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Human in the AI Loop via xAI and 
Active Learning for Visual Inspection 

Jože M. Rožanec, Elias Montini, Vincenzo Cutrona, 
Dimitrios Papamartzivanos, Timotej Klemenčič, Blaž Fortuna, 
Dunja Mladenić, Entso Veliou, Thanassis Giannetsos, 
and Christos Emmanouilidis 

1 Introduction 

Industrial revolutions have historically disrupted manufacturing by introducing 
automation into the production process. Increasing automation changed worker 
responsibilities and roles. While past manufacturing revolutions were driven from 
the optimization point of view, the Industry 5.0 concepts capitalize on the techno-
logical foundations of Industry 4.0 to steer manufacturing toward human-centricity 
[32, 67], adding resilience and sustainability among its key targets [29]. This change 
is part of a holistic understanding of the industry’s societal role. In particular, the 
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European Commission expects the industry to collaborate on achieving societal 
goals that transcend jobs and company growth. 

Human-centric manufacturing within the Industry 5.0 aims to ensure that human 
well-being, needs, and values are placed at the center of the manufacturing process. 
Furthermore, it seeks to enable collaborative intelligence between humans and 
machines to enable co-innovation, co-design, and co-creation of products and 
services [62], thus allowing leveraging on their strengths to maximize individual 
and joint outcomes and their joint added value [34]. It is expected that synergies 
enabled within Industry 5.0 will still allow for high-speed and mass-personalized 
manufacturing but will shift repetitive and monotonous tasks to be more assigned to 
machines to capitalize more on the human propensity for critical thinking and give 
them to more cognitively demanding tasks [71]. 

The emerging shift in human roles goes beyond allowing them to move away 
from repetitive tasks to undertake other physical activities. As non-human actors, 
including artificial intelligence (AI) - enabled ones, undertake tasks that can be 
automated, humans are not necessarily excluded but may well play a higher added 
value and steering role, bringing their cognitive capabilities into the AI loop [33]. 
This includes active synergies between AI-enabled non-human entities and humans, 
resulting in novel work configurations [41]. Such configurations empower human 
actors in new roles rather than diminishing them [8]. As a consequence, it is 
increasingly recognized that involving instead of replacing the human from the 
AI loop not only elevates the role of humans in such work environments but also 
significantly enhances the machine learning process, and, therefore, the emergent 
capabilities of the AI-enabled actors [77]. As a result, such synergies involve 
humans and non-human entities who jointly contribute to shaping an emergent meta-
human learning system, which in turn is more capable and powerful than human and 
non-human entities acting alone [70]. 

A possible realization of such human-machine collaboration emerges from 
two sub-fields of artificial intelligence: active learning and explainable artificial 
intelligence (XAI). Active learning is concerned with finding pieces of data that 
allow machine learning algorithms to learn better toward a specific goal. Human 
intervention is frequently required, e.g., to label selected pieces of data and enable 
such learning. On the other hand, XAI aims to make the machine learning models 
intelligible to the human person so that humans can understand the rationale behind 
machine learning model predictions. While active learning requires human expertise 
to teach machines to learn better, XAI aims to help humans learn better about how 
machines learn and think. This way, both paradigms play on the strengths of humans 
and machines to realize synergistic relationships between them. 

Among the contributions of the present work are (i) a brief introduction to the 
state-of-the-art research on human-machine collaboration, key aspects of trustwor-
thiness and accountability in the context of Industry 5.0, and research related to 
automated visual inspection; (ii) the development of a vision on how an AI-first 
human-centric visual inspection solution could be realized; and (iii) a description of 
experiments and results obtained in the field of automated visual inspection at the 
EU H2020 STAR project.
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The rest of the work is structured as follows: Sect. 2 describes related work, 
providing an overview of human-machine collaboration, the industry 5.0 paradigm 
and human-centric manufacturing, state-of-the-art on automated quality inspection, 
and a vision of how human-machine collaboration can be realized in the visual 
inspection domain. In Sect. 3, relevant research contributions from the EU H2020 
STAR project are outlined, offering concrete examples of humans and AI working 
in synergy. Finally, Sect. 4 provides conclusions and insights into future work. 

