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Abstract—As Artificial Intelligence (AI) is revolutionizing var-
ious industries and applications, understanding the hardware
requirements and energy consumption of AI pipelines in Big
Data (BD) applications has become increasingly essential. This
paper presents a comprehensive, scalable framework, designed
to systematically measure hardware resources, energy usage, and
model performance across two prominent data modalities: tabu-
lar data and images. The framework is generalizable, facilitating
replicability across the AI research community, and encourages
the deployment of AI models with comprehensive metrics beyond
traditional accuracy, promoting the optimization of pipelines
for real-world scenarios. Through detailed benchmarking, we
identify EfficientNet as a standout model for image classification,
and XGBoost for tabular data, both excelling in their respective
domains. Notably, our findings show that Graphics Processing
Units (GPUs) account for approximately 90% of total energy
consumption in image-based tasks, while Central Processing
Units (CPUs) are responsible for around 50% of energy use in
tabular data processing. The merit of our innovative proposed
framework combines information theory and probability theory
to enhance our understanding of AI model performance in
Edge-to-Cloud (E2C) applications that demand efficient Big Data
processing in distributed environments. By seamlessly integrating
energy efficiency with hardware optimization, it enables real-
time monitoring of energy consumption and computing resources
in containerized environments, providing precise insights for
optimizing AI workloads. This framework facilitates scalable
AI deployment on resource-constrained edge devices, reducing
energy consumption while enhancing AI model robustness and
interpretability, thereby promoting greater trust and trans-
parency in AI-powered decision-making for critical real-world
applications. This emphasizes the importance of multi-objective
optimization for more sustainable and efficient Big Data AI
workflows.

Index Terms—Big Data AI pipelines’ benchmarking, AI the-
oretical framework for edge-to-cloud applications, energy-aware
AI pipelines for optimal model placement

I. INTRODUCTION

Edge-to-Cloud (E2C) applications, particularly in the con-
text of Artificial Intelligence (AI) system development, de-
ployment, and serving are often treated as Big Data (BD)
problems with regard to training tasks due to the complexity of
Neural Network (NN) architectures. AI engineers, practition-
ers, researchers, and solution providers are typically concerned
with the computational resources consumed by AI training
tasks and the frequency of performed AI inference tasks.
The situation becomes more complex when energy-constrained
devices such as drones, Virtual Reality (VR) and Augmented

Reality (AR) glasses, and mobile devices are used. For both AI
training and inference tasks, it is essential for users to consider
the computational running time, the size of the AI model along
with its parameters, energy efficiency, and the quality of the
results.

Critical application metrics such as energy consumption, the
complexity of NN architectures, and the optimization of Cen-
tral Processing Unit (CPU), Graphics Processing Unit (GPU),
and Random-Access Memory (RAM) are often overlooked
during the development, training, and inference of AI models.
This oversight can largely be attributed to the lack of com-
prehensive benchmarking frameworks that consider the trade-
offs between contradictory axes, such as energy consumption
versus AI model accuracy, NN model architecture complexity
versus epochs or training time, etc. Most comparative studies
in AI development focus on the models’ performance metrics,
including accuracy, precision, loss, and error, with little at-
tention paid to underlying hardware considerations, including
CPU, GPU, and RAM utilization, energy consumption, and
inference frequency. This is a shortcoming, as the training
and inference of AI pipelines in E2C applications must also
consider field conditions, energy constraints of the devices re-
garding their optimal placement, and the criticality of decision-
making that dictates higher model precision.

Nowadays, AI systems are becoming increasingly pervasive
across different industries and applications, and the signifi-
cance of these metrics cannot be overstated. Understanding
the energy footprint of AI models is essential not only from
an environmental sustainability perspective but also from an
economic standpoint. As AI deployments scale, the ability
to anticipate energy consumption and computing costs during
model development can lead to more efficient and responsible
resource utilization, optimal model placement (whether at the
edge or in the cloud), and improved model optimisation. In
addition, application criticality is a key factor when energy
consumption is a primary concern (e.g., mobile devices,
drones, etc.), or when high reliability and accuracy are required
(e.g., medical sensors and diagnostics, etc.), or in cost-sensitive
applications where the focus is on finding the optimal balance
between performance and energy consumption. Consequently,
making informed decisions regarding the choice and optimal
placement of AI models can yield significant benefits, includ-
ing reduced operational costs and lower environmental impact.



Benchmarking energy-aware Big Data AI pipelines ensures the
correctness and reproducibility of these pipelines, the explo-
ration of trade-offs between different pipeline architectures and
hardware configurations, and the optimization of energy usage
without compromising performance for critical applications.

The latest State-of-the-Art (SotA) research [1] highlights
the need to enhance the capabilities of Big Data analytics
benchmarking. This will improve the reliability, performance,
and operational efficiency of applications. The target audience
for benchmarking Big Data AI pipelines is broad, including
data scientists and machine learning engineers / practitioners,
responsible for developing and deploying AI pipelines, who
need to evaluate their performance in order to optimize them,
as well as mission-critical application providers who rely on
benchmarking to compare different placements, approaches,
and algorithms. The merit of benchmarking Big Data AI
pipelines in E2C application contexts is twofold. Firstly, it
allows for the verification of the accuracy and reliability of
a pipeline’s results, ensuring that the AI model produces
correct and consistent outputs. Secondly, it considers resource
allocation, energy consumption, data efficiency, and optimal
placement.

