
DOI: 10.4018/IRMJ.2021010104

Information Resources Management Journal
Volume 34 • Issue 1 • January-March 2021

﻿
Copyright © 2021, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

﻿

66

PrEstoCloud:
A Novel Framework for Data-Intensive Multi-Cloud, 
Fog, and Edge Function-as-a-Service Applications
Yiannis Verginadis, Athens University of Economics and Business, Greece

Dimitris Apostolou, University of Piraeus, Greece

Salman Taherizadeh, Joseph Stefan Institute, Slovenia

Ioannis Ledakis, Ubitech, Greece

Gregoris Mentzas, National Technical University of Athens, Greece

Andreas Tsagkaropoulos, National Technical University of Athens, Greece

Nikos Papageorgiou, National Technical University of Athens, Greece

Fotis Paraskevopoulos, National Technical University of Athens, Greece

ABSTRACT

Fog computing extends multi-cloud computing by enabling services or application functions to be 
hosted close to their data sources. To take advantage of the capabilities of fog computing, serverless 
and the function-as-a-service (FaaS) software engineering paradigms allow for the flexible deployment 
of applications on multi-cloud, fog, and edge resources. This article reviews prominent fog computing 
frameworks and discusses some of the challenges and requirements of FaaS-enabled applications. 
Moreover, it proposes a novel framework able to dynamically manage multi-cloud, fog, and edge 
resources and to deploy data-intensive applications developed using the FaaS paradigm. The proposed 
framework leverages the FaaS paradigm in a way that improves the average service response time 
of data-intensive applications by a factor of three regardless of the underlying multi-cloud, fog, and 
edge resource infrastructure.

Keywords
Edge, Fog Computing, IoT Applications, Multi-Clouds

1. INTRODUCTION

Fog computing extends multi-cloud computing by enabling services or application functions to 
be hosted close to their data sources, which are typically Internet of Things (IoT) sensors. Hosting 
functions close to data sources can reduce the latency and cost of delivering sensor-generated data to a 
remote cloud and can improve the Quality of Service (QoS; Hao et al. 2017). A key challenge for fog 
computing is auto-scaling, i.e. the autonomous capacity for continuous adaptation and control of the 
computing infrastructure through the recognition of insights and knowledge in the data. Insights from 



Information Resources Management Journal
Volume 34 • Issue 1 • January-March 2021

67

the analysis of sensor-generated data can adapt the computing resources to meet current or predicted 
computing needs, save cost, increase performance and reliability, and meet environmental concerns.

To realize the deployment of applications and services and take advantage of the adaptive 
capabilities of fog computing, two new software engineering paradigms have emerged: Serverless 
and Function-as-a-Service (FaaS), which are seen as two enabling technologies for next-generation 
fog computing (Van Eyk et al. 2018). The serverless paradigm exploits functions or microservices as 
the unit of deployment and is hence more efficient than using a virtual machine (VM) or a container 
since their inherent complexity becomes transparent to the application owner (Castro et al., 2019; 
Trihinas et al., 2018). FaaS is a facet of serverless computing where applications can run server-
side logic in stateless compute containers that can be event-triggered, ephemeral (may only last for 
one invocation), and fully manageable by a third party. Such a serverless paradigm is desirable for 
many event-based IoT applications, especially mission-intensive applications, as well as applications 
requiring energy efficiency and data delivery reliability (Gusev et al., 2019). The increased complexity 
of heterogeneous fog computing infrastructures poses management challenges to the DevOps of 
IoT applications, however (Chiang et al., 2016). In response, advanced cloud management tools 
and methods have started to emerge in an effort to automate infrastructure performance tuning and 
anomaly detection (Di Martino et al., 2019; Mahesh et al., 2011).

This paper reviews prominent fog frameworks that deploy and monitor applications that span over 
multiple clouds, fog and edge resources. It discusses associated challenges and proposes a novel fog 
architecture and framework for managing dynamically multi-cloud and edge resources in order to cope 
with the requirements of FaaS-enabled applications. Our research objective focuses on the development 
and evaluation of a framework to support the seamless deployment of fog computing applications 
on heterogeneous cloud, fog, and edge resources independently of underlying infrastructures while 
supporting the FaaS paradigm and providing auto-scaling capabilities.

2. FOG COMPUTING FRAMEWORKS

2.1. State of Play
Cloud, edge and fog computing is a vibrant and continuously evolving area of distributed computing 
(Liu et al., 2017; Carroll 2015). The US National Institute of Standards and Technology (NIST) 
predicts that the fog computing market is likely to emerge as a viable vertical niche, as fog computing 
deployment needs to adapt to particular physical devices, networks and market needs (Iorga et al. 
2018). We analyzed the current snapshot of available offerings and tested prominent frameworks 
from leading vendors to identify the current state of the art in this domain. We evaluated if existing 
frameworks support the eight characteristics defined by NIST, six of them defined as essential for 
distinguishing fog computing from other computing paradigms while two of them are considered 
optional. The essential ones are a) the contextual location awareness, with the goal of low latency, 
b) the geographical distribution in contrast to the centralized cloud, and (c) the heterogeneity of the 
deployment along with (d) the interoperability and federation e) the support for real-time interactions 
rather than batch processing and finally, (f) the microservice scalability and agility of the federated, 
fog-node clusters that make fog computing adaptive. The two optional characteristics are (g) the 
usage of wireless networking and (h) the mobility of devices.