2 Background 

2.1 Overview on Human-Machine Collaboration 

The advent of increasingly intelligent machines has enabled a new kind of rela-
tionship: the relationship between humans and machines. Cooperative relationships 
between humans and machines were envisioned back in 1960 [39, 65]. This work 
defines machines in a broad sense, considering intelligent systems that can make 
decisions autonomously and independently (e.g., automated, autonomous, or AI 
agents, robots, vehicles, and instruments) [39, 83, 114]. Relationships between 
humans and machines have been characterized through different theories, such as 
the Socio-Technical Systems theory (considers humans and technology shape each 
other while pursuing a common goal within an organization), Actor-Network theory 
(considers machines should be equally pondered by humans when analyzing a 
social system, considering the later as an association of heterogeneous elements), 
Cyber-Physical Social Systems theory (extends the Socio-Technical Systems theory 
emphasizing social dimensions where computational algorithms are used to monitor 
devices), the theory on social machines (considers systems that combine social 
participation with machine-based computation), and the Human-Machine Networks 
theory (considers humans and machines form interdependent networks character-
ized by synergistic interactions). The first three theories conceptualize humans and 
machines as a single unit, while the last two consider social structures mediated in 
human-machine networks. In particular, the Socio-Technical Systems theory consid-
ers humans and technology shape each other while pursuing a common goal within 
an organization. The Cyber-Physical Social Systems theory extends this vision, 
emphasizing social dimensions where computational algorithms are used to monitor 
and control devices. Moreover, the Actor-Network theory conceptualizes the social 
system as an association of heterogeneous elements and advocates that machines 
should be equally pondered to humans. The theory of social machines is interested 
in systems that combine social participation with machine-based computation. In 
contrast, the Human-Machine Networks theory considers humans and machines to 
form interdependent networks characterized by synergistic interactions. A thorough 
analysis of the abovementioned concepts can be found in [105].
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Regardless of the particular theory, the goal remains the same: foster and 
understand mutualistic and synergistic relationships between humans and machines, 
where the strengths of both are optimized toward a common goal to achieve what 
was previously unattainable to each of them. To that end, individual roles must 
either be clearly defined or allow for a clear sliding of roles when a role can be 
shared among different types of actors. This will ensure a dynamic division of 
tasks, optimal use of resources, and reduced processing time. Machines are aimed 
at supporting, improving, and extending human capabilities. The joint outcomes 
of human-machine collaboration can result in systems capable of creativity and 
intuitive action to transcend mere automation. Communication is a critical aspect 
of every social system. Therefore, emphasis must be placed on the interaction 
interfaces between such actors. To make such interfaces effective, the concept 
of shared context or situation awareness between collaborating agents becomes 
essential and can be seen as a form of mutual understanding [33]. This shared 
context is enabled through interaction communication of different modalities, 
including direct verbal (speech, text) and non-verbal (gestures, action and intention 
recognition, emotions recognition). On the other hand, means must be designed 
so that humans can understand the machine’s goals and rationale for acting to 
reach such goals in a human-like form. In this regard, human-machine interfaces 
to support multi-modal interaction play a crucial role. These aspects were also 
identified by Jwo et al. [53], who described the 3I (Intellect, Interaction, and 
Interface) aspects that must be considered for achieving human-in-the-loop smart 
manufacturing. 

Beyond shared context, human-machine cooperation requires adequate commu-
nication and shared or sliding control [101]. To realize an effective bidirectional 
information exchange, theory and methods must address how data and machine rea-
soning can be presented intuitively to humans. Frameworks and models abstracting 
human cognitive capabilities [60] are key to achieving this. Aligning the design 
of interactive interfaces and support tools for human-machine interactions with 
such concepts can be critically important for making effective human–machine 
interfaces. Enhancements in the interactivity, multisensitivity, and autonomy of 
feedback functions implemented on such interfaces allow for deeper integration 
between humans and machines. Shared control can be articulated at operational, 
tactical, and strategic levels, affecting information-gathering, information-analysis, 
decision-making, and action implementation. 

Human-machine interactions can be viewed from multiple perspectives, neces-
sitating a thorough consideration of several factors influencing such collaborations. 
These factors encompass emotional and social responses, task design and assign-
ment, trust, acceptance, decision-making, and accountability [23]. Notably, research 
indicates that machines in collaborative settings impact human behavior, resulting 
in a diminished emotional response toward them. Consequently, this reduced 
emotional response can foster more rational interactions. Moreover, studies reveal 
that humans perceive a team more favorably when machines acknowledge and admit 
their errors. Additionally, the absence of social pressure from humans can detrimen-
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tally affect overall human productivity. Furthermore, concerning accountability for 
decision-making, humans tend to shift responsibility onto machines. 

Trust, a critical aspect to consider, has been explored extensively. Studies 
demonstrate that trust in machines is closely linked to perceived aptness [23]. 
Instances of machine errors often lead to a loss of trust, particularly when machines 
act autonomously. However, if machines operate in an advisory capacity, trust can be 
amended over time. Additionally, research reveals that while humans value machine 
advice, they hesitate to relinquish decision-making authority entirely. Nevertheless, 
relying excessively on machines can result in sub-optimal outcomes, as humans may 
fail to identify specific scenarios that necessitate their attention and judgment. For 
further details about the abovementioned experiments and additional insights the 
reader may be interested on the works by Chugunova et al. [23]. 

2.2 Industry 5.0 and Human-Centric Manufacturing 

2.2.1 New Technological Opportunities to Reshape the Human Workforce 

Digital transformation in production environments demands new digital skills and 
radically reshapes the roles of plant and machine operators [22, 104]. While Industry 
4.0 emphasizes the use of technologies to interconnect different stages of the 
value chain and the use of data analytics to increase productivity, Industry 5.0 
emphasizes the role of humans in the manufacturing context [16, 54]. Further-
more, it aims to develop means that enable humans to work alongside advanced 
technologies to enhance industry-related processes [68]. An extensive review of 
this paradigm and its components was written by Leng et al. [62]. Nevertheless, 
two components are relevant to this work: collaborative intelligence and multi-
objective interweaving. Collaborative Intelligence is the fusion of human and AI 
[110]. In the context of Industry 5.0, the fusion of both types of intelligence entails 
the cognitive coordination between humans and AI in machines, enabling them to 
collaborate in the innovation, design, and creation of tailored products and services. 
Complementarity between humans and AI (see Table 1) leads to the more effective 
execution of such tasks than would be possible if relegated to humans or machines 
only [18, 51, 75, 86]. 

When analyzing complementarities, humans have the knowledge and skills to 
develop and train machines by framing the problems to be solved and providing 
feedback regarding their actions or outputs [50, 62, 82, 112]. Furthermore, humans 
can enrich machine outcomes by interpreting results and insights and deciding 
how to act upon them [113]. Machines amplify workers’ cognitive abilities: they 
can track many data sources and decide what information is potentially relevant 
to humans. Furthermore, machines can excel at repetitive tasks and free humans 
from such a burden. Such complementary is considered within the multi-objective 
interweaving nature of Industry 5.0, which enables optimizing multiple goals 
beyond process performance and social and environmental sustainability [13].
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Table 1 Overview on humans and AI complementarity (adapted from [50, 62, 82], and comple-
mented with our observations). x: capability completely fulfilled; o: capability partially fulfilled 