This work introduces a scalable and fully generalisable
theoretical and software solution that enables the measure-
ment, persistence, and visualization of energy consumption,
hardware resource utilization, and AI model performance
efficiency during the training phase. The proposed approach
leverages containerization to encapsulate AI model training
phases and deployment within a Kubernetes cluster. The
cluster is complemented by a suite of tools designed to monitor
and visualize the defined metrics, including energy usage,
AI models’ performance efficiency, and CPU / GPU / RAM
allocation. In order to abstract and generalise the derivatives,
we have conducted experiments with several widely-used AI
models across two different data modalities, namely tabular
and imagery data. Furthermore, the mention of GPUs is only
relevant in the context of image modalities, as not all tabular
data APIs, such as scikit-learn, support GPU acceleration.

The contributions of this paper are as follows:
• Tackling Big Data AI pipeline efficiency and energy

preservation, providing abundant explanations on AI
model selection, rationale, and optimal placement.

• Applying a meta-algorithmic approach to improve AI
model performance, and introducing a novel solution that
extends the findings with explanations with confidence
indicators, illustrating key attributes that contribute to
benchmarking conclusions.

• Encouraging a shift within the AI community towards
deploying AI models with rich justifications about various
metrics to meet multiple or even contradictory objectives.

• Facilitating end-users to optimally select and optimise
Big Data AI pipelines for real-world applications, while
considering resource constraints.

The rest of the paper is organized as follows: Section II pro-
vides current literature review on benchmarking, performance
tuning, and optimisation for Big Data applications. Section

III introduces the theoretical framework for decomposing
Big Data AI pipelines and measuring their behavior in edge
and cloud computing infrastructures. Section IV details the
technical architecture and software solution for benchmarking
the Big Data AI pipelines in E2C applications. Section V
discusses our experimental results, while Section VI concludes
the paper and outlines future directions.

II. LITERATURE REVIEW

A comprehensive study on the aspects that affect the Big
Data AI pipeline training, considering different objectives,
highlights significant variations in both performance and
energy consumption during Deep Neural Networks (DNN)
training [2]. Both the system architecture, including CPUs,
GPUs, and Tensor Processing Units (TPUs), and the AI model
complexity should be considered during benchmarking when
optimising the training phase. While GPUs and TPUs provide
high throughput for tasks such as image recognition and
speech-to-text, energy efficiency can greatly differ depending
on the hardware and the optimization techniques applied.
These findings underscore the necessity of considering both
performance and energy consumption when selecting hard-
ware for AI training, particularly in environments where cost,
energy preservation, and efficiency are critical factors.

The importance of evaluating energy consumption in ma-
chine learning (ML) is widely recognized for monitoring,
understanding, and optimizing its computational and environ-
mental impact. However, there is no single approach that
can address all use cases, and there is an ongoing debate
about the best methods to evaluate energy consumption for
specific applications. In the meantime, various methods, each
with unique strengths and limitations, have been developed.
A systematic review of these approaches, designed to evaluate
energy consumption during both training and inference, was
conducted, followed by an experimental protocol to compare
the effectiveness of these methods across diverse AI tasks,
including vision and language models [3].

Several libraries have emerged to address the challenge of
tracking energy consumption in AI pipelines. One prominent
example is the eco2AI library [4], which offers a powerful so-
lution for monitoring energy usage and CO2 emissions during
both training and inference phases. This library tracks CPU,
GPU, and RAM utilization by gathering power consumption
logs through process identification (PID) and system metrics
retrieved using Linux commands, such as top.

Similarly, the EfiMon tool [5] provides a granular, non-
invasive method for tracking energy consumption at the pro-
cess level. EfiMon uses regression-based models to estimate
energy usage with high precision, even in shared computing
environments. This tool has shown small deviations in its
measurements on Intel and AMD systems, making it a valuable
resource for optimizing energy consumption in AI research
and high-performance computing (HPC) [6].

EIT [7] is another tool that simplifies real-time monitoring
of energy usage and carbon emissions during AI training. This
tool facilitates the generation of standardized online reports
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and leaderboards, promoting responsible research practices,
especially in the context of energy-efficient reinforcement
learning algorithms.

CarbonTracker (CT) [8] is a specialized tool for tracking
the carbon emissions produced during AI model training. This
framework helps researchers measure the environmental im-
pact of their models, offering valuable insights for developing
more sustainable AI systems.