Since our research focuses on the enabling FaaS on heterogeneous cloud, fog, and edge resources, 
we augmented the eight NIST characteristics with seven additional ones that we consider relevant 
for supporting FaaS-enabled applications. Specifically, the vendor-specific cloud characteristic 
refers to whether the framework in question is bound to the use of only certain providers for 
virtualized computing resources. Support for FaaS characteristic indicates the ability of a framework 
to cope with functions deployed following the serverless paradigm; the deployment optimization 
characteristic refers to the capability to consider contradicting business goals and solving constraint 



Information Resources Management Journal
Volume 34 • Issue 1 • January-March 2021

68

programming problems for detecting the most optimal use of available resources. The offline device 
communication characteristic highlights the capability of a framework to cope with run-time situations 
in fog deployments in which the communication fails unexpectedly for a short period of time. The 
support deployment and management of application on fog and cloud resources characteristic refers 
to the ability to orchestrate the deployment of applications on both cloud and edge resources. The 
fog resources asset management characteristic refers to fog resource registration and supervision 
capabilities and the event-based alerting corresponds to seamless capabilities for aggregating 
monitoring information from the dispersed topology and detecting situations that call for adaptation.

Our analysis presented in Table 1 indicates that AWS Greengrass (2020), AWS Wavelength 
(2020), Azure IoT Edge (2020) and Google Cloud IoT Core (2020) are better suited to support fog 
computing than OpenWhiskLean (2020) because the latter does not support context awareness with 
respect to latency reduction, cannot cope with intermittent edge connectivity and the support for 
wireless communication is limited. AWS Greengrass introduces an architecture comprised of three 
essential components: the Greengrass Core, the Greengrass Group, and the IoT Device SDK. AWS 

Table 1. Overview of Fog Computing Framework Characteristics

AWS 
Greengrass AWS Wavelength Azure 

IoT Edge

Google 
Cloud IoT 

Core

OpenWhisk 
Lean Nebbiolo Cloudify

Context awareness Yes, location 
only Yes, predefined

Yes, 
location 

only

Yes, location 
only No

Yes, 
location 

only

Yes, 
predefined

Geographical distribution Yes Yes Yes Yes Yes Yes Yes

Heterogeneity Yes Yes Yes Yes Yes Yes Yes

Interoperability and 
federation Yes Yes Yes Yes

Federation 
is not 

supported
Yes Yes

Real-time interactions Yes Yes Yes Yes Yes Yes Yes

Microservice scalability and 
agility of federated, fog-node 

clusters
Yes Yes Yes Yes Yes Yes Yes

Predominance of wireless 
access Yes Yes Yes Yes No Yes Yes

Support for mobility No
Yes﻿

within same 
Wavelength Zone

No No No Yes No

Cloud Vendor Specific Yes Yes Yes Yes No No, AWS/ 
Azure No

Support for FaaS Yes No Yes Yes Yes No
Yes,﻿
AWS 

Lambda

Deployment optimization of 
microservices on the edge No No No No No No No

Intermittent edge 
connectivity support

Yes, Device 
Shadows n/a Yes No No No No

Support on Deployment and 
Management of application 

on fog/cloud resources

Partially, 
predefined 
deployment 
at the edge

Partially, 
predefined 

deployment at 
the edge of 5G 

networks

Yes No either Cloud 
or Edge Yes Yes

Fog resources Asset 
Management Yes n/a Yes No Yes Yes Yes

Event-based alerting Yes Yes Yes Yes No No Yes



Information Resources Management Journal
Volume 34 • Issue 1 • January-March 2021

69

Greengrass Core is a compute node hosted on a local device that bears the appropriate software to 
enable the use of local device resources like cameras, serial ports, or GPUs. IoT devices, along with 
Greengrass Cores and Lambda functions, are organized into Greengrass Groups that correspond to 
collections of inter-communicating entities. AWS Greengrass supports serverless code (i.e., AWS 
Lambda functions) deployable to both cloud and edge. AWS Wavelength was recently announced and 
a roll out of the service is expected in 2020. It enables developers to build applications that deliver 
single-digit millisecond latencies to mobile devices and end-users. While it doesn’t support FaaS, it 
allows containerized applications to be deployed on Wavelength Zones. These zones embed AWS 
compute and storage services within the telecommunications providers’ datacenters at the edge of the 
5G networks and seamlessly access other AWS services in the region. Microsoft Azure IoT Edge allows 
the execution of Azure Functions, which refer to C# precompiled versions of application functions. 
The framework can be deployed on Linux and Microsoft Windows operating systems and can run 
on a resource-constrained device such as a Raspberry Pi Zero. The Azure IoT Edge Agent bootstraps 
itself each time an edge device is activated in order to connect it to the Azure IoT Edge Runtime.

Google Cloud IoT Core runs on Google’s serverless infrastructure, which scales automatically in 
response to real-time changes and its main focus is on digesting data from edge devices in a secure 
way. Google advertises this technology as anti-vendor lock-in as the supported environments include 
Cloud Functions, local development environment, on-premises, Cloud Run for Anthos, and other 
Knative-based serverless environments. Nevertheless, the main functionalities are built around vendor 
specific products that are cannot easily accommodate applications deployed over Google Cloud IoT 
to be executed in an open environment like OpenWhisk Lean. Moreover, Nebiolo (2020) is hybrid 
platform for supporting industrial IoT applications. It introduces its own rich operating system stack 
(FogOS) that enables the distributed real-time processing. Although it offers an advanced management 
system doesn’t support FaaS functionalities and optimized placement. Finally, Cloudify (2020) also 
known as multi-cloud everything-as-a-service (EaaS) supports both cloud and edge deployments 
without optimized placement. The cloud support is vendor independent while the serverless capabilities 
are considered only through AWS Lambda functions.

Summarizing this analysis, we found that none of the existing prominent fog computing 
frameworks offers an integrated solution capable of addressing the full list of the fundamental 
challenges of serverless data-intensive applications. Therefore, we propose a novel framework called 
PrEstoCloud, which can fully support these aforementioned essential characteristics of such services.