Capability Humans Machines 

Strengths and capabilities Leadership x 

Teamwork x 

Creativity x o 

Problem-solving x x 

Risk assessment x o 

Intuition x 

Interpretation x 

Empathy x 

Adapt behavior x o 

Learn from experience x o 

Speed x 

Scalability x 

Endurance x 

Quantitative accuracy x 

Process large amounts of data x 

Process different kinds of data in parallel x 

Perform continuous operations x 

Consistent decision-making x 

Physical and cognitive abilities x o 

Weaknesses Prone to biases and errors x 

Affected by emotions x 

Affected by distractions x 

Prone to frauds and adversarial attacks o x 

Affected by fatigue x 

Limited to certain scope and goals x 

Lack of emotional intelligence x 

Lack of social skills x 

Moreover, research suggests that leading companies are beginning to recognize the 
benefit of using machines and automation systems to supplement human labor rather 
than replacing the human workforce entirely [5, 28]. While AI was already able to 
tackle certain tasks with super-human capability [24], it has recently shown progress 
in areas such as creativity (e.g., through generative models such as DALL.·E 2 [84]) 
or problem-solving [20], opening new frontiers of human-machine collaboration, 
such as co-creativity [9, 64]. 

In addition to the direct human involvement described above, digital twins [74] 
are another way to incorporate human insights into the AI processes. By creating 
virtual models of human behavior and mental processes, more profound insights 
into how humans interact with the world and use this information to improve 
AI systems. Digital twins can also support explainability and transparency in AI
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systems, making explaining how they arrive at their decisions easier [12]. Moreover, 
digital representations can be used to consider users’ preferences in the AI system 
behaviors, e.g., type of support [48, 106]. 

2.2.2 Trustworthiness and Implications for AI-Driven Industrial Systems 

Trustworthiness for systems and their associated services and characteristics is 
defined according to the International Organization for Standardization (ISO) as 
“the ability to meet stakeholders’ expectations in a verifiable way” [3]. It follows 
that trustworthiness can refer to products, services, technology, and data and, 
ultimately, to organizations. Therefore, the concept of trustworthiness is directly 
applicable to AI-driven systems, particularly to human-centric AI-enabled solutions. 
However, it should be understood that trustworthiness is a multifaceted concept, 
incorporating distinct characteristics such as accountability, accuracy, authenticity, 
availability, controllability, integrity, privacy, quality, reliability, resilience, robust-
ness, safety, security, transparency, and usability [3]. 

Some of these characteristics should be seen as emerging characteristics of AI-
enabled systems, which are not solely determined by the AI’s contribution to an 
overall solution. Focusing specifically on the AI components of such solutions, 
ethics guidelines published by the European Commission (EC) identifies seven key 
requirements for trustworthiness characteristics that must be addressed [35]. These 
include (i) human agency and oversight; (ii) technical robustness and safety; (iii) 
privacy and data governance; (iv) transparency; (v) diversity, non-discrimination, 
and fairness; (vi) societal and environmental well-being; and (vii) accountability. 
Regarding some of these characteristics, there is a direct correspondence between 
broader trustworthiness as documented according to ISO and the EC guidelines. 
Technical robustness, safety, privacy, transparency, and accountability are identified 
in both sources. Human agency and oversight are directly linked to controllability, 
and so is governance, which is also the prime focus of ISO recommendations [2]. 
Given the societal impacts that AI-induced outcomes can have, the EC has also 
highlighted diversity, non-discrimination, fairness, and societal and environmental 
well-being as key characteristics of trusted AI solutions. However, these aspects are 
also partly addressed as part of the broader concept of “freedom from risk", which 
can be defined as the extent to which a system avoids or mitigates risks to economic 
status, human life, health, and well-being and or the environment [1]. 

The trustworthiness of an AI system can be affected by multiple factors. Some 
of them relate to cybersecurity. In particular, machine learning algorithms are 
vulnerable to poison and evasion attacks. During poisoning attacks, the adversary 
aims to tamper with the training data used to create the machine learning models 
and distort the AI model on its foundation [42, 96]. Evasion attacks are performed 
during inference, where the attacker crafts adversarial inputs that may seem normal 
to humans but drive the models to classify the inputs wrongly [49, 72]. Such 
an adversarial landscape poses significant challenges and requires a collaborative 
approach between humans and machines to build defenses that can lead to more
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robust and trustworthy AI solutions. While human intelligence can be used for 
the human-in-the-loop adversarial generation, where humans are guided to break 
models [108], AI solutions can be trained to detect adversarial inputs and uncover 
potentially malicious instances that try to evade the AI models [10]. Furthermore, 
human-machine collaboration can be fostered to detect such attacks promptly. 

Accountability refers to the state of being accountable and relates to allocated 
responsibility [3]. At the system level, accountability is a property that ensures 
that the actions of an entity can be traced uniquely to the entity [4]. However, 
when considering governance, accountability is the obligation of an individual or 
organization to account for its activities, accept responsibility for them, and disclose 
the results in a transparent manner [2]. Therefore, accountability is closely linked to 
transparency for AI-enabled systems, which is served via XAI and interpretable AI. 
XAI and interpretable AI ensure that AI systems can be trusted when analyzing 
model outcomes that impact costs and investments or whenever their outputs 
provide information to guide human decision-making. Accuracy generally refers 
to the closeness of results and estimates to true values but, in the context of AI, 
further attains the meaning appropriate for specific machine learning tasks. Any 
entity that is what it claims to be is said to be characterized by authenticity, with 
relevant connotations for what AI-enabled systems claim to deliver. Such systems 
may furthermore be characterized by enhanced availability to the extent that they are 
usable on demand. Other characteristics such as integrity, privacy, and security attain 
additional meaning and importance in AI-driven systems and are further discussed 
in the next section. They can contribute to and affect the overall quality, reliability, 
resilience, robustness, and safety, whether the unit of interest is a component, a 
product, a production asset, or a service, with implications for individual workers 
all the way to the organization as a whole. When considering accountability for AI 
systems from the legal perspective, the EU AI Act [36] in its current form considers 
developers and manufacturers responsible for AI failures or unexpected outcomes. 
Nevertheless, the concept of accountability will evolve based on the issues found 
in practice and the corresponding jurisprudence that will shape the learning on how 
different risks, contexts, and outcomes must be considered in the industry context 
[46]. 

