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ABSTRACT
We propose using a two-layered deployment of machine learning
models to prevent adversarial attacks. The first layer determines
whether the data was tampered, while the second layer solves a
domain-specific problem. We explore three sets of features and
three dataset variations to train machine learning models. Our re-
sults show clustering algorithms achieved promising results. In
particular, we consider the best results were obtained by applying
the DBSCAN algorithm to the structured structural similarity in-
dex measure computed between the images and a white reference
image.
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1 INTRODUCTION
Artificial Intelligence (AI) solutions have penetrated the Industry
4.0 domain by revolutionizing the rigid production lines enabling
innovative functionalities like mass customization, predictive main-
tenance, zero defect manufacturing, and digital twins. However,
AI-fuelled manufacturing floors involve many interactions between
the AI systems and other legacy Information and Communications
Technology (ICT) systems, generating a new territory for malevo-
lent actors to conquer. Hence, the threat landscape of Industry 4.0 is
expanded unpredictably if we also consider the emergence of adver-
sary tactics and techniques against AI systems and the constantly
increasing number of reports of Machine Learning (ML) systems
abuses based on real-world observations. In this context, Adversar-
ial Machine Learning (AML) has become a significant concern in
adopting AI technologies for critical applications, and it has already
been identified as a barrier in multiple application domains. AML is
a class of data manipulation techniques that cause changes in the be-
havior of AI algorithms while usually going unnoticed by humans.
Suspicious objects misclassification in airport control systems [7],
abuse of autonomous vehicles navigation systems [11], tricking of
healthcare image analysis systems for classifying a benign tumor as
malignant [15], abnormal robotic navigation control [23] are only
a few examples of AI models’ compromise that advocate the need
for the investigation and development of robust defense solutions.

Recently, the evident challenges posed by AML have attracted
the attention of the research community, the industry 4.0, and
the manufacturing domains [20], as possible security issues on
AI systems can pose a threat to systems reliability, productivity,
and safety [2]. In this reality, defenders should not be just passive
spectators, as there is a pressing need for robustifying AI systems
to hold against the perils of adversarial attacks. New methods are
needed to safeguard AI systems and sanitize the ML data pipelines
from the potential injection of adversarial data samples due to
poisoning and evasion attacks.
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We developed a machine learning model to address the above-
mentioned challenges, detecting whether the incoming images are
adversarially altered. This enables a two-layered deployment of
machine learning models that can be used to prevent adversar-
ial attacks (see Fig. 1): (a) the first layer with models determining
whether the data was tampered, and (b) a second layer that operates
with regular machine learning models developed to solve particu-
lar domain-specific problems. We demonstrate our approach in a
real-world use case from Philips Consumer Lifestyle BV. This paper
explores a diverse set of features and machine learning models
to detect whether the images have been tampered for malicious
purposes.

Figure 1: Two-layered deployment ofmachine learningmod-
els can be used to prevent adversarial attacks.

This paper is organized as follows. Section 2 outlines the current
state of the art and related works, Section 3 describes the use case,
and Section 4 provides a detailed description of the methodology
and experiments. Finally, Section 5 outlines the results obtained,
while Section 6 concludes and describes future work.

2 RELATEDWORK
AML attacks are considered a severe threat to AI systems, and, that
is, the research community seeks new robust defensive methods.
Image classifiers, those analyzed in this work, are the focal point of
the vast majority of the AML literature, as those have been proved
prone to noise perturbations. According to the literature, promi-
nent solutions focus on denoising the image classifiers, training
the target model with adversarial examples, known as adversarial
training, or applying standalone defense algorithms.

Yan et. al. [21] proposed a new adversarial attack calledObservation-
based Zero-mean Attack, and they evaluated the robustness of var-
ious deep image denoisers. They followed an adversarial training
strategy and effectively removed various synthetic and adversarial
noises from data. In [17], pre-processing data defenses for image
denoising are evaluated, highlighting the advantages of such ap-
proaches that do not require the retraining of the classifiers, which
is a computationally intense task in computer vision.

However, the robustness of adversarial training via data augmen-
tation and distillation is advocated by the majority of the works
in the domain. Specifically, Bortsova et al. [3] have focused on
adversarial black-box settings, assuming that the attacker does
not have full access to the target model as a more realistic sce-
nario. They tuned their testbed to ensure minimal visual percepti-
bility of the attacks. The applied adversarial training dramatically
decreased the performance of the designed attack. Hashemi and
Mozaffari [8] trained CNNs with perturbed samples manipulated

by various transformations and contaminated by different noises
to foster robustness using adversarial training.

On top of the above, several standalone solutions have been
proposed. CARAMEL system in [13] offered a set of detection
techniques to combat security risks in automotive systems with
embedded camera sensors. Hybrid approaches and more general
alternatives intrinsically improve the robustness of AI models. A
defensive Distillation mechanism against evasion attacks is pro-
posed in [16] being able to reduce the effectiveness of adversarial
sample creation from 95% to less than 0.5% on a studied DNN. Sub-
set Scanning was presented in [19] to give the ability to DNNs to
recognize out-of-distribution samples.

3 USE CASE
The Philips factory in Drachten, the Netherlands, is an advanced
factory for mass manufacturing consumer goods (e.g., shavers,
OneBlade, baby bottles, and soothers). Current production lines are
often tailored for the mass production of one product or product
series in the most efficient way. However, the manufacturing land-
scape is changing due to global shortages, manufacturing assets
and components are becoming scarcer [1], and a shift in market
demand requires the production of smaller batches more often. To
adhere to these changes, production flexibility, re-use of assets, and
a reduction of reconfiguration times are becoming more critical
for the cost-efficient production of consumer goods. One of the
topics currently investigated within Philips is quickly setting up
automated quality inspections to make reconfiguring quality con-
trol systems faster and easier. Next to working on the technical
challenges of doing this, safety and cyber-security topics are ex-
plored, aiming to implement AI-enabled automated quality systems
with state-of-the-art defenses, the latter of which is the focus point
discussed in this paper.

The dataset used contains images of the decorative part of a
Philips shaver. This product is mass-produced and important for the
visual appearance of the shavers. Next to that, the part is very close
to or in direct contact with the user’s skin, where any deviations in
its quality could impact shaver performance or even shaver safety.
The dataset contains 1.194 images classified into two classes: (a)
attacked with the Projected Gradient Descent attack [5], and (b)
not attacked.

4 METHODOLOGY
We framed adversarial attack detection as a classification problem.
We experimented with three kinds of features: (a) image embed-
dings (obtained from the Average Pooling Layer of a pre-trained
ResNet-18 model ([9])), (b) histograms reflecting grayscale pixel
frequencies (with pixel values extending between zero and 255), and
(c) structural similarity index measure (SSIM) computed against a
white image. While the embeddings provide information about the
image as a whole, we considered the histograms and SSIM metric
could be useful given the apparent difference between the origi-
nal and perturbed images. Furthermore, we computed the features
across three different datasets (see Fig. 2 for sample images): (a)
original set of images, (b) images cropped considering an image
slice extending from top to bottom (coordinates (160, 0, 200, 369) -
we name this dataset set "Cropped (v1)"), and (c) images cropped
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Figure 2: Three sets of images: (a) indicates the original im-
age, while (b) indicates the images attacked with the Pro-
jected Gradient Descent attack. The subsets I, II, and III indi-
cate (I) the whole image, (II) cropped image (v1 (considering
coordinates (160, 0, 200, 369))), and cropped image (v2 - (con-
sidering coordinates (160, 50, 200, 319))).

considering a slice of the central part of the image (coordinates (160,
50, 200, 319) - - we name this dataset set "Cropped (v2)"). By com-
paring the original image dataset against those obtained by slicing
the central part, we sought to understand if the models’ predictive
power increased by looking at a specific area of the image rather
than the whole.

We first trained three machine learning models: Catboost [18]
with Focal Loss [14] (trained over 150 iterations, and considering a
tree depth of ten, while evaluating the performance during training
with the logloss metric), Logistic Regression (the dataset was scaled
between zero and one, considering the train set, and transformed to
ensure zero mean and unit variance), and KMeans (the dataset was
transformed to ensure zero mean and unit variance, and the model
initiated with random initialization and seeking to generate two
clusters). We evaluated our experiments with a ten-fold stratified
cross-validation ([12, 22]), using one fold for testing and the rest
of the folds to train the model. Furthermore, to avoid overfitting,
we performed a feature selection using the mutual information
to evaluate the most relevant ones and select the top K features,
with 𝐾 =

√
𝑁 , considering 𝑁 to be equal to the number of data

instances in the train set [10]. Finally, we measured our models’
performance with a custom metric (𝐷𝑃𝐴𝑈𝐶𝑅𝑂𝐶 ) that summarizes
the discriminative power as computed from the area under the
receiver operating characteristic curve (AUC ROC, see [4]) (see
Eq. 1). The metric ranges from zero (no discriminative power) to
one (perfect discriminative power) and it preserves the AUC ROC
desirable properties of being threshold independent and invariant
to a priori class probabilities.

𝐷𝑃𝐴𝑈𝐶𝑅𝑂𝐶 = 2 · | (0.5 −𝐴𝑈𝐶𝑅𝑂𝐶) | (1)

Based on the good results obtained in the clustering setting, we
decided to conduct additional experiments, running the DBSCAN
algorithm [6] over all existing data. The advantage of such an algo-
rithm is that it can estimate the clusters with no prior information
regarding the number of expected clusters. Therefore, if working
well, it would be useful to generalize the approach toward detecting

new cyberattacks where no labeled data exists yet. We consider
such a characteristic to be fundamental to production environments.
For the models resulting from the three abovementioned datasets,
we measured the estimated number of clusters, estimated number
of noise points, homogeneity (whether the clusters contain only
samples belonging to a single class), completeness (whether all
the data points members of a given class are elements of the same
cluster), V-measure (harmonic mean between homogeneity and
completeness), adjusted Rand index (similarity between clusterings
obtained by the proposed and random models), and the Silhouette
Coefficient (estimates the separation distance between the resulting
clusters). We ran the DBSCAN algorithm measuring the distance
between clusters with the Euclidean distance, considering the max-
imum distance between two samples for one to be considered as in
the neighborhood of the other to be 0,3. Furthermore, we consid-
ered that at least ten samples in a neighborhood were required for
a point to be considered as a core point.

5 RESULTS AND ANALYSIS

Model Catboost KMeans Logistic regression

Embeddings
Original image 0.0167 1.0000 0.0228
Cropped (v1) 0.0014 1.0000 0.0003
Cropped (v2) 0.0181 1.0000 0.0213

SSIM
Original image 0.0152 1.0000 0.0184
Cropped (v1) 0.0008 1.0000 0.0004
Cropped (v2) 0.0179 1.0000 0.0195

Histograms
Original image 0.0016 1.0000 0.0030
Cropped (v1) 0.0003 1.0000 0.0011
Cropped (v2) 0.0018 1.0000 0.0031

Table 1: Results obtained across classification experiments.
Wemeasuremodels’ performancewith Eq. 1. Best results are
bolded, second-best are italicized.

We present the results obtained in our classification experiments
in Table 1. We found the KMeans models achieved perfect discrimi-
nation in all cases, while the second-best model was the Logistic
regression, which had second-best results in all but two cases. Nev-
ertheless, the Logistic regression and the Catboost models achieved
a low discriminative power, almost unable to distinguish between
tampered and non-tampered images. Regarding the features, we
found that the best average performance was obtained when train-
ing the models on the Cropped (v2) dataset, followed by those
trained on the whole images.

When running the DBSCAN algorithm (see results in Table 2),
we found the best results were obtained considering the SSIM mea-
sure. Furthermore, using the SSIM issued excellent results in all
cases. The best ones were obtained considering the Cropped (v1)
dataset, while the second-best was achieved with the Cropped (v2)
dataset. Using the SSIM only, the DBSCAN algorithm was able to
correctly group the instances into two groups and misclassified at
most a single instance. However, the performance achieved either
with embeddings or histograms was not satisfactory. When consid-
ering histogram features, the DBSCAN algorithm was not able to
discriminate between instances, creating a single cluster. On the
other hand, when considering embeddings, DBSCAN created three
clusters that issued a bad performance, considering most of the
points to be noisy. We, therefore, conclude that the only promising
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Embeddings SSIM Histograms
Original image Cropped (v1) Cropped (v2) Original image Cropped (v1) Cropped (v2) Original image Cropped (v1) Cropped (v2)

Number of clusters 3 1 1 2 2 2 1 1 1
Number of noise points 1010 794 887 1 0 1 621 603 606
Homogeneity 0.1770 0.4550 0.3170 1.0000 1.0000 1.0000 0.8550 0.9290 0.9150
Completeness 0.2090 0.4940 0.3860 0.9910 1.0000 0.9910 0.8560 0.9290 0.9150
V-measure 0.1920 0.4740 0.3480 0.9960 1.0000 0.9960 0.8550 0.9290 0.9150
Adjusted Rand index 0.0710 0.4350 0.2540 0.9980 1.0000 0.9980 0.9020 0.9600 0.9500
Silhouette coefficient 0.0750 0.4310 0.2660 0.8980 0.9590 0.9070 0.8330 0.8970 0.8800

Table 2: Results obtained across clustering experiments. Best ones are bolded, second-best are italicized.

results were those obtained considering the SSIM. Nevertheless, we
consider further research is required to understand whether this
kind of feature can be useful across a wide range of attacks and
in the real-world. SSIM provides metadata describing the images.
Given high-quality attacks aim to reduce the visual footprint on the
images, it remains an open question to which extent can the SSIM
capture weak footprints and therefore enable similar discriminative
capabilities on machine learning models.

6 CONCLUSION
In this work, we explored multiple sets of features and machine
learning models to determine whether an image has been tampered
with for the purpose of an adversarial attack. While the difference
between attacked and non-attacked images is evident to the human
eye, it is not to the machine learning algorithms. We found that
the Catboost and Logistic regression models could almost not dis-
criminate between both cases. On the other hand, the clustering
algorithms (KMeans and DBSCAN) had a stronger performance.
While the KMeans models did so perfectly, regardless of the fea-
tures, the DBSCAN model only performed well using the SSIM.
We consider the strength of such a model the fact that no a pri-
ori information regarding the classes is required, therefore saving
the annotation effort and providing greater flexibility towards fu-
ture adversarial attacks. Our future research will focus on testing a
wider range of cyberattacks while ensuring the attack will not be
discernable to the human eye.
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