 45%

Optimal 0.788 0.757 0.716 0.696 0.699 0.663 0.628 0.611 0.578
Optimal 0.638 0.607 0.566 0.546 0.549 0.513 0.478 0.461 0.428
Optimal 0.625 0.594 0.553 0.533 0.536 0.5 0.465 0.448 0.415
Optimal 0.613 0.582 0.541 0.521 0.524 0.488 0.453 0.436 0.403

Table XIII: Optimized Data poisoning target attack case VII

for the scenario with μ

λ Adversarial Rate
5% 10% 15% 20% 25% 30% 35% 40% 45%

Optimal 0.717 0.707 0.704 0.697 0.66 0.646 0.604 0.555 0.507
Optimal 0.702 0.692 0.689 0.682 0.645 0.631 0.589 0.54 0.492
Optimal 0.677 0.667 0.664 0.657 0.62 0.606 0.564 0.515 0.467
Optimal 0.662 0.652 0.649 0.642 0.605 0.591 0.549 0.5 0.452

Table XIV: Optimized Data poisoning target attack case V II
for the scenario of σ

λ
Adversarial Rate

5% 10% 15% 20% 25% 30% 35% 40% 45%

S
H

A
P 0.5 0.865 0.813 0.825 0.817 0.799 0.765 0.749 0.732 0.71

1 0.836 0.766 0.793 0.773 0.779 0.74 0.707 0.688 0.655
2 0.798 0.721 0.76 0.733 0.712 0.703 0.676 0.653 0.603

C
A

M

0.5 0.77 0.725 0.684 0.675 0.661 0.625 0.609 0.591 0.57
1 0.725 0.694 0.653 0.633 0.636 0.6 0.565 0.548 0.515
2 0.678 0.658 0.619 0.592 0.57 0.558 0.536 0.513 0.463

L
IM

E 0.5 0.734 0.689 0.648 0.639 0.625 0.589 0.573 0.555 0.534
1 0.689 0.658 0.617 0.597 0.6 0.564 0.529 0.512 0.479
2 0.642 0.622 0.583 0.556 0.534 0.522 0.5 0.477 0.427

F
S

D

0.5 0.724 0.681 0.64 0.631 0.617 0.579 0.566 0.547 0.526
1 0.681 0.649 0.609 0.587 0.591 0.556 0.521 0.503 0.471
2 0.633 0.613 0.575 0.548 0.525 0.513 0.492 0.467 0.417

Table XV: F-measures for Attack Case I pre-training attack

strategy where the default aggregation is applied before con-

catenation of fixed length vectors

576

Authorized licensed use limited to: University of Thrace (Democritus University of Thrace). Downloaded on March 14,2025 at 11:10:29 UTC from IEEE Xplore. Restrictions apply.