2.3 Automated Quality Inspection 

2.3.1 The Role of Robotics 

The increasing prevalence of human-robot collaboration in diverse industries show-
cases the efforts to enhance workplace productivity, efficiency, and safety through 
the symbiotic interaction of robots and humans [44]. In manufacturing, robots are 
employed for repetitive and physically demanding tasks, enabling human workers to 
allocate their skills toward more intricate and creative endeavors. This collaborative
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partnership allows for the fusion of human and robot capabilities, maximizing the 
overall outcomes. 

The successful implementation of human-robot interaction owes credit to col-
laborative robots, commonly called cobots [56]. These advanced robots have 
sophisticated sensors and programming that facilitate safe and intuitive human inter-
action. This collaboration improves productivity and fosters a work environment 
where humans and robots can coexist harmoniously. This approach harmoniously 
merges robots’ precision and accuracy with human workers’ adaptability and 
dexterity. 

Robotic integration in product quality control has become widespread across 
diverse industries and production sectors. Robots offer exceptional advantages 
within quality inspection processes, including precise repeatability and accurate 
movements [17]. They possess the capability to analyze various product aspects 
such as dimensions, surface defects, color, texture, and alignment, ensuring adher-
ence to predefined standards. Robots’ superior accuracy and efficiency make them 
an ideal choice for quality control applications. 

To facilitate quality testing, robots are equipped with a range of sensors. These 
sensors enable precise measurement, detection, and sorting operations. Robots with 
cameras utilize advanced machine vision techniques to analyze image and video 
streams and identify anomalies like cracks, scratches, and other imperfections 
[107]. Subsequently, defective items are segregated from conforming ones, elevating 
overall production quality. The industry is witnessing an increasing adoption of 3D 
vision systems, particularly in applications requiring object grasping and precise 
information about object position and orientation. 

Specially designed robots, such as coordinate measuring machines, are employed 
for dimensional and precision measurements. These robots feature high-precision 
axis encoders and accurate touch probes, enabling them to detect part measurements 
and consistently evaluate adherence to quality standards [61]. 

The active learning paradigm can be applied to enable efficient and flexible 
learning in robots. This can be particularly useful in resource-constrained industrial 
environments, where data scarcity and limited human knowledge prevail, acquiring 
essential data through unsupervised discovery becomes imperative [26]. Active 
learning demonstrates extensive applicability in robotics, encompassing prioritized 
decision-making, inspection, object recognition, and classification. Within quality 
control, active learning algorithms optimize machine learning models’ defect 
detection and quality assessment training process. By actively selecting informative 
samples for labeling, active learning minimizes labeling efforts, augments model 
training efficiency, and ultimately enhances the accuracy and performance of quality 
control systems. 

An intriguing domain of investigation pertains to the advancement of intuitive 
and natural interfaces that foster seamless communication and interaction between 
humans and robots. This entails the exploration of innovative interaction modalities, 
encompassing speech, gestures, and facial expressions, or even using augmented 
reality to customize the robots’ appearance and foster better interaction with humans 
[59]. Other key research areas involve developing adaptive and flexible robotic
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systems that dynamically adapt their behavior and actions to the prevailing context 
and the human collaborator’s preferences, achieving low processing times [78]. 
These could be critical to enable real-time human intent recognition, situational 
awareness, and decision-making, all aimed at augmenting the adaptability and 
responsiveness of robots during collaborative tasks. 

2.3.2 Artificial Intelligence—Enabled Visual Inspection 

Visual inspection is frequently used to assess whether the manufactured product 
complies with quality standards and allows for the detection of functional and 
cosmetic defects [21]. It has historically involved human inspectors in determining 
whether the manufactured pieces are defective. Nevertheless, the human visual 
system excels in a world of variety and change, while the visual inspection process 
requires repeatedly observing the same product type. Furthermore, human visual 
inspection suffers from poor scalability and the fact that it is subjective, creating an 
inherent inspector-to-inspector inconsistency. The quality of visual inspection can 
be affected by many factors. See [94] classified them into five categories, whether 
they are related to the (i) task, (ii) individual, (iii) environment, (iv) organization, or 
(v) social aspects. 

To solve the issues described above, much effort has been invested in automated 
visual inspection by creating software capable of inspecting manufactured products 
and determining whether they are defective. Cameras are used to provide visual 
input. Different approaches have been developed to determine whether a defect 
exists or not. 

Automated optical quality control may target visual features as simple as colors, 
but more complex ones are involved in crack detection, the orientation of threads, 
defects in bolts [52] and metallic nuts [14]. Through automated optical inspection, 
it is also possible to detect defects on product surfaces of wide-ranging sizes 
[19, 103, 117]. Furthermore, it is also possible to target the actual manufacturing 
process, for example, welding [102], injection molding [66], or assembly of 
manufactured components [37]. Additionally, automated visual inspection applies 
to remanufacturing products at the end of their useful life [91]. 