2.2. Challenges and Requirements
To investigate the challenges and requirements associated with the deployment of FaaS applications 
on fog infrastructures, we focus on an intelligent logistics IoT application that collects and analyzes 
video streams from cameras installed on and inside vehicles. The application performs real-time 
anomaly detections, triggering runtime alerts to the fleet manager, and observes driving dynamics for 
situations such as sudden acceleration and aggressive turning, where possible accidents may occur. 
Decomposing the application into loosely coupled functions packaged into microservices distributes 
computational workloads among three processing layers (Figure 1):

•	 Embedded systems: In this layer, microservices deployed on embedded systems collect video 
streams, process a large volume of data and store them temporarily.

•	 Regional processing units (RPUs): This layer resides in the proximity of vehicles and is aimed 
at data reduction operations such as data aggregation and filtering.

•	 Centralized public cloud: This layer provides central storage and powerful processing capabilities. 
It also supports management functions to control IoT devices installed in vehicles remotely.

Dynamic IoT applications such as the intelligent logistics one puts forward the following challenges 
and requirements for the fog computing framework with respect to its auto-scaling capabilities: multi-



Information Resources Management Journal
Volume 34 • Issue 1 • January-March 2021

70

resource allocation including edge, fog and cloud; optimal microservice deployment; and context-
aware microservice offloading.

2.2.1. Multi-Resource Allocation
One of the main benefits of the cloud computing model is the elasticity of the infrastructure that 
allows the user to manage the size and configuration of their computing fleet finely. This adaptation 
can be driven by indications, coming either from the user, or from an automated system. One great 
challenge of cloud computing has been to build such an automated resource allocator/de-allocator, 
that will make it possible to accurately match the actual usage in order to avoid under-provisioning or 
over-provisioning. Under-provisioning leads to performance issues and additional latency, and over-
provisioning uselessly increases a user’s bill and poorly exploits the cloud resources. As an alternative 
to allocating and de-allocating, an option to optimize resource usage is to reconfigure the resources 
allocated to the application (Kokkinos et al., 2013). It also requires being able to accurately model 
variations in the workload, which is not an easy task, particularly for public clouds, where trace data 
is scarce. Reiss et al. (2012) paved the way to model a workload dynamicity that is experienced in 
(public and private) heterogeneous cloud computing platforms.

Duplyakin et al. (2013) propose a multi-cloud environment to process user requests. In this system, 
users specify the percentage of the resources to be used in each cloud computing environment. If user 
specifications are not satisfied due to a lack of resources, the system will balance the load progressively 
on already-deployed instances until the user requirements are met. This approach allows the best 
possible use of hybrid clouds, but requires an intrusive solution installed inside a VM. Kailasam et 
al. (2013) consider the optimization of the execution time in a hybrid cloud context. They propose 
three heuristic-based scheduling methods that adapt themselves to the evolution of the resources of 
the workload and the availability of the clouds. This approach allows the use of hybrid clouds in the 
context of HPC but requires modifications to the application, or, more specifically, to the application’s 
task scheduler. Leitner et al. (2013) propose a model that enables running applications to burst into 
a different cloud infrastructure. The authors propose a framework for the creation of elastic cloud 
applications. This framework enables the monitoring of the performance and decides when to burst 

Figure 1. Intelligent logistics IoT application



Information Resources Management Journal
Volume 34 • Issue 1 • January-March 2021

71

to a public cloud and, in the other direction, where to consolidate into the private cloud, but this 
approach needs the re-writing of the applications.

Other research works have been achieved on the hybrid cloud, but focusing on economic aspects, 
e.g., Guo et al., (2012) and Tordsson et al., (2012). In a fog environment, multi-resource allocation 
should not only facilitate the selection of the best resource on the grounds of cost minimization but 
also ensure application reliability and QoS and avoid vendor lock-in. This ability allows the selection 
of the best resource to run microservice-based on end-user requirements, which is considered an 
important challenge in fog computing.

2.2.2. Optimal Deployment
Microservices orchestration should balance various criteria, such as making the best utilization of 
computing resources, increasing response time while decreasing network traffic load over the Internet. 
There are also QoS-specific trade-offs that must be considered, particularly in situations when vehicles 
are dynamically changing their geographic positions. For example, some processing may need to be 
moved from one RPU to another in the proximity of vehicles. Reliable execution of the application as 
a whole requires coordination of execution flows. Fog computing requires orchestration capabilities to 
manage both the application and the data flow between available resources. Lorido-Botran et al. (2014) 
identify five categories of approaches for realizing auto-scaling: Threshold-based rules, Reinforcement 
learning (RL), Queuing theory (QT), Control theory (CT), and Time series analysis (TS). Gandhi et 
al. (2014) identify five similar auto-scaling approach categories: prediction models, control theoretic 
techniques, queuing-based models, and black-box and grey-box approaches. Black-box models use 
machine learning or statistical methods for decision making in order to overcome the problem of 
modeling the cloud application using expert knowledge. Grey-box models are hybrid approaches that 
use models in combination with machine learning. Qu et al. (2018) reason that resource estimation 
in horizontal or vertical auto-scaling can be performed using rules, fuzzy-inference, application-
profiling, analytical modeling, machine learning or hybrid methods. Analytical modeling includes 
queuing theory and markov chains. Machine learning includes reinforcement learning and regression. 
Regression is applied in auto-scaling techniques that use time-series analysis or control theory.

Due to its highly networked nature, serverless computing challenges the ways in which auto-
scaling approaches can be applied. There is a need for well-defined event protocols and methods, 
for example, for message queues (Abowd et al. 1999) to continuously monitor the state of serverless 
applications and the infrastructure to ensure that the latter always has enough capacity to handle the 
current workload. Resilience to failure is another essential requirement of a FaaS application because 
each application request is divided and translated to different service calls. A bottleneck in a specific 
service operation should not bring the entire system down.

