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Abstract—Service Robots (SR) are increasingly used for ex-
ecution of complex tasks based on high-level goals. Also, the
interaction with users in an easily-understandable way is very
important. To this end, the imitation of human - like motion,
is important not only because we “don’t need to reinvent
the wheel”, but because humans, that the SR will share the
world with, expect such solutions to the task. It is crucial to
represent and organize the vast amount of knowledge, so that
the robot can retrieve relevant knowledge faster and conveniently,
in order to complete the tasks automatically. In this work, we
propose a Holistic Knowledge Base scheme for task planning
representation, towards the acceleration of robotic learning,
based on robotic priors, scene structure, and demonstrations in a
specific real-world context which dynamically changes over time
and space.

Index Terms—Motion Tasks Representation, Knowledge Base,
Learning from Demonstration

I. INTRODUCTION

Service robots are increasingly pervasive in our daily life
and are anticipated to execute complex tasks based on high-
level goals and interact with users in an easily-understandable
way, [1]. This requires robots to effectively organize and rep-
resent situational knowledge — the in-situ information about
humans, objects, places, and events in the robot’s working
environment, [2]. However, since situational knowledge is
often highly related to users and objects on the spot, robots
need to interact with humans to mediate the mismatch between
perception and comprehension of situational knowledge, [3].

How to represent and organize the vast amount of knowl-
edge and the complex relationships between these this knowl-
edge in a more effective way, so that the robot can retrieve
relevant knowledge faster and conveniently, and reasoning
based on the original knowledge to help the robot complete
the task automatically, has been a new research problem.

Proper motions and tasks should be learned from demon-
stration of human experts, in order to incorporate their skills
into the robotic systems. Skill learning from demonstration
has been thoroughly addressed in previous approaches. Several
imitation learning systems and architectures based on the
perception and analysis of human demonstrations have been
proposed, [4], [5]. In most of the proposed approaches, the
imitation process proceeds through three stages:

• perception and analysis of the human demonstration,

• representation of the demonstration,
• reproduction of the demonstrated task on the robot.

Two trends emerge from known approaches in the literature
regarding the way demonstrations are represented and gener-
ated: the use of trajectory-level representations in the form of
non-linear mappings between sensory and motor information,
[6], [7], and the use of symbolic-level representations that
decompose demonstrations into sequences of abstract skills
or task segments, [8], [9]. A key issue in all these approaches
is to find a generic representation which

• expresses actions as combinations of meaningful ele-
ments based on motor primitives,

• learns such motor primitives,
• uses them to recognize and synthesize actions,
• transfers them to different tasks and different embodi-

ments, [10], [11].
In this context, recent works suggest that geometric-based
representations of motion primitives may be well suited to
learn larger scopes of motion primitives by allowing

• the representation and learning of non-Euclidean parame-
ters, which often arise in a variety of robotics tasks, [12],
[13],

• the learning of latent manifold spaces from demon-
strations, where relevant motion pattern are efficiently
captured.

Moreover, current efforts focus on generalizing the repre-
sentation power of primitives in the 6D space and non-
Euclidean domain, [14], [15], however the disentanglement
of the subspaces remains an open problem.

In this paper, we propose a holistic Knowledge Base for
task planning representation scheme, which addresses robotic
reasoning in a specific real-world context that dynamically
changes over time and space.

This approach is a part of a larger scale research project,
that investigates the applicability of differential geometry
methods and trajectory representation in imitation learning.
Specifically, our research goal is to describe the motion using
categories from homotopy theory and differential geometry
theory. This approach is natural, not only because it allows
an easy categorization of motion primitives and tasks, but,
even more importantly, it allows a “transfer” of task to other



Fig. 1. Knowledge Base: High-level architectural layers.

robotic systems, using the machinery of differential geometry,
thus facilitating a horizontal knowledge transfer. To this end,
we plan to utilize the machinery developed and reported in
this work.

II. KNOWLEDGE REPRESENTATION ARCHITECTURE

In this work, we propose a novel holistic knowledge repre-
sentation architectural framework for developing solutions to
the problem of incorporating robotic priors, scene structure,
and human expert task demonstrations to accelerate robotic
learning.

The proposed framework is to a great extent agnostic to the
specifics of the incorporated knowledge. To accomplish this,
a generic structure is used to store the knowledge, facilitating
the use of different modalities, while a parsing subsystem
transforms all the knowledge to this generic structure. A
dynamic graph is used as the instrument of choice to represent
the combined knowledge.

The scope of this work is not, obviously, to solve the core
problem, but to describe a generic framework that can be used
both as a test bed for different schemes, as well as to be
deployed for actual use.

The framework is designed to be flexible, incorporating dif-
ferent prior architectures, different rule systems, and different
modes of demonstration.

III. HOLISTIC KNOWLEDGE BASE FOR TASK PLANNING
REPRESENTATION

The knowledge base needs to be integrated with sensing
and acting, ground the symbolic knowledge in sensor data and
support the ability of the robot to capture updated information
from the environment [16], [17]. At the same time, meeting
efficient data integration and interoperability, the knowledge
base needs to act as an intermediate knowledge acquisition
layer which will implement knowledge management and pro-
vide a set of knowledge extraction services. Efficiency and
near-real-time (NRT), [18], response times of the knowledge
extraction to other architectural components are two horizontal
performance requirements that need to be also addressed. Un-
der these high-level requirements, the knowledge base needs
to provide a knowledge representation model and storage
infrastructure, inference capabilities that go beyond semantic
inference and efficient knowledge extraction under different
perspectives (from cognition algorithms to perception and
control-centric components).

The high-level architectural layers of the proposed knowl-
edge base are depicted in Fig. 1.

IV. KNOWLEDGE REPRESENTATION AND STORAGE

The core knowledge of the proposed architecture should
be able to provide semantic representations of the real-world



and common sense enhanced with the domain knowledge of
the application sector (as this is also captured and extended
by the specific application cases) and to capture the dynamic
changing context of the real environment where the robot
acts and performs task planning. This includes some specific
modules, as will be described in the following subsections.

A. Semantic Model

Knowledge representations for autonomous robots must be
particularly rich in the way they represent actions, events,
processes, situations, action preconditions and action effects,
failures, knowledge of actions, as well as the robot self-
knowledge. Based on these, the proposed semantic model
will provide encyclopedic and domain knowledge under a
common, formal, well-defined vocabulary for representing
knowledge that can be used by the different components of
the robot. This is complemented by common sense knowledge
that provides additional information that is perceived as too
obvious to be explicitly expressed and is associated with
the concepts and is needed by the robots to perform tasks.
Thus, the semantic model will include definitions of types
of object parts, geometric representation to select actions,
grasps, objects, as well as experience- and action-related
knowledge to choose suitable parameters, robot parts etc.
Our by investigating well established ontologies and models
such as the Open Mind Indoor Common Sense (OMICS),
the KnowRob ontology, Affordances Ontology, ORA Core
Ontology, OpenCyc Ontology, RoboEarth system etc., while
at the same time will integrate domain knowledge from the
specific domain cases and the primitives.

B. Dynamic Knowledge Graph

As also indicated in [19], [20], the spatio-temporal aspects
of the dynamic changing context of the real scene are also
captured and represented as a Dynamic Knowledge Graph
to be taken also under consideration during inference. The
Dynamic Knowledge Graph is semantically enhanced and
extended with entities and relations of the semantic model. The
Dynamic Knowledge Graph will be continuously updated with
information coming from the environment either the robotic
perception, control system or the cognition algorithms/task
planning, as well as experiences of the robot, and it will
provide the primary point of decision-making of the robot to
proceed with task execution and how.

C. Data Processing and Storage

The infrastructure, as well as data management services
(collection, cleaning, encryption/decryption, anonymization,
harmonization, storage) of the generated multidisciplinary data
(relational data, noSQL data, images and files, videos, feeds,
user feedback, machine learning parameters etc.) of the ser-
vices (visual perception, cognition algorithms, task planning,
control, training etc.). This data will either support the system
service’s proper functionality, the training of the modes, the
knowledge base completion. Many of these data are expected
to be derived from the appropriate data collection.

V. KNOWLEDGE INFERENCE AND REASONING

The knowledge reasoning addresses five main reasoning
strategies: spatial, temporal, context, retrieval modules, event-
related reasoning module, and human-related reasoning. At the
same time, it needs to serve different inference problems from
the different (robotic) layers with different levels of expressiv-
ity, scalability, complexity, and efficiency. Thus, at the level
of encyclopedic knowledge, our proposition system foresees
semantic reasoning of the appropriate Ontology (using DL
reasoners as well as semantic rules), while at the level of the
Dynamic Knowledge Graph different ML and DL algorithms
are used to perform graph inference and update and maintain
the graph. Towards a more robust inference and reasoning
approach, the proposed solution will also combine data coming
from perception and control (not provided into the knowledge
base) to perform forward-chaining and backward-chaining
reasoning for task planning. Moreover, further approaches will
be incorporated to resolve more higher-level problems such
as rule engines (Drools). Through this three-level reasoning
approach will perform optimized inference meeting the time-
efficiency requirement of the cognition and motion generation
models.

VI. KNOWLEDGE QUERY AND EXTRACTION

A set of services (API) for knowledge querying from the
Knowledge Base, offering a higher level of abstraction. This
layer acts as a proxy between the external components which
either request a simple data query or complex inference hid-
ing lower-level complexity. This layer routes and transforms
the upper-level knowledge extraction requests to the relevant
queries and inference mechanisms and orchestrates knowledge
extraction depending on the type of query whether it is for
perception, reasoning, or control.

VII. CONCLUSIONS

In this paper, we propose a Holistic Knowledge Base
scheme for task planning representation, towards the accel-
eration of robotic learning, based on priors, scene structure,
and demonstrations in a specific real-world context which dy-
namically changes over time and space. The proposed scheme
contributes to the representation and organization of the vast
amount of knowledge, so that the robot can retrieve relevant
knowledge faster and conveniently, in order to complete the
tasks automatically.

ACKNOWLEDGMENT

This work is a part of MARS: “Manufacturing Architecture
for Resilience and Sustainability” project, that has received
funding from the European Union’s Horizon 2020 research and
innovation programme under Grant Agreement No 101091783.

REFERENCES

[1] A. Kattepur and B. P, “Roboplanner: Autonomous robotic action
planning via knowledge graph queries,” in Proceedings of the 34th
ACM/SIGAPP Symposium on Applied Computing, ser. SAC ’19. New
York, NY, USA: Association for Computing Machinery, 2019, p.
953–956. [Online]. Available: https://doi.org/10.1145/3297280.3297568



[2] B. Javia and P. Cimiano, “A knowledge-based architecture supporting
declarative action representation for manipulation of everyday objects,”
in Proceedings of the 3rd Workshop on Model-Driven Robot Software
Engineering, ser. MORSE ’16. New York, NY, USA: Association
for Computing Machinery, 2016, p. 40–46. [Online]. Available:
https://doi.org/10.1145/3022099.3022105

[3] R. Fang, M. Doering, and J. Y. Chai, “Embodied collaborative
referring expression generation in situated human-robot interaction,” in
Proceedings of the Tenth Annual ACM/IEEE International Conference
on Human-Robot Interaction, ser. HRI ’15. New York, NY, USA:
Association for Computing Machinery, 2015, p. 271–278. [Online].
Available: https://doi.org/10.1145/2696454.2696467

[4] C. Frith, D. Wolpert, S. Schaal, A. Ijspeert, and A. Billard, “Com-
putational approaches to motor learning by imitation,” Philosophical
Transactions of the Royal Society of London. Series B: Biological
Sciences, vol. 358, no. 1431, pp. 537–547, 2003.

[5] Y. Zhou, J. Gao, and T. Asfour, “Movement primitive learning and
generalization: Using mixture density networks,” IEEE Robotics &
Automation Magazine, vol. 27, pp. 22–32, 2020.

[6] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Movement imitation with
nonlinear dynamical systems in humanoid robots,” Proceedings 2002
IEEE International Conference on Robotics and Automation (Cat.
No.02CH37292), vol. 2, pp. 1398–1403 vol.2, 2002.

[7] S. P. Chatzis and Y. Demiris, “Echo state gaussian process,” IEEE
Transactions on Neural Networks, vol. 22, no. 9, pp. 1435–1445, 2011.

[8] K. Lee and Y. Demiris, “Towards incremental learning of task-dependent
action sequences using probabilistic parsing,” 2011 IEEE International
Conference on Development and Learning (ICDL), vol. 2, pp. 1–6, 2011.
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