State-of-the-art (SOTA) automated visual inspection techniques are dominated 
by deep learning approaches, achieving high-performance levels [6]. Among the 
many types of learning from data for visual inspection, unsupervised, weakly 
supervised, and supervised methods can be named. Unsupervised methods aim 
to discriminate defective manufactured pieces without labeled data. The weakly 
supervised approach assumes that data has an inherent cluster structure (instances 
of the same class are close to each other) and that the data lies in a manifold 
(nearby data instances have similar predictions). Therefore, it leverages a small 
amount of annotated data and unlabeled data to learn and issue predictions. 
Finally, supervised methods require annotated data and usually perform best among 
the three approaches. Often, labeled data are unavailable in sufficient range and 
numbers to enable fully supervised learning and additional exemplar images can be
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produced through data augmentation [55]. In addition, multiple strategies have been 
developed to reduce the labeled data required to train and enhance a given classifier. 
Among them are active learning, generative AI, and few-shot learning. In the context 
of visual inspection, active learning studies how to select data instances that can 
be presented to a human annotator to maximize the models’ learning. Generative 
AI aims to learn how to create data instances that resemble a particular class. 
Finally, few-shot learning aims to develop means by which the learner can acquire 
experience to solve a specific task with only a few labeled examples. To compensate 
for the lack of labeled data, it can either augment the dataset with samples from other 
datasets or use unlabeled data, acquire knowledge on another dataset, or algorithm 
(e.g., by adapting hyperparameters based on prior meta-learned knowledge) [109]. 

Regardless of the progress made in automated visual inspection, many challenges 
remain. First, there is no universal solution for automated visual inspection: solu-
tions and approaches have been developed to target a specific product. Flexibility 
to address the inspection of multiple manufactured products with a single visual 
inspection system is a complex challenge and remains an open issue [21, 25, 80]. 
Second, unsupervised machine learning models do not require annotating data and 
may provide a certain level of defect detection when associating data clusters 
to categories (e.g., types of defects or no defects). Furthermore, given that no 
prior annotation of expected defects is required, they are suitable when various 
defects exist. Nevertheless, their detection rates are lower than those obtained by 
supervised machine learning models. Therefore, it should be examined use case by 
use case whether the unsupervised machine learning models are a suitable solution. 
Third, data collection and annotation are expensive. While data collection affects 
unsupervised machine learning models, data collection and annotations directly 
impact supervised machine learning approaches. While multiple strategies have 
been envisioned to overcome this issue (e.g., generative models, active learning, 
and few-shot learning), data collection and annotation remain an open challenge. 
Finally, better explainability techniques and intuitive ways to convey information 
to humans must be developed to understand whether the models learn and predict 
properly. 

2.4 Realizing Human-Machine Collaboration in Visual 
Inspection 

While much progress has been made in automated visual inspection, the authors rec-
ognize that most solutions are custom and developed for a particular product type. 
Developing systems that could adapt to a broad set of products and requirements 
remain a challenge. In human-centered manufacturing, it is critical to rethink and 
redesign the role of humans in the visual inspection process. The role of humans 
in automated visual inspection is shifting away from repetitive and manual tasks to 
roles with more cognitive involvement, which can still not be replicated by machines
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and AI. In the simplest case, this involves humans labeling acquired image samples 
to guide the machine learning process [98]. However, the role of humans extends 
beyond data labeling and may involve interaction loops between humans and AI as 
part of the machine learning process [79]. 

In this regard, two machine learning paradigms are particularly important: active 
learning and XAI. On the one side, active learning is an AI paradigm that seeks 
the intervention of an oracle (usually a human person) to help the machine learning 
model learn better toward an objective. XAI, on the other side, aims to explain the 
rationale behind a machine learning model action or prediction. Doing so enables 
a fruitful dialogue between humans and machines by providing insights into the 
machines’ rationale and decision-making process. 

Active learning for classification is based on the premises that unlabeled data 
(either collected or generated) is abundant, the data labeling is expensive, and 
the models’ generalization error can be minimized by carefully selecting new 
input instances with which the model is trained [95, 99]. Active learning for 
classification has traditionally focused on the data (selecting or generating the data 
without further consideration for the model at hand) and the model’s learning (e.g., 
considering the uncertainty at the predicted scores). Nevertheless, approaches have 
been developed to consider both dimensions and provide a holistic solution. One of 
them is the Robust Zero-Sum Game (RZSG) framework [119], which attempts to 
optimize both objectives at once, framing the data selection as a robust optimization 
problem to find the best weights for unlabeled data to minimize the actual risk, 
reduce the average loss (to achieve greater robustness to outliers) and minimize the 
maximal loss (increasing the robustness to imbalanced data distributions). Another 
perspective has been considered by Zajec et al. [118] and Križnar et al. [57], who 
aim to select data based on insights provided by XAI methods and, therefore, benefit 
from direct insights into the model’s learning dynamics. Regardless of the approach, 
Wu et al. [111] propose that three aspects must be considered when searching for 
the most valuable samples: informativeness (contains rich information that would 
benefit the objective function), representativeness (how many other samples are 
similar to it), and diversity (the samples do not concentrate in a particular region 
but rather are scattered across the whole space). Strategies will be conditioned by 
particular requirements (e.g., whether the data instances are drawn from a pool 
of samples or a data stream). For a detailed review of active learning, the reader 
may be interested in some high-quality surveys of this domain. In particular, the 
works by Settles [95] and Rožanec et al. [87] can serve as an introduction to this 
topic. Furthermore, the surveys by Fu et al. [38] and Kumar et al. [58] provide an 
overview of querying strategies in a batch setting; the survey by Lughofer [69] give  
an overview of active learning in online settings, and the study by Ren et al. [85] 
describes active learning approaches related to deep learning models. 