2.2.3. Context-Aware Offloading
Typically, microservices offload persistence to the host or use highly available cloud data stores 
to provide a persistence layer. Offloading to the host makes it difficult to port containers from one 
host to another. Technologies like the Flocker and Docker volume plugins address this problem by 
creating a separate persistence layer that is not host-dependent. Other technologies such as JPPF 
(Java Parallel Processing Framework, JPPF, https://www.jppf.org/.), CloneCloud (Chun et al., 2011), 
MACS (Kovachev et al., 2012), and JADE (Qian & Andresen, 2014) enable the partitioning of cloud 
application processing tasks to multiple processing nodes at source-code level. JPPF, for instance, 
supports the allocation of processing tasks on any operating system capable of running a JVM (also 
on Android despite running its own JVM).

In a fog environment, offloading should span all three processing layers: embedded systems, 
RPUs, and centralized public clouds. For example, when instructed by the data processing performed 
in the embedded systems layer, video streams and other measured data should be sent to fragments 
deployed on the RPUs of the second layer for content analysis. Other fragments with higher processing 



Information Resources Management Journal
Volume 34 • Issue 1 • January-March 2021

72

requirements, such as driver behavior profiling can only run on the cloud. Deployment constraints 
should be clearly defined and interpreted by the fog framework so that fragments are deployed on 
capable resources. Furthermore, there is a need to manage offloading and onloading of microservices 
intelligently, e.g., if the processing requires to exceed the capabilities of RPUs, new processing modes 
should be spawned in the cloud. According to RPU mobility, location, and network condition, the 
system may need to dynamically select a new RPU, re-deploy the service, and hence support the 
application through context-aware offloading capabilities.

3. PRESTOCLOUD FRAMEWORK

In PrEstoCloud (2020), we focused our research efforts on developing capabilities that address 
the aforementioned challenges and requirements. The PrEstoCloud framework allows not only the 
execution of microservices with cloud, fog, and edge devices but also decides, at run-time, the shifting 
of processing tasks from edge devices to multi-cloud or fog resources and vice-versa. To facilitate 
this, PrEstoCloud allows DevOps to define constraints and execution preferences about microservices 
that can be executed either on cloud, fog, or edge resources. PrEstoCloud decides during run-time to 
offload/onload processing tasks on specific types or instances of edge resources to/from multi-cloud 
resources. Such decisions are based on the current context of the resources used, the microservices 
status with respect to QoS and the present and estimated workload.

3.1. Five-Layered Architecture
PrEstoCloud follows a five-layer architecture (Figure 2):

•	 The meta-management layer provides decision logic capabilities required for enhancing the 
control layer. Components of this layer use as input the situation details, the variation of the data 
streams and the context of the mobile devices at the extreme edge of the network. This layer 
recognizes the situations when it is required to recommend, at the appropriate time, the necessary 
adaptations, such as scaling of functions and on/offloading of microservices.

•	 The control layer contains components responsible for the optimized scheduling of function 
execution over available resources. The control layer detects available edge resources and selects 
target resources for deployment and plans fragment scheduling according to the recommendation 
of the meta-management layer. Optimization involves the examination of a big variability space to 

Figure 2. PrEstoCloud architecture



Information Resources Management Journal
Volume 34 • Issue 1 • January-March 2021

73

find those resources that satisfy certain business goals (e.g., reduce cloud costs while maintaining 
an adequate response time).

•	 The cloud infrastructure layer realizes the dynamic deployment and scheduling capabilities, 
according to the instructions of the control layer. The deployment of microservices is handled 
based on deployment constraints related to different properties like response time, security 
constraints or any other preferences of the DevOps.

•	 The cloud–edge communication layer contains the inter-site network virtualization technology 
for coping with the need for connecting resources situated in multi-cloud environments and 
managing their orchestration and provisioning across different and heterogeneous providers. This 
layer is also responsible for relaying data streams securely on and off the PrEstoCloud platform 
and for providing publish and subscribe event brokering capabilities.

•	 The devices layer contains edge devices that can be used as processing nodes. The appropriate 
agents are installed in each device for (a) network virtualization, (b) spatio-temporal processing 
in poor connectivity cases in which the communication to the cloud layer is maintained even if 
only one edge device maintains adequate connection, (c) shifting processing jobs in our out of 
the edge device, and (d) monitoring agents for aggregating infrastructure and application-level 
metrics that reveal the status of each edge device.

The framework that was developed based on this architecture provides the capability to run 
functions by using microservices, specifically, with the deployment of Docker images. Therefore, 
PrEstoCloud supports the deployment of applications built using the microservice and FaaS paradigms 
through the use of lambda functions, as well as the deployment of any applications capable of exploiting 
the distributed deployment paradigm. Deployment blueprints are expressed in an extended topology 
and orchestration specification for cloud applications specification (TOSCA 2020) that considers 
edge and FaaS-related constructs. These blueprints are exploited in processing workflows that enable 
the deployment of microservices.

The microservices added by the DevOps through a UI are deployed on FaaS processing nodes. 
Processing nodes can be further specified with the use of affinity and anti-affinity constraints, 
as well as the precedence of deployment of some nodes before others. Affinity constraints 
indicate that some nodes should be placed in the same geographical region, and if possible, in 
the same datacenter or rack. Similarly, anti-affinity constraints indicate that nodes should be 
placed in different geographic areas. Precedence-of-deployment constraints force a particular 
order in the deployment, enabling nodes that provide programmatic interfaces to be instantiated 
before the nodes that require them. New processing nodes may be added or removed from the 
current processing topology without affecting the overall processing structure. This enables 
PrEstoCloud to timely use of horizontal scaling to optimize the performance of the processing 
topology according to the processing specifications of the DevOps.