At the same time, there has been an evident revolution in
the industry thanks to the improvement of AI pipelines with
a high level of accuracy performance even surpassing human
capabilities for different sorts of problems. Achieving a high
accuracy rate is closely related to models that have a vast
amount (millions or even billions) of weights (parameters) that
are supposed to contain the information learnt from training
data. However, many modern AI methods have a black-box
nature, which hinders their adoption by practitioners in many
application fields. This issue raises a recent emergence of a
new research area in AI, setting the ground for (i) extensive
benchmarking over different algorithms and methods to un-
derstand their behaviour across different data modalities; (ii)
use of data and features of different granularity and veracity
to optimise the learning capability and thus the performance
of an AI model; and (iii) monitoring the underlying compute
resources to dimension the financial, computing or energy
costs of AI model training and to derive trade-offs (i.e. through
what-if analyses) regarding smart placement, energy con-
sumption, and other business-defined objectives. In addition,
there is the need to explain the behaviour of an AI model,
aiming at providing more understandable, interpretable, and
justifiable for humans AI-based decision-making processes
and outcomes. Several theoretical frameworks for AI have
been introduced to tackle different directions, focusing on
(i) Explainable Artificial Intelligence (XAI); (ii) Emergent
Behaviour and Alignment of AI; (iii) AI as Originator and
Facilitator of Innovation; and (iv) Three-Level Model for AI
while Learning.

Tchuente et al. [9] proposed a new methodological and
theoretical framework for XAI decomposed into six steps that
can be followed by all practitioners or stakeholders to improve
the implementation and adoption of XAI in their business
applications. They highlighted the need to rely on domain
field and analytical theories to explain the entire analytical
process, from the relevance of the business question to the
robustness checking and validation of explanations provided
by XAI methods.

Rizzo et al. [10] fit explanations of an AI model into the
properties of faithfulness (i.e. the explanation is an accurate
description of the model’s inner workings and decision-making
process) and plausibility (i.e. how much the explanation seems
convincing to the user). Their theoretical framework simplifies
the operationalization of these properties, and provides new
insights into common explanation methods that they analyse as
case studies. They also discuss the impact of their framework
in biomedicine, a very sensitive application domain where XAI
can have a central role in generating trust.

Freund et al. [11] explore the complex dynamics of emer-
gent behaviour and alignment within AI systems and present
a comprehensive framework for conceptualizing and modeling
these phenomena. Their framework incorporates the multi-
level and time-dependent nature of emergent behaviour and
alignment, considering the interplay between system states,
inputs, function rules, learning algorithms, environments, and
historical data. The proposed framework sheds light on the
challenges and opportunities associated with achieving and
maintaining alignment in AI systems.

Brem et al. [12] introduced a two-part conceptual AI
framework: The first part views AI as a technology that can
fulfill different roles within a company, and the second looks
at AI and its use along the company’s innovation processes.
They also discussed these two views using examples from
existing field applications and described potential areas for
future research and limitations of the proposed framework.

Gibson et al. [13] introduced a three-level model that
synthesizes and unifies existing learning theories to model
the roles of AI in promoting learning processes. The model,
drawn from developmental psychology, computational biol-
ogy, instructional design, cognitive science, complexity, and
sociocultural theory, includes a causal learning mechanism that
explains how learning occurs and works across micro, meso,
and macro levels. The model also explains how information
gained through learning is aggregated, or brought together, as
well as dissipated, or released and used within and across the
levels.

Last, Haidar [14] proposes a novel integrative theoretical
framework for Responsible AI (RAI), which addresses four
key dimensions: technical, sustainable development, responsi-
ble innovation management, and legislation. The responsible
innovation management and the legal dimensions form the
foundational layers of the framework. The first embeds ele-
ments like anticipation and reflexivity into corporate culture,
and the latter examines AI-specific laws from the European
Union and the United States, providing a comparative perspec-
tive on legal frameworks governing AI. The study’s findings
are helpful for businesses seeking to responsibly integrate AI,
developers who focus on creating responsibly compliant AI,
and policymakers looking to foster awareness and develop
guidelines for RAI.

Within this expansive domain of Big Data and edge com-
puting, AI stands as a beacon, transforming raw data into
actionable insights and automating a myriad of complex tasks.
However, the intricate relationship between AI and Big Data
gives rise to various technical challenges, like the number
of training epochs and time, over-/under-fitting, and data
leakage, which can influence the efficacy of AI models. Last,
the inherent characteristics of AI models and the energy-
constrained edge devices further contribute to technical chal-
lenges while optimizing AI models for smart placement, cost,
energy reduction, and more.

This work introduces a novel AI theoretical framework for
understanding and evaluating the behavior and operation of AI
methods in E2C execution contexts. We take into account two



Fig. 1. AI Theoretical Framework

key axes: information theory and probability theory. Through
information theory, we investigate how the complexity and
information gain of AI models affect their compute, energy,
cost, and performance metrics in the E2C contexts. Through
probability theory and statistical analysis, we analyse the
likelihood of different AI models’ results and quantify their
confidence levels and potential for errors. To the best of
our knowledge, this work is the first to introduce both a
theoretical and software framework that monitors AI appli-
cations within a containerized environment, capturing real-
time energy consumption and computing resources (e.g., CPU,
RAM, number of threads). The containerization paradigm
allows for a more modular, scalable, and fine-grained approach
to tracking energy usage compared to traditional process-level
(PID) monitoring. This approach allows for better isolation,
reproducibility, and consistency, as containerized applications
abstract individual system processes and interact with the un-
derlying hardware in a more holistic and integrated manner. As
a result, the proposed approach ensures more accurate insights
into the performance efficiency, energy, and computing con-
sumption of AI workloads, especially in complex, resource-
constrained edge devices and compute-shared environments,
like Kubernetes clusters.