While AI models have the potential to automate many tasks and achieve super-
human performance levels, in most cases, such models are opaque to humans: 
their predictions are mostly accurate, but no intuition regarding their reasoning 
process is conveyed to humans. Understanding the rationale behind a model’s 
prediction is of utmost importance, given it provides a means to assess whether
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the predictions are based on accurate facts and intuitions. Furthermore, it is crucial 
to develop means to understand the model’s reasoning process given the impact 
such techniques have on the real world, either in fully automated settings or when 
decision-making is delegated to humans. Such insights enable responsible decision-
making and accountability. The subfield of AI research developing techniques and 
mechanisms to elucidate the models’ rationale and how to present them to humans 
is known as XAI. While the field can be traced back to the 1970s [93], it has 
recently flourished with the advent of modern deep learning [115]. When dealing 
with XAI, it is important to understand what makes a good explanation. A good 
explanation must consider at least three elements [11]: (a) reasons for a given model 
output (e.g., features and their values, how strongly do features influence a forecast, 
whether the features at which the model looks at make sense w.r.t. the forecast, 
how did training data influence the model’s learning), (b) context (e.g., the data on 
which the machine learning model was trained, the context on which inference is 
performed), and (c) how is the abovementioned information conveyed to the users 
(e.g., target audience, the terminology used by such an audience, what information 
can be disclosed to it). XAI can be valuable in enhancing human understanding 
with new (machine-based) perspectives. It can also help to understand whether the 
model is optimizing for one or few of all required goals and, therefore, identify 
an appropriate compromise between the different goals that must be satisfied for the 
problem at hand [30]. To assess the goodness of an explanation, aspects such as user 
satisfaction, the explanation persuasiveness, the improvement of human judgment, 
the improvement of human-AI system performance, the automation capability, and 
the novelty of explanation must be considered [92]. For a detailed review of XAI, 
the reader may consider the works of Arrieta et al. [11], Doshi-Velez et al. [30], 
and Schwalbe et al. [92]. The work of Bodria et al. [15] provides a comprehensive 
introduction to XAI black box methods, and the works of Doshi-Velez et al. [30], 
Hoffman et al. [45], and Das et al. [27] focus on insights about how to measure the 
quality of explanations. 

Active learning and XAI can complement each other. Understanding the rationale 
behind a model prediction provides valuable insight to humans and can also be 
leveraged in an active learning setting. In the particular case of defect inspection, 
insights obtained by XAI techniques are usually presented in anomaly maps. Such 
anomaly maps highlight regions of the image the machine learning models consider 
to issue a prediction. The more perfect the learning of a machine learning model, 
the better those anomaly maps should annotate a given image indicating defective 
regions. Therefore, the insights obtained from those anomaly maps can be used in 
at least two ways. First, the anomaly maps can be handed to the oracle (human 
inspector), who, aided by the anomaly map and the image of the product, may 
realize better where the manufacturing errors are, if any. Second, anomaly maps 
can be used to develop novel models and active learning policies that allow for data 
selection, considering what was learned by the model and how the model perceives 
unlabeled data. This approach is detailed in Fig. 1, which depicts how an initial 
dataset is used to train machine learning models for defect classification or data 
generation. In the model training process, XAI can be used to debug and iterate the
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Fig. 1 Envisioned setup for an AI-first human-centric visual inspection solution 

model until getting satisfactory results. The classification model is then deployed to 
perform inference on incoming product images from the manufacturing line. If the 
classification scores for certain classes are high enough, the product can be classified 
as good or defective. When the uncertainty around the predicted scores is not low 
enough, the case can be sent for manual revision. Insights obtained through XAI and 
unsupervised classification models can be used to hint to the human inspector where 
the defects may be located. Alternative data sources for the manual revision or data 
labeling process can be generative models (e.g., generative adversarial networks), 
which can be used to generate labeled synthetic data and validate the level of 
attention of a human inspector. When collecting data, active learning techniques can 
be used to select the most promising data instances from either generative models or 
incoming images from the manufacturing line, reducing the labeling effort. Finally, 
a separate model can monitor human inspectors to predict fatigue and performance. 
Such models can be a valuable tool to ensure workplace well-being and enhance 
work quality. Some of the results obtained within the STAR project are presented in 
Sect. 3.1. 

In recent years, researchers have made significant progress in understanding and 
quantifying fatigue and recognizing its impact on human performance and overall 
well-being. Through AI techniques, new approaches have emerged to accurately 
estimate the fatigue levels of individuals during different tasks and in different 
contexts [7, 47]. One notable area of inquiry concerns the assessment of fatigue in 
the workplace. Understanding and managing worker fatigue has become essential 
given the increasing demands and pressures of modern work environments. AI 
models can consider various factors and features to assess employee fatigue levels 
accurately. These models can provide valuable insights for organizations looking 
to implement strategies and interventions to optimize productivity and ensure
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employee well-being or to support workflows, including quality controls, such as 
identifying when operators need a break. Although laboratory experiments have 
been conducted in this area [63], industrial applications remain relatively restricted 
compared to other fields, such as driving [97]. 

3 Industrial Applications 

This section briefly describes how some ideas presented in the previous sections 
have been realized within the EU H2020 STAR project. Three domains are consid-
ered: artificial intelligence for visual inspection, digital twins, and cybersecurity. 

3.1 Machine Learning and Visual Inspection 

In the domain of visual inspection, multiple use cases were considered. The datasets 
were provided by two industrial partners: Philips Consumer Lifestyle BV (Drachten, 
The Netherlands) and Iber-Oleff - Componentes Tecnicos Em Plástico, S.A. (Portu-
gal). The Philips Consumer Lifestyle BV manufacturing plant is considered one of 
Europe’s most important Philips development centers and is devoted to producing 
household appliances. They provided us with three datasets corresponding to 
different products. The first one corresponded to logo prints on shavers. The visual 
inspection task required understanding whether the logo was correctly printed or had 
some printing defect (e.g., double printing or interrupted printing). The second one 
corresponded to decorative caps covering the shaving head’s center, and it required 
identifying whether the caps were correctly manufactured or if some flow lines or 
marks existed. Finally, the third dataset was about toothbrush shafts transferring 
motion from the handle to the brush. It required identifying whether the handles 
were manufactured without defects or if big dents, small dents, or some stripes could 
be appreciated. Iber-Oleff - Componentes Tecnicos Em Plástico, S.A. provided us 
with another dataset about automobile air vents they manufacture. The air vents have 
three components of interest: housing, lamellas (used to direct the air), and plastic 
links (which keep the lamellas tied together). The visual inspection task required 
us to determine whether (a) the fork is leaning against the support and correctly 
positioned, (b) the plastic link is present, (c) the lamella 1 is present, and the link 
is correctly assembled, and (d) the lamella 3 is present, and the link is correctly 
assembled. 