In addition to processing nodes, PrEstoCloud makes use of coordinator nodes, in the form of a 
Lambda proxy component (i.e., a Traefik instance https://traefik.io/). A coordination node acts as a 
gateway to access the functionality of microservices and can transmit metrics related to the running 
processing tasks. The state of processing nodes is continuously monitored by coordinator nodes and 
control layer components. If a change in the topology is detected, e.g., a node does not respond within 
a timeout, the platform will still be operational using short-term and medium-term measures. In the 
short term, a coordinator node will redirect incoming processing tasks to other nodes processing the 
same task—a necessary prerequisite for the effectiveness of short-term measures is the availability 
of such nodes. In turn, this implies that the DevOps should require a minimum number of instances 
for this function, balancing the need for short-term fault-tolerance with the increased cost. In the 
meantime, the control layer will initiate remedy actions, e.g., the instantiation of a new processing 
node, aiming to reinstate the balance in the processing topology in the medium term.



Information Resources Management Journal
Volume 34 • Issue 1 • January-March 2021

74

3.2. Deployment Lifecycle
Figure 3 illustrates the deployment cycle for the intelligent logistics application scenario. These four 
steps shown are fully supported by the PrEstoCloud framework to allow the DevOps to respond to 
business requirements.

The cycle begins with the input of the developer and the DevOps and resulting in the actual 
deployment of the application. We focus and describe how the reconfiguration cycle is realized. 
Reconfiguration is based on the available VM flavors and edge devices as well as the qualitative and 
quantitative preferences of the DevOp. Based on this information, the system generates a type-level 
TOSCA specification of the fragmentation along with a recommended deployment without specific 
VM and edge instances. The specification takes into consideration constraints such as security 
constraints or other quantitative or qualitative constraints, e.g., cost, response time, and data sanitization 
support. The recommendation is forwarded to the control layer for optimization, instantiation of the 
TOSCA specification and deployment.

3.2.1. Development step
In the development step, system requirements are refined into a complete product design including 
the hardware and software architecture and detailed descriptions of the system, data and interfaces. 
Software developers know that the application includes small, self-contained deployable containers, 
each one acting as an individual function application, working together through APIs, which are not 
dependent on a particular language, library or framework. In this way, decomposing the whole logistics 
application into small containers enables us to distribute the computational workload of services among 
various resources. Besides this, each of the services can be easily developed and operated by different 
software engineering teams, and hence, this container-based architecture affects both organizational 
forms of cooperation as well as technological decisions which can be made locally by each team. 
Resilience to failure is another characteristic of the microservice approach because each application 
request is divided and translated to different service calls in this software architecture. Therefore, a 
bottleneck in a specific service operation will not bring the entire system down and it only affects 
that service. In such a situation, other services are able to carry on processing their requests as usual.

3.2.2. Engineering step
The main output in the engineering step is a type-level TOSCA file by parsing code-level annotations, 
as well as DevOps preferences and requirements (e.g. cloud provider requirements) expressed in a 
policy file (not shown for brevity). These requirements are then grouped, and a type-level TOSCA 
file is produced. The type-level TOSCA includes generic specifications, for example the application 
topology, relations among all application components, deployment order of application components, 
constraints such as required resource features for each application component, etc. Afterwards, the 

Figure 3. PrEstoCloud deployment lifecycle



Information Resources Management Journal
Volume 34 • Issue 1 • January-March 2021

75

type-level TOSCA file of the logistics application is pushed to the PrEstoCloud repository, whence 
it is retrieved by the Control Layer in order to calculate the optimal configuration for the application 
deployment.

3.2.3. Deployment Step
The deployment step of the application is performed by the PrEstoCloud cloud and edge layers. 
Specifically, an orchestrator automatically generates the instance-level TOSCA converted based on 
the type-level TOSCA received from the previous step. The instance-level TOSCA includes various 
characteristics such as the public IP addresses of all host machines automatically provisioned, all 
required network configurations, inbound and outbound rules for VMs, security policies, components 
start-up sequence, and similar. When the deployment step is accomplished, VMs are automatically 
allocated to instantiate all containers running the application. The orchestrator automatically provisions 
public clouds and edge resources, which provides a wide selection of instance types optimized to 
fit the logistics use case. Instance types comprise varying combinations of CPU, memory, storage, 
and networking capacity and give the orchestrator the flexibility to choose the appropriate mix of 
resources for the application. Each of microservice is packaged in Docker containers is deployed on 
an individual host machine.

3.2.4. Operation Step
This step manages cloud and edge resources. To this end, the operation step exploits available 
capabilities to monitor and control cloud-based resources, which can be also extended to the edge 
of the network. This step is responsible for the optimal scheduling of services deployed for the 
application over all available resources according to the recommendation of Meta-Management Layer. 
The selection of cloud-based infrastructures is followed by an optimization step, which is necessary 
for finding the most appropriate alternatives which can satisfy certain business goals such as cloud 
infrastructure cost reduction while maintaining a satisfactory response time.

The monitoring system provided by the PrEstoCloud framework plays a key role to track the 
execution environment. The Monitoring Agent is able to continuously measure a set of necessary 
metrics related to both infrastructure and application performance. Infrastructure-specific metrics are 
CPU, memory, disk, network, etc. Furthermore, application-related metrics represent the information 
about the status of the application such as service response time.