III. AI THEORETICAL FRAMEWORK

This section presents a novel approach, AI Theoretical
Framework Fig. 1, to structuring an AI training pipeline by
splitting it into discrete steps, applicable regardless of data
modality or execution mode—whether federated, centralized,
edge, or cloud. This framework offers several advantages,
including a clear definition of the various functions that need to
be executed at each step and within each compute environment
context. Given the inherent complexity of AI pipelines, this
approach provides much-needed clarity and guidance, creating
a seamless conceptualization and development process.

The first step in a Big Data AI pipeline is Data Loading,
where the data must be efficiently and optimally loaded to
ensure that sufficient memory is available and that parsing
during subsequent steps is smooth. State-of-the-art techniques
for data loading include utilizing multi-threaded data pipelines,
caching mechanisms, and pre-fetching, to reduce data access
latency. For instance, frameworks like TensorFlow’s tf.data
API and PyTorch’s DataLoader implement parallelized load-
ing, allowing for effective utilization of available hardware
resources. This is particularly important in distributed training
environments, where efficient data loading can help avoid
bottlenecks and ensure that GPUs and CPUs operate at their
full potential.

Key considerations at this step involve balancing data in-
put/output (I/O) operations, ensuring hardware resources are
not underutilized, and performing memory-efficient data trans-
formations such as batching and sharding to avoid memory
overflow in large datasets. These techniques enable the system
to scale efficiently in edge or cloud environments, making it
adaptable to various data modalities.

The second step is Data Validation, where the quality of the
data is critically assessed, and any errors, outliers, or irrelevant
data are identified and corrected. This phase also includes
Exploratory Data Analysis (EDA), which provides initial in-
sights into the dataset. For tabular data, common validation
techniques involve checking for missing values, normalizing
distributions, and identifying outliers using statistical methods
like z-scores or interquartile range (IQR). For imagery data,
techniques such as detecting corrupted images, checking image
dimensions, or ensuring consistency in file formats are critical.

State-of-the-art methodologies include automated data val-
idation libraries such as Great Expectations and Pandas Pro-
filing, which help automate some of these checks. For image
modalities, libraries like Albumentations and tslearn provide
effective preprocessing techniques to ensure high-quality data

https://www.tensorflow.org/guide/data
https://pytorch.org/tutorials/beginner/basics/data_tutorial.html
https://greatexpectations.io/
https://pypi.org/project/pandas-profiling/
https://pypi.org/project/pandas-profiling/
https://albumentations.ai/
https://tslearn.readthedocs.io/


Fig. 2. Visualization of the Benchmarking Framework

is available for AI model training.
In the Data Transformation step, features are engineered to

enhance the predictive power of models. In classical machine
learning, feature engineering may involve encoding categorical
variables, normalizing numerical data, or creating interaction
terms. For example, techniques like one-hot encoding, stan-
dardization, and dimensionality reduction (PCA, t-SNE) are
commonly used in tabular datasets.

In neural networks, especially for deep learning models
like Convolutional Neural Networks (CNNs) and Recurrent
Neural Networks (RNNs), data transformation often involves
preparing inputs by resizing images, normalizing pixel val-
ues, or transforming sequential data to fit the architecture’s
input format. Data augmentation techniques, such as flipping,
cropping, or rotation for images, also play a critical role
in increasing the diversity of the training data without the
need for additional data collection. These transformations help
ensure that models generalize better and are robust afainst
overfitting.

The fourth step is Model Training, where the preprocessed
data is fed into the chosen model architecture. Depending on
the learning task, this could be a classical machine learning
model such as Random Forest or Support Vector Machines
(SVMs) or a deep learning model such as CNNs or Trans-
formers. Critical decisions at this stage include selecting opti-
mization algorithms (e.g., Adam, Stochastic Gradient Descent
- SGD), choosing loss functions (e.g., cross-entropy for clas-
sification, mean squared error for regression), and determining
the best hyperparameters through techniques like Grid Search
or Bayesian Optimization. For neural networks, additional
considerations such as determining the number of epochs,
batch size, learning rate scheduling, and dropout are essential
for achieving efficient training. In distributed or federated
learning setups, models are trained across multiple clients,

nodes, or devices, and this distributed architecture should be
carefully managed to optimize resource usage and minimize
latency.

Finally, the Model Evaluation step involves testing the
model on a validation or test set to assess its performance
based on metrics such as accuracy, precision, recall, or mean
absolute error, depending on the task. In centralized ap-
proaches, evaluation is straightforward; however, in Federated
Learning, the evaluation takes on additional complexity. Mod-
els trained on different clients / nodes must be aggregated
on a central server. Aggregation techniques such as Feder-
ated Averaging (FedAvg) ensure that model parameters from
different nodes are combined to form a global model. Post-
aggregation testing ensures that the global model satisfies the
required accuracy or performance benchmarks.

By decomposing and abstracting a Big Data AI pipeline
into discrete steps, the AI Theoretical Framework not only
allows for a clear roadmap for implementation but also en-
ables flexibility across execution modes, whether federated or
centralized, on edge devices, or in the cloud. This modular
approach supports scalable, responsible, and resource-aware
AI development, ensuring that performance tuning and opti-
mization can be systematically applied throughout the pipeline.