Through the research, the researchers aimed to develop a comprehensive AI-first 
and human-centric approach to automated visual inspection. In particular, they (i) 
developed machine learning models to detect defects, (ii) used active learning to 
enhance the models’ learning process while alleviating the need to label data, (iii) 
used XAI to enhance the labeling process, (iv) analyzed how data augmentation 
techniques at embeddings and image level, along with anomaly maps can enhance
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the machine learning discriminative capabilities, (v) how human fatigue can be 
detected and predicted in humans, and (vi) how to calibrate and measure models’ 
calibration quality to provide probabilistic predictive scores. 

Research at the EU H2020 STAR project confirmed that active learning could 
alleviate the need for data labeling and help machine learning models learn better 
based on fewer data instances [90]. Nevertheless, the effort saved depends on 
the pool of unlabeled images, the use case, and the active learning strategy. 
Data augmentation techniques at an image or embedding level have increased 
the models’ discriminative performance [89]. Furthermore, complementing images 
with anomaly maps as input to supervised classification models has substantially 
improved discriminative capabilities [88]. The data labeling experiments showed 
decreased labeling accuracy by humans over time [86], which was attributed to 
human fatigue. While the future labeling quality can be predicted, it requires 
ground truth data. This can be acquired by showing synthetically generated images. 
Nevertheless, more research is required to devise new models that would consider 
other cues and predict human fatigue in data labeling without the requirement 
of annotated data. Finally, predictive scores alone provide little information to 
the decision-maker: predictive score distributions differ across different models. 
Therefore, performing probability calibration is paramount to ensure probability 
scores have the same semantics across the models. The research compared some 
of the existing probability calibration techniques and developed metrics to measure 
and assess calibration quality regardless of ground truth availability [90]. 

3.2 Human-Digital Twins in Quality Control 

In the context of STAR, significant advancements have been made in developing 
human-digital twins (HDTs). In particular, the project has developed an infras-
tructure (Clawdite Platform [74]) that allows the effortless creation of replicas of 
human workers through instantiating their digital counterparts. These HDTs have 
diverse features, encompassing static characteristics, dynamic data, and behavioral 
and functional models [73]. 

To ensure a comprehensive representation of the human worker, STAR’s HDT 
incorporates two crucial data types. Firstly, it assimilates physiological data col-
lected from wearable devices. Secondly, it utilizes quasi-static data, which encapsu-
lates characteristic attributes of the human, offering a holistic perspective on their 
traits. Central to STAR’s HDT is an AI model designed to detect mental stress and 
physical fatigue. By leveraging physiological and quasi-static data, this AI model 
effectively gauges the stress and fatigue levels experienced by the human worker. 
This breakthrough in automated quality control holds remarkable significance, 
manifesting in two distinct ways:

• During user manual inspection, the HDT continuously monitors the quality 
control process, actively identifying instances where the worker may be under
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significant mental or physical stress. In such cases, the system promptly suggests 
the worker take a break, ensuring their well-being and preventing any potential 
decline in performance.

• During the training of automatic quality assessment models, as the worker 
evaluates and labels pictures during the dataset creation, the system periodically 
assigns a confidence score to each label provided by the user. This confidence 
score is computed based on evaluating the worker’s mental and physical stress 
levels estimated through the HDT’s AI model. By considering these stress levels 
as an integral part of the quality evaluation process, the HDT provides valuable 
insights into the worker’s state of mind and physical condition, allowing one to 
consider these features during the training of AI models for quality assessment 
and control. 

The integration of the HDTs, supported by the Clawdite Platform, in STAR’s 
operations signifies a significant step forward in human-AI collaboration. This inno-
vative approach prioritizes human workers’ well-being and empowers automated 
quality control systems, ensuring optimal productivity and efficiency in various 
industrial settings. 

3.3 Making AI Visual Inspection Robust Against Adversarial 
Attacks 

In the context of the STAR project, an AI architecture was created for evaluating 
adversarial tactics and defense algorithms intended to safeguard, secure, and make 
the environments of manufacturing AI systems more reliable. More specifically, it 
was focused on AI-based visual inspection and tackled multiple use cases provided 
by two industrial partners: Philips Consumer Lifestyle BV (Drachten, The Nether-
lands) and Iber-Oleff - Componentes Tecnicos Em Plástico, S.A. (Portugal). Current 
production lines are often tailored for the mass production of one product or product 
series in the most efficient way. Given its many advantages, AI is being increasingly 
adopted for quality inspection. Such models are usually trained considering some 
convolutional neural network (CNN), which then classifies whether a product is 
defective through inference upon receiving images captured by the inspection 
cameras. Nevertheless, such models can be attacked through adversarial data, 
leading AI models to wrongly classify the products (e.g., not detecting defects). For 
instance, the adversary may exploit a vulnerability in the visual inspection camera 
and compromise the integrity of the captured data by manipulating the operational 
behavior of this business resource. 

Among the various experimental testbeds built in the context of the STAR 
project, the ones created with soother cherries provided by Philips Consumer 
Lifestyle BV were the most challenging. The cherry is the upper part of the soother. 
The high quality of the cherry must be guaranteed to avoid any harm to the babies. 
Therefore, detecting any adversarial attack is of primary importance, given the
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Fig. 2 Evaluation results of pairwise comparison of adversarial attacks and defenses 

consequences of the attack can directly impact children’s health. The goal of the 
testbed was to quantify the impact of adversarial attacks on classification models 
performing a visual inspection and evaluate how effective the defenses against 
such attacks were. To build the testbed, the Adversarial Robustness Toolbox [81] 
was used. In the experiments, the following adversarial methods were used: Fast 
Gradient Sign Attack (FGSM) [40], DeepFool [76], NewtonFool [49], and Projected 
Gradient Descent (PGD) [72]. The aim was to utilize these well-documented 
adversarial methods to derive crafted instances that can be used to attack the 
baseline classification model. Experiments were performed with defense strategies, 
namely feature squeezing [116], JPEG compression [31], spatial smoothing [116], 
TotalVarMin [43], and adversarial training [100]. 

To gather insights regarding adversarial tactics and defenses, they were evaluated 
pairwise. This enabled us to identify adversarial training as the best defense strategy 
to enhance the robustness of the CNN models. The basic idea behind adversarial 
training is to create examples that will be used later in the training process, creating 
a model aware of adversarial vectors launched against the quality control system. 
The results of the pairwise evaluation of the attacks and defenses are summarized 
in Fig. 2. The results are grouped into four sets based on the attack strategy. A 
baseline classifier was initially trained for each of the four experiments (see tag 
“Training") to get the perception of the accuracy level that the quality inspection 
algorithm can achieve. The baseline model achieved an accuracy between 93% and 
98%. The “Attack” bar indicates the accuracy of the classifier when posed against 
the adversarial attack. The DeepFool, FGSM, and PGD attacks strongly affected 
the classifier, causing the model’s accuracy to drop below 30%. This was not the 
case for the NewtonFool attack, where the classifier’s accuracy dropped to 84%. 
When considering defense strategies, feature squeezing, JPEG compression, and 
spatial smoothing can defend against the DeepFool attack: for the given dataset, they
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led to an accuracy of 98%. However, TotalVarMin failed to defend the model. All 
the defenses failed against the FGSM and the PGD attacks. Based on the acquired 
results of the pairwise evaluations, it became clear that no clear mapping exists 
between types of attacks and defenses. Therefore, it can be challenging for defenders 
to plan a strategy to cope against any attack successfully. This outcome advocates 
the criticality and the challenge of defending against adversarial AI attacks. While 
the off-the-shelf and state-of-the-art defenses cannot perform in a stable manner 
under different adversarial methods, the adversarial training approach seems robust. 
The results agree with the literature, advocating that Adversarial Training can be a 
robust solution that can cope with adversaries despite its simplicity. A more detailed 
description of the abovementioned work can be found in [10]. 

4 Conclusion 

This work has briefly introduced state-of-the-art research on human-machine 
collaboration, perspectives on human-centric manufacturing, and the key aspects 
of trustworthiness and accountability in the context of Industry 5.0. It described 
research on automated quality inspection, considering the role of robotics, AI 
approaches, and solutions to visual inspection and how a fruitful human-machine 
collaboration can be developed in the visual inspection domain. Finally, it described 
the experience and results obtained through research performed in the EU H2020 
STAR project. 

The converging view from the literature analysis is that human-machine coop-
eration requires adequate communication and control realized through effective 
bidirectional information exchange. Studies have been performed to understand 
peoples’ emotional and social responses in human-machine interactions, understand 
task design, and how humans’ trust, acceptance, decision-making, and account-
ability are developed or impacted in the presence of machines. In the field of 
visual inspection, much research was invested in automating the task of visual 
inspection by developing machine learning models to detect product defects. 
Furthermore, many research efforts targeted the development of techniques for XAI 
related to machine vision. Visual aids and hints derived by XAI are conveyed 
to humans through heat maps. Similarly, insights obtained from unsupervised 
machine learning models are conveyed to humans as anomaly maps. While such 
approaches solve particular problems, little research describes how a human-in-the-
loop approach could be developed for visual inspection in manufacturing settings. 
This research aims to bridge the gap by implementing existing and researching novel 
active learning techniques for data selection to enhance the learning of machine 
learning algorithms. It also explores how labeling requirements could be reduced by 
employing few-shot learning and active learning techniques. Furthermore, research 
was conducted to understand how XAI and unsupervised classification methods 
can be used to generate heat maps and anomaly maps to facilitate data labeling 
in the context of manual revision or data annotation tasks. Moreover, predictive
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models were developed to predict how heat maps and anomaly maps should 
be adapted over time to bridge the gap between the information conveyed by 
machine learning algorithms and explainability techniques and human perception. 
In addition, experiments were performed to gain insights related to human fatigue 
monitoring in the context of visual inspection. The present work described a 
complete and modular infrastructure developed to instantiate HDT, and different 
AI models for perceived fatigue exertion and mental stress have been trained to 
derive relevant features for human-centered production systems. Finally, it describes 
some research on adversarial attacks and defenses to enhance the understanding of 
protecting visual inspection setups in manufacturing environments. 

While the research presented above advances the understanding of developing 
a human-in-the-loop approach for visual inspection in manufacturing, many open 
issues remain to be solved. Further research is required to understand how adaptive 
humans perceive hinting and how the many solutions described above contribute 
to building trust between humans and machines. Furthermore, effort must be 
invested to quantify the benefits such solutions bring to a manufacturing plant when 
implemented. Future research will encompass the integration of these solutions, 
aiming to achieve a comprehensive and synergistic implementation. The research 
will aim to develop new approaches that interleave active learning and XAI. 
Furthermore, novel few-shot learning solutions will be considered to allow for 
greater flexibility of the visual inspection while reducing data labeling requirements 
to a minimum. Finally, integrating AI visual inspection models and the HDT is 
expected to significantly augment the efficacy of quality inspection processes during 
user manual assessment and AI model training. 
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