4. EVALUATION

4.1. Use Case
To illustrate PrEstoCloud’s capability to support auto-scaling in deployments of microservices, we 
use as a case study the microservice-based logistics application, which is divided into four fragments: 
driver dynamics service, notification server, DB server, and GUI server (Figure 4). The driver dynamics 
service running on the unit installed in the vehicle (edge) receives data from sensors and recognizes 
unexpected driving dynamics, e.g., sudden acceleration, hard braking, and aggressive turns. If there 
is such an occurrence, the service will instantly send a run-time message to the notification server, 
which is running on the RPU. Moreover, the driver dynamics service transmits some sensor data 
periodically to the notification server, such as the vehicle’s speed and GPS information, which is 
helpful in knowing where the vehicle is located. All information is available for the logistic center 
end user via web-based GUI. The GUI server is a web server that processes all incoming requests 
over HTTP sent from end users (e.g., logistic center end users using web browsers) and delivers web 
page contents to them.

The notification server running on the RPU receives all telematics messages sent by driver 
dynamics services. Messages are stored in the DB server, a database used to store the time-series 



Information Resources Management Journal
Volume 34 • Issue 1 • January-March 2021

76

data, e.g., the routes where vehicles are moving, the places where driving dynamics happened. The 
GUI server, which is deployed on a different cloud (Google Cloud), shows end users all information 
stored in the DB server. Facilitating multi-cloud resource allocation, PrEstoCloud allows the DB 
server to be deployed on one cloud, for example, Amazon EC2, which guarantees favorable service-
level agreement (SLA) terms for the DB server and web-based GUI server on another cloud, e.g., 
Google Cloud Platform, which offers optimal pricing.

Each RPU receives messages from vehicles within its transmission range. According to the number 
of vehicles in every geographic region, heterogeneous RPUs with different computing capacity may 
be allocated. The optimized microservice deployment of Notification functions for each area, avoids 
resource under-provisioning and over-provisioning while adhering to the processing and functional 
requirements of the fragment, e.g., that the DriverDynamics fragment needs to be deployed before 
the Notification Server. Then, the cheapest VM having at least one CPU, 4 GB of RAM, and 4 GB 
of disk space is requested. According to a DevOps-configured rule, e.g., whenever the CPU load is 
increased by more than 70% or decreased to less than 30% over two minutes, the framework tries to 
add or remove notification server instances, respectively.

In some cases, a new RPU should be allocated because of a movement of the vehicle from a 
geographic location to a new place. In this case, the notification server running on the current RPU, 
which provides the service is not able to offer favorable QoS required for the intelligent logistics 
application. Therefore, the Notification Server needs to be migrated from the current RPU to another 
RPU near the vehicle. A different reason for violations of QoS constraints may also be the situation 
where the RPU is overloaded due to an increasing workload. In such a case, offloading the notification 
server from the current RPU to the cloud or vice versa is also necessary.

4.2. Deployment Using PrEstoCloud
Figure 5 shows the PrEstoCloud UI dashboard through which, the DevOps specifies the application 
microservices. Once specified, the DevOps can start an instance of the application which will be 
automatically deployed on resources already defined on the dashboard. For the specific application, 

Figure 4. Logistics application microservices



Information Resources Management Journal
Volume 34 • Issue 1 • January-March 2021

77

four types of containerised components as specified: cvs_db_server, cvs_notification_server, cvs_
gui_server, cvs_driver_dynamics_arm / cvs_driver_dynamics_x86.

In order to specify each microservice, various parameters need to be completed, such as name 
of component, architecture (X86 or ARM), name of Docker registry, name of Docker image, 
minimum execution of hardware requirements (e.g. vCPUs, RAM, storage, etc.), health check API, 
environmental variables, exposed interfaces (port numbers, etc.) and required interfaces from other 
components (Figure 6).

To complete the application deployment specification, the architecture should be defined. To 
this end, the connections among all components are required to be precisely described through 
exposed interfaces and required interfaces. As mentioned before, such interfaces are already defined 
when we created each component. Figure 7 depicts a graph which is automatically generated via the 
PrEstoCloud UI based on the connections defined for each component.

Figure 5. Logistics application specification on PrEstoCloud GUI

Figure 6. Microservice parameters



Information Resources Management Journal
Volume 34 • Issue 1 • January-March 2021

78

Upon the successful deployment, the Cloud–edge communication layer of PrEstoCloud makes 
the DB Server accessible only from the Notification Server in the network, not from other hosts on 
the Internet. These security concerns, also for other components, are automatically addressed by 
the packet filtering service. For the deployment of the logistics application, three cloud providers 
have been used: Amazon, Azure and ARNES (Academic and Research Network of Slovenia). The 
DB Server is deployed on the Amazon cloud infrastructure, the Notification Server is deployed on 
the Azure cloud infrastructure, and the GUI Server is deployed on the ARNES cloud infrastructure.

Figure 8 shows the scenario how the Devices layer of PrEstoCloud performs at runtime a typical 
example of auto-scaling: off-loading. Because the Driver Dynamics Container is running on the 
edge, it is useful for analyzing the telematics data very fast. In this case, the container image named 
cvs_driver_dynamics_arm is exploited since the edge nodes use ARM processor architecture. If the 
limited-resource edge node is not able to provide the service (e.g., any of the monitoring metrics may 
show that an abnormal situation is going to happen, for example the free disk capacity or computation 
power on the edge node is not available anymore), the PrEstoCloud solution offloads the service from 
the edge node to the cloud infrastructure.

Monitoring data are communication through the Cloud-edge communication layer of PreStoCloud, 
which uses the MQTT protocol. MQTT is an IoT connectivity protocol, designed as an extremely 
lightweight publish/subscribe messaging transport. It is useful for connections with remote locations 
where a small code footprint is required or network bandwidth needs to be considered so it has been 
used in sensors communicating to the Broker.