IV. EXPERIMENTAL FRAMEWORK

The experimental framework, as illustrated in Figure 2,
effectively captures the metrics of energy consumption, per-
formance efficiency, and hardware utilization. This framework
is hardware and platform vendor-agnostic, designed to cover
a broad range of scenarios and use cases. We place par-
ticular emphasis on ensuring our framework is both highly
scalable and extensive, making it practical for real-world
Edge-to-Cloud deployments. By tracking system operations
on a per-second basis, our framework effectively captures
dynamic workloads and fluctuating resource availability, even

https://keras.io/api/optimizers/adam/
https://keras.io/api/optimizers/sgd/
https://keras.io/api/optimizers/sgd/


in cases of abrupt changes. However, we record the technical
specifications of the target hardware and platform based on
their objective capacity. The first step includes the abstraction
and containerization of the Big Data AI pipeline within a
Kubernetes cluster [15]. Proper configuration and setup of the
cluster are necessary for monitoring the execution environment
of the Big Data application under evaluation.

The Kubernetes cluster supports E2C applications and
provides scalability, easy integration of edge devices, and
dynamic resource allocation. We study the case of Big Data
AI pipelines that require dynamic resource adaptation, as
the training and inference phases may experience random
fluctuations. In addition, containerization within Kubernetes
ensures process isolation and minimizes interference from
other processes (e.g., from the operating system or neighbor-
ing applications), leading to more accurate and reproducible
measurements of energy and computing resource consumption.
Moreover, Kubernetes’ native tools for monitoring, such as
Prometheus and Grafana, allow for real-time tracking and
visualization of hardware metrics (CPU, GPU, RAM) and
energy usage of a given AI pipeline. This distributed approach
enables the monitoring of federated workloads across multiple
nodes, offering a more comprehensive and granular insight
into the system’s performance compared to traditional PID-
based monitoring. Lastly, leveraging Kubernetes’ cloud-native
infrastructure, the framework can be easily extended to larger,
multiple, and more complex environments, supporting diverse
AI applications and varying computational demands.

We have deployed and integrated a comprehensive suite
of libraries and tools to form the monitoring infrastructure,
ensuring precise tracking of energy consumption and hardware
utilization during the various steps of a Big Data AI pipeline.
Each of these components has been carefully selected for its
ability to address specific challenges in resource monitoring.
In the following, we provide a brief overview of the tools
employed, offering necessary background for those unfamiliar
with them, and explain their role within the overall architec-
ture.

Prometheus [16], integrated into the Kubernetes cluster,
serves as the primary monitoring tool to collect real-time hard-
ware utilization data. It tracks vital system metrics, including
CPU, GPU, and RAM usage, and provides a highly reliable
and scalable method for capturing these metrics. By integrating
with the Kubernetes environment, Prometheus ensures con-
tinuous monitoring, accurately recording resource fluctuations
over time. Moreover, Prometheus gathers a wide variety of
statistics on top of the application it monitors, providing high
flexibility for any use case-specific monitoring requirements,
such as information on disk throughput, filesystem I/O, and
out-of-memory (OOM) errors.

Once the hardware utilization data is captured by
Prometheus, it is stored in InfluxDB [17], a high-performance
time-series database chosen for its ability to persist and handle
large volumes of time-stamped data for long periods. InfluxDB
ensures long-term data storage and facilitates efficient query-
ing and analysis of historical hardware consumption trends.

This long-term storage is crucial for monitoring the energy
consumption patterns of AI applications over extended periods,
particularly in Big Data scenarios where these patterns evolve.

For visualization, Grafana [18] is employed to create intu-
itive and interactive dashboards. We make use of two purpose-
fully developed Grafana dashboard templates, [19] for visual-
ization of HW consumption and [20] for visualization of en-
ergy and CO2 emissions, that enables Grafana to connect and
pull data from Prometheus. This visualization capability allows
developers and researchers to gain real-time insights into the
AI application’s resource usage, enabling them to monitor
trends and make informed decisions regarding optimizations,
as well as optimal resource allocation and scheduling.

Kepler [21] extends the capabilities of Prometheus by
leveraging system telemetry data to compute energy consump-
tion and carbon emissions. Kepler integrates seamlessly with
Prometheus, offering real-time insights into the environmental
impact of the AI application, including power usage and CO2
emissions. This promotes sustainable computing practices,
offering both technical and environmental metrics that are
critical for optimizing energy consumption in containerized
AI workloads.

Finally, the AI models, their performance efficiency, and any
associated metadata are stored and managed using MLFlow
[22]. MLFlow enables reproducibility by tracking experiment
runs, saving model versions, and maintaining all relevant
information for future reference. This ensures that model
performance, energy consumption, and hardware usage can
be monitored and compared across different experiments,
providing a complete lifecycle management system for AI
development through the proposed framework.

V. BENCHMARKING RESULTS

We conducted an extensive comparative analysis using both
the theoretical and software frameworks described above,
focusing on two distinct data modalities, i.e., images and
tabular data. These modalities represent a broad range of
machine learning tasks, commonly encountered in real-world
applications, making them ideal for this study. By selecting the
most widely used algorithms for each modality, we performed
benchmarks that are highly relevant to a broad audience, from
researchers to solution providers.

For each modality, we utilized publicly available datasets
to ensure consistency in model evaluation and comparison.
By focusing on well-known datasets, the goal was to control
for dataset-specific variability and instead highlight the com-
parative performance of the algorithms. This approach allowed
us to better assess AI model efficiency, hardware utilization,
and energy consumption across different learning tasks, rather
than being influenced by the characteristics of specific datasets.
Researchers and practitioners can seamlessly extend the frame-
work to incorporate additional datasets, including custom or
domain-specific data while maintaining the robustness of the
comparative analysis.

Furthermore, the abstracted design of the framework ensures
its adaptability to other machine learning tasks beyond the

https://prometheus.io/
https://grafana.com/


two data modalities we tested. This is realized by abstracting
every piece of computation through Kubernetes pods, thus
allowing for easy integration of new AI models. This enables
researchers to benchmark their models against established
baselines efficiently. The scalability of this approach is es-
pecially important as machine learning applications continue
to diversify, and the need for flexible, generalizable bench-
marking frameworks becomes more critical. As a result, the
framework not only serves the immediate purpose of this
study but also provides a valuable tool for ongoing research
and development in machine learning and AI energy-aware
analysis.

All experiments were conducted on a consistent system,
which is described in detail by the hardware specifications
in Table I. This setup ensures uniformity across all trials and
allows for controlled testing conditions, which is essential for
valid comparisons and results.

HW Component Capacity
CPU Intel(R) Core(TM) i7-10750H CPU @ 2.60GHz
GPU NVIDIA GeForce RTX 2070
RAM 32GB

TABLE I
HARDWARE SPECIFICATIONS OF THE TARGET SYSTEM

In the following tables, where the results of the experiments
are presented, it is important to note that the average number
of threads (Avg. Threads) is measured by Prometheus and
refers to the number of threads associated with a container
as collected by cAdvisor or Kubernetes’ container metrics
exporter. It offers valuable insights into the implementation
of AI algorithms.

A. Tabular Modality

For the tabular data experiments, we conducted an in-depth
evaluation of four widely-used classical machine learning
models: Categorical Boosting [23], Gradient Boosting [24],
LightGBM [25], and Extreme Gradient Boosting [26]. Ran-
dom Forest [27] could not be successfully benchmarked due
to an ”Out of Memory” error encountered with our dataset,
indicating significantly higher RAM usage compared to other
models. This highlights the potential limitations of Random
Forest for Big Data applications, particularly in resource-
constrained environments. The dataset was sourced from a
Kaggle competition featuring the top 50 Spotify songs in 2019
[28], providing a robust foundation for comparative analysis.
The dataset consisted initially of 50K records and 20 features
and was artificially increased to 4.4 million records, amounting
to a total size of 767 MB. Each model was trained using
hyperparameter tuning via a random Grid Search approach,
ensuring optimal model configurations and enabling a fair and
rigorous comparison of the algorithms.

It is important to emphasize that the focus of this study
was not on identifying the most effective model for predicting
which Spotify songs would enter the top 50, but rather on
benchmarking various performance objectives of these algo-
rithms using a well-known and standard dataset. By main-

taining this focus, we further compared the models in terms
of performance efficiency, energy consumption, and hardware
utilization under common conditions. This approach allows us
to provide insights into how each model performs in a typical
tabular data scenario, and how model complexity or envisioned
prediction accuracy affects energy, optimal placement, and
hardware utilization.

For the implementation of Random Forest and Gradient
Boosting, we utilized the well-established scikit-learn library
[29]. The LightGBM model was implemented following the
official framework described in [30]. For Categorical Boosting
(CatBoost), we adopted the implementation provided by the
CatBoost library [31], and the Extreme Gradient Boosting
(XGBoost) model was implemented using the official XG-
Boost documentation [32].

As shown in Table II, XGBoost delivers an optimal balance
between execution time and precision, completing the task
significantly faster than the other models while maintaining
impressive accuracy. Its execution time makes it highly suit-
able for scenarios where speed and efficiency are crucial.
Surprisingly, LightGBM, which is often praised for its speed,
was significantly slower than expected, taking more than twice
as long as the other models to complete the task.

Table III provides further insight into the energy consump-
tion patterns of the AI models under evaluation. XGBoost
not only finishes the task in the shortest amount of time but
also demonstrates remarkable energy efficiency, consuming
significantly less energy compared to the other models. In stark
contrast, LightGBM (LGBM) emerges as the least efficient
model, consuming 27 times more energy than XGBoost. This
substantial disparity in energy consumption highlights the
complexity differentiation in the underlying architectures and
their efficiency in handling computational tasks.

An interesting observation is that XGBoost, being both
the fastest and the most energy-efficient model, also exhibits
the lowest CPU and RAM utilization. This suggests that
XGBoost is optimized for resource management, maintaining
high performance while minimizing its hardware footprint.
Conversely, LGBM, the least energy-efficient model, places
the heaviest demand on CPU resources, especially through its
extensive use of multithreading.

The intensive CPU utilization in LGBM accounts for exces-
sive energy consumption and longer execution time. Therefore,
an intriguing trend can be observed: energy consumption
appears to closely correlate with CPU usage. AI models that
utilize less CPU power consume less energy and, correspond-
ingly, are less memory-intensive. This relationship underscores
the importance of CPU efficiency in determining overall
energy consumption, making it a crucial factor when opti-
mizing AI models for large-scale tasks in energy-constrained
environments.

B. Images Modality

For the image modality experiments, we selected 8 of the
most commonly used deep learning models in the field of
computer vision: ConvNext [33], DenseNet [34], EfficientNet



AI Model Modality Records Size (MB) Accuracy Training Time (mins)
CatBoost Tabular 4.4M 767MB 76.9% 45
LGBM Tabular 4.4M 767MB 73.5% 155

Gradient Boosting Tabular 4.4M 767MB 77.5% 70
XGBoost Tabular 4.4M 767MB 77.1% 7.35

TABLE II
COMPARISON OF TABULAR DATA FOR AI MODELS PERFORMANCE AND TRAINING TIME

AI Model Energy Consumed (Joules) Avg CPU Usage % Avg Memory Usage (GB) Avg Threads CPU Energy Impact
CatBoost 124,544 406% 17 150 50%
LGBM 488,931 484% 14 97 44.2%

Gradient Boosting 162,169 450% 13 56 54.2%
XGBoost 17,451 368% 11 42 31%

TABLE III
COMPARISON OF TABULAR DATA FOR AI MODELS HARDWARE AND ENERGY CONSUMPTION

[35], MobileNet [36], ResNet [37], VGGNet [38], Vision
Transformer [39] and YOLO [40]. These models were chosen
for their wide applicability in both academic research and real-
world engineering solutions. All models, except YOLO, were
implemented using the torchvision library, while YOLOv8 was
sourced from the Ultralytics open-source work. Using these
established implementations ensures that we leverage opti-
mized and widely accepted versions of each model, making
our results more generalizable and reliable. The task under
study is an image classification learning task, with the CIFAR-
10 dataset [41] serving as the underlying dataset. CIFAR-
10 is a well-known and frequently used dataset for image
classification tasks, consisting of 60,000 images across 10
different classes, with a total dataset size of 163 MB. This
makes it a suitable dataset for comparing model performance
across various metrics.

As with the tabular data modality, the objective of this
study was not to achieve the highest accuracy on the CIFAR-
10 dataset—numerous approaches have already demonstrated
near-perfect classification performance. Instead, we focused
on conducting a fair and rigorous comparison of these models
for hardware utilization, energy consumption, and execution
time. To ensure consistency across evaluations, each AI model
was trained for a fixed number of 4 epochs. Moreover, the
models were not pre-trained; instead, each model was trained
from scratch, retaining only the architecture, with their initial
weights set to None. This approach ensured that all models
started from the same baseline, eliminating any potential
advantages that could arise from transfer learning or pre-
training on similar datasets. This allows us to directly compare
the computational efficiency and resource consumption of
each model, providing valuable insights into how different
architectures handle the same task under identical conditions.

As shown in Table IV, EfficientNet is the most efficient
network, achieving the highest precision, accuracy, and F1
score across the four training epochs. It outperforms the
second-best model, VGGNet, by nearly 10% in accuracy,
while completing the task in a significantly shorter time frame
and using 73% less energy. This remarkable efficiency in both
time and energy consumption highlights EfficientNet’s better
architecture in balancing performance and resource utilization.

Interestingly, while MobileNet completes the training the
fastest, EfficientNet offers a better combination of accuracy
and energy efficiency. The comparison reveals an interesting
trend where AI models with either a relatively small number
of parameters, like EfficientNet and MobileNet, or a large
number of parameters, such as VGGNet, Vision Transformer,
and ResNet152, outperform those with a medium number of
weights, such as ConvNext and YOLOv8. This observation
suggests that small networks are well-suited for scenarios
where quick execution and energy-aware placement are cru-
cial. In contrast, medium-sized networks may struggle to
balance speed and performance effectively, justifying the pref-
erence for smaller architectures in time-sensitive or energy-
constrained application cases.

As depicted in Table V, MobileNet demonstrated the lowest
energy consumption, requiring approximately 32K Joules,
followed closely by EfficientNet. In contrast, the most energy-
intensive networks were Vision Transformer and YOLOv8,
with YOLOv8 being particularly noteworthy for its subpar
performance relative to its energy usage, making it the least
optimal model among those evaluated.

Interestingly, the number of parameters does not appear
to be the primary driver of energy consumption; instead, the
time required for execution plays a more significant role. For
instance, despite ConvNext having more than three times the
number of parameters as DenseNet, the two models completed
their training at nearly the same time and exhibited very
similar energy consumption levels. This suggests that model
architecture and execution efficiency have a more pronounced
impact on energy usage than the sheer number of parameters.

Moreover, an intriguing observation is that YOLOv8, unlike
the other models, exhibited significantly higher RAM and
CPU utilization. This points to a potential inefficiency in
resource allocation, particularly when considering its lower
performance in comparison to the other networks. These find-
ings underscore the importance of not only evaluating accuracy
but also considering resource efficiency when selecting models
for deployment in energy-constrained environments.

It was observed that, on average, 90% of the total energy
consumed by the networks could be attributed to GPU uti-
lization, with the smaller networks having a ratio of 82%

https://pytorch.org/vision/
https://github.com/ultralytics


AI Model Modality Records Size (MB) Num. Weights Precision Accuracy F1 Score Training Time (sec)
ConvNext (Tiny) Images 60K 163MB 28.6M 32.5% 30% 26% 1197

DenseNet121 Images 60K 163MB 8M 64% 63% 63% 1128
EfficientNetb0 Images 60K 163MB 5.3M 72% 71.5% 71.5% 596
MobileNet(v2) Images 60K 163MB 3.5M 63% 63% 62.6% 371

ResNet152 Images 60K 163MB 60.2M 54% 52% 51% 2467
VGGNet16 Images 60K 163MB 138M 66% 65% 64% 2199

Vision Transformer (Base) Images 60K 163MB 86M 59% 56% 55.8% 2577
YOLOv8 Images 60K 163MB 27.3M 38% 37% 33% 2641

TABLE IV
COMPARISON OF IMAGERY DATA FOR AI MODELS PERFORMANCE AND TRAINING TIME

AI Model Energy Consumed (Joules) Avg CPU Usage % Avg Memory Usage (GB) Avg Threads
ConvNext (Tiny) 79248 80.25% 0.76 12

DenseNet121 74445 91.78% 1.45 16
EfficientNetb0 39331 106.3% 0.78 11
MobileNet(v2) 32268 149% 1.17 13

ResNet152 159031 79% 0.91 14
VGGNet16 135813 101.28% 0.89 15

Vision Transformer (Base) 169813 103% 1.02 16
YOLOv8 167321 144% 6.89 90

TABLE V
COMPARISON OF IMAGERY DATA FOR AI MODELS HARDWARE AND ENERGY CONSUMPTION

and bigger ones 90%, underscoring the significant energy
demands of GPUs compared to other hardware components
such as CPU and RAM. This finding highlights the energy-
intensive nature of GPU operations in AI training and suggests
a pressing need for further research into optimizing GPU
energy efficiency. Addressing this imbalance is critical for
reducing the overall energy footprint of AI models, especially
as their deployment becomes more widespread across diverse
environments, from cloud data centers to edge devices.

The metrics provided exhibit a deviation of a maximum
20%, as observed across multiple experiment runs.

We would like to clarify that benchmarking was also per-
formed for the steps of Data Loading, Validation, Transfor-
mation, and Model Evaluation. However, we do not report the
results in this paper, as these phases are allocating computing
time, and thus consuming energy, which is identical to the
data size. The primary focus of this work is to benchmark
the Big Data nature of AI pipelines, and most importantly
the phase that mostly contributes to greater execution times,
energy consumption, and hyperparameters tuning.

The key takeaways of benchmarking on Big Data AI
pipelines are summarised as follows:

• Comprehensive, multi-metric benchmarking of leading
models across Tabular and Image data modalities.

• Scalable and generalizable framework for benchmarking
Big Data applications, incorporating both energy con-
sumption and hardware utilization.

• A theoretical AI framework that provides a detailed, step-
by-step analysis of AI pipeline components.

VI. CONCLUSION

The proliferation of AI applications in E2C computing
environments has led to a growing demand for efficient and
scalable execution. However, understanding the behavior and
performance of AI algorithms in these dynamic contexts
remains a significant research challenge, requiring empirical

modeling, tuning, and optimizing their performance. The pro-
posed theoretical and software frameworks efficiently address
both performance and energy preservation of Big Data AI
pipelines, providing a detailed analysis of optimal model
selection and placement within E2C environments.

Looking ahead, we plan to extend our framework to bench-
mark leading models in the time-series modality, addressing
a gap in the current understanding of time-series performance
and resource consumption. Additionally, we aim to develop
an open-source tool, enabling easy adoption of our framework
by the broader AI community. As new models emerge, we
will continue benchmarking not only their accuracy but also
their hardware and energy consumption. Ultimately, our goal
is to encourage the AI community to shift its focus beyond
accuracy alone, considering comprehensive metrics such as
energy efficiency and hardware utilization. This approach
promotes a more sustainable and economically viable mindset,
benefiting both the environment and AI system optimization.
We also aim to conduct extensive comparative experiments
between our framework and current state-of-the-art tools for
energy monitoring in AI applications. This will allow us to
assess the accuracy of our framework, highlight potential
limitations in existing methodologies, and demonstrate how
our proposed solution addresses these issues by improving the
accuracy and fidelity of energy monitoring in AI systems. We
will place particular emphasis on comparing our framework
with existing tools such as the eco2AI library [4], the EfiMon
tool [5], EIT [7], and CarbonTracker (CT) [8]. We also aim
to conduct a thorough quantitative analysis of the energy con-
sumption trade-offs associated with models optimized through
transfer learning and pruning techniques. By evaluating these
trade-offs, we seek to understand how these optimization
methods influence energy efficiency while maintaining model
performance. Specifically, our analysis will assess the extent
that transfer learning, with its ability to leverage pre-trained



models, reduces the overall resource demands. Similarly, we
will investigate the effectiveness of pruning in eliminating
redundant parameters, potentially decreasing overall energy
usage.
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