In order to have a zero-failure rate, the start time of the Driver Dynamics Container needs to be 
taken into consideration when it should be offloaded from one resource to another one. In essence, 
any container termination on the source node before the time when the new container instance on 
the destination node would be ready to offer its own service means the death of this specific service 
for a while. Therefore, either success or failure status of start and stop requests should be observed 
to reach a fortunate on/offloading operation. In this regard, a numerical value will be returned by 
the developed On/Offloading Server that implies if the request (whether start or stop) has been 
successfully executed or not.

Figure 7. Microservice deployment graph



Information Resources Management Journal
Volume 34 • Issue 1 • January-March 2021

79

4.3. Results
To evaluate PrEstoCould’s auto-scaling capabilities, we measured the average, 99th percentile, and 
standard deviation of application response time during an offloading action. Here, the response time is 
the time period from sensor data acquisition to the time when driver dynamics microservice, a function 
of the intelligent logistics app, detects if an unexpected event happens or not. Three different types of 
infrastructures were exploited to host the driver dynamics microservice to evaluate the importance 
of its placement, including embedded system, RPU, and centralized cloud. The custom embedded 
system called MACH (Motorhome AI Communication Hardware; Taherizadeh et al., 2018) developed 
by the Jožef Stefan Institute (JSI) is installed in the vehicle at the edge of the network. The MACH 
has a 4-core 1.4 GHz CPU, VideoCore-IV GPU, 1 GB of RAM, and 20 GB of storage. The RPU as 
a fog computing resource belonged to the Academic and Research Network of Slovenia (ARNES) 
with a 1-core 2397 MHz CPU, 4 GB of RAM, 10 GB of storage, and 1000 MBps bandwidth. The 
cloud server also had a 4-core 2659 MHz CPU, 16 GB of RAM, 80 GB of storage, and 1000 MBps 
bandwidth. Each experiment was repeated five times to obtain verified results.

A 25 km trip, which took 13 minutes and 16 seconds, was selected to gather sensor data from 
an ordinary vehicle. The vehicle’s sensor measurements were sampled at the rate of 10 Hz, so each 
sample was recorded every 100 ms. Therefore, there were nearly 8,000 samples from the whole trip.

We evaluated the extent to which fog and cloud computing can help the logistics application 
improve the response time when PrEstoCloud handles an auto-scaling action (Figure 9). This action 
was performed to re-deploy the driver dynamics microservice from the edge node to either the fog or 
the cloud at time = 3,000 ms when the electric vehicle is running out of battery power, and hence the 

Figure 8. Microservice on/offloading



Information Resources Management Journal
Volume 34 • Issue 1 • January-March 2021

80

embedded system is not able to provide computing operations on the edge. Re-deploying the driver 
dynamics microservice from the edge resource to the fog or cloud helps save the battery as much as 
possible. Table 2 shows the response time provided in three different experiments, including edge, 
fog, and cloud. In the second and third experiments, the driver dynamics microservice was running 
respectively on the fog and cloud after the time when it was offloaded from the edge node.

When the driver dynamics microservice was offloaded from the edge node, the average and 99th 
percentile of response times for the fog test 948.33 ms and 954.60 ms, respectively, whereas these 
parameters were 3,013.23 ms and 3,901.52 ms in the cloud test. This means that the difference in 
average response times between fog and cloud is almost two seconds, while the difference in the 99th 
percentile of response times between fog and cloud is nearly three seconds. Moreover, the response 
time offered by the fog infrastructure was appropriately steady during the experiment since the 
standard deviation of response time was less than 3 ms, whereas the standard deviation of response 
time with the cloud was more than 364ms. Therefore, the fog node provided a more stable quality of 
computing resource in comparison to the cloud.

5. DISCUSSION

To avoid vendor lock-in and increase the choices available to DevOps, some of the available fog 
computing frameworks allow cross-cloud deployments as well as orchestration of deployments on 
fog resources using open standards such as TOSCA. Although some work has been done to extend 
TOSCA to support deployment on edge resources, the standard is mostly still restricted to deployments 
in conventional cloud resources. To facilitate the adoption of fog computing implementations, the 
availability of up-to-date standards supporting widely adopted deployment technologies, such as 
Docker containers, is essential. Further efforts should be put in extending these standards to address 
fog computing requirements and concerns.

Fog computing frameworks are increasingly more capable of dealing with the dynamicity of fog-
deployed applications and services. Specifically, adjusting and adapting the computing infrastructure to 

Figure 9. Intelligent logistics application

Table 2. Response time offered by the Driver Dynamics Service on edge, fog and cloud resources

Time (ms) Edge Fog Cloud

Average response time 35.64 948.33 3013.23

99th percentile of the response time 42.5 954.60 3901.52

Standard deviation of response time 3.52 2.62 364.50



Information Resources Management Journal
Volume 34 • Issue 1 • January-March 2021

81

changing data flows and producing automatically optimal orchestrations of cloud and fog-resources is 
a prominent trend, which ameliorates the need for the DevOps to monitor the deployment continuously 
and make the necessary changes manually. Still, further work is needed to fully support multi-cloud 
and cross-resource optimization of deployments of data-intensive applications. In this direction, 
PrEstoCloud allows extending the deployment and networking capabilities to the extreme edge of 
the network, enabling efficient processing of the data produced at the edge. Depending on the current 
situation, PrEstoCloud foresees to make an optimized placement of the application as well as of parts 
of an application, to find the right balance between edge and cloud usage. Moreover, PrEstoCloud 
allows for scaling and adapting the deployed applications in real-time, based on the existing and also 
on the anticipated processing load. Still, further research is needed to support the self-adaptivity of 
fog infrastructures fully. To this end, new methods and tools are needed that can detect ahead of time 
needed for changes by analyzing all available contextual information, generating the most efficient 
reconfiguration and defining the optimal redeployment of the running processing tasks. Such methods 
and tools will become more and more useful as their placement is feasible closer to edge nodes.

The edge-processing capability of fog computing frameworks is challenged by the serverless 
computing trend. PrEstoCloud combines edge computing and serverless paradigms to provide an 
innovative solution for FaaS-enabled applications. For example, it enables IoT applications that 
perform analytics to host machine learning models within an edge network, so that applications can 
exploit the model close or at the edge. Every edge location deploys the machine learning model as a 
serverless function. The edge layer simplifies the deployment experience, while serverless streamline 
the developer experience. Functions can be provided faster, leading to increased flexibility and greater 
availability of the deployed application components.

Continuous monitoring and analysis of the status of fog resources and deployed applications or 
application parts is a challenging task. Monitoring probes need to be capable of distributed deployment. 
Moreover, analysis of probed data needs to be done at or close to the edge due to network latency 
and throughput limitation issues. For example, instead of having a security camera stream its video 
and audio feed up to the cloud to be analyzed for certain situations, that analysis can be done within 
the camera itself. Clearly, a more advanced, cloud-based analysis may still be needed, but it is likely 
to be on a much smaller segment of the camera data. To analyze monitoring data on edge resources, 
efficient machine learning methods are needed, with minimal computing and memory requirements. 
Such a distributed monitoring and analysis capability can have a minimal footprint on the network 
traffic while leveraging effective decision making for the overall adaptation and optimization of the 
fog infrastructure as well as help in maintaining high QoS.

The traditional centralized cloud computing continues to remain a significant part of fog computing 
frameworks. Function and data portability, infrastructure monitoring as well as orchestration methods 
employed in the centralized cloud environment cannot be useful in the context of interconnected, 
heterogeneous fog computing resources, in which decision spaces become larger, increasingly complex 
and more dynamic. Next-generation fog computing frameworks will enable the smart deployment of 
applications on a combination of cloud, edge, and extreme edge resources and are expected to employ 
advanced methods for dealing with the dynamicity of FaaS applications and fog infrastructures.

6. CONCLUSION

In this paper, we described the details of the PrEstoCloud framework that introduces advanced 
methods that deal with the dynamicity of FaaS applications and fog infrastructures. The main three 
distinctions among the surveyed fog frameworks and PrEstocloud are the following. First, PrEstoCloud 
enables the use of multi-private or public clouds by considering which is the most efficient cloud 
resource to use in each case. Second is computation at the extreme edge on a per-device level; further, 
benefiting from the computational resources of cameras and mobile devices (wherever possible) is 
something that PrEstoCloud aspires to deliver which is not available in similar solutions like AWS 



Information Resources Management Journal
Volume 34 • Issue 1 • January-March 2021

82

Greengrass. Finally, PrEstoCloud allows the application developer and the DevOps to define their 
constraints properly but also provide hints about application fragments that can be executed either on 
cloud resources, edge resources, or both. From that point on, PrEstoCloud can decide during run-time 
to offload/onload processing tasks on edge resources to/from cloud resources based on the current 
state of the resources used, the application fragments status, and the current and predicted workload.

Funding: This research was funded by the European Commission, grant number XXX.

ACKNOWLEDGMENT

We would like to thank all partners of the XXX project who has contributed with ideas towards the 
development of the PrEstoCloud framework.



Information Resources Management Journal
Volume 34 • Issue 1 • January-March 2021

83

REFERENCES

Abowd, G. D., Dey, A. K., Brown, P. J., Davies, N., Smith, M., & Steggles, P. (1999). Towards a better 
understanding of context and context-awareness. In Proceedings of the 1st International Symposium on Handheld 
and Ubiquitous Computing, ser. HUC ’99. Springer. doi:10.1007/3-540-48157-5_29

AWS Greengrass. (n.d.). https://aws.amazon.com/greengrass/

AWS Wavelength. (n.d.). https://aws.amazon.com/wavelength

Azure IoT Edge. (n.d.). https://azure.microsoft.com/en-us/services/iot-edge/

Carroll, N. (2015). Modelling the dynamics of trust across a cloud brokerage environment. Information Resources 
Management Journal, 28(1), 17–37. doi:10.4018/irmj.2015010102

Castro, P., Ishakian, V., Muthusamy, V., & Slominski, A. (2019). The Rise of Serverless Computing. 
Communications of the ACM, 62(12), 44–54. doi:10.1145/3368454

Chiang, M., & Zhang, T. (2016). Fog and IoT: An overview of research opportunities. IEEE Internet of Things 
Journal, 3(6), 854–864. doi:10.1109/JIOT.2016.2584538

Chun, B.-G., Ihm, S., Maniatis, P., Naik, M., & Patti, A. (2011). Clonecloud: Elastic execution between mobile 
device and cloud. In Proceedings of the Sixth Conference on Computer Systems, ser. EuroSys ’11. Salzburg, 
Austria: ACM. doi:10.1145/1966445.1966473

Cloudify. (n.d.). https://cloudify.co/

Di Martino, B., Esposito, A., & Damiani, E. (2019). Towards AI-Powered Multiple Cloud Management. IEEE 
Internet Computing, 23(1), 64–71. doi:10.1109/MIC.2018.2883839

Duplyakin, D., Marshall, P., Keahey, K., Tufo, H., & Alzabarah, A. (2013). Rebalancing in a multi-
cloud environment. In Proceedings of the 4th ACM Workshop on Scientific Cloud Computing. ACM. 
doi:10.1145/2465848.2465854

Gandhi, A., Dube, P., Karve, A., Kochut, A., & Zhang, L. (2014). Adaptive, model-driven autoscaling for cloud 
applications. 11th International Conference on Autonomic Computing (ICAC 14), USENIX, 2014, 57– 64.

Google Cloud IoT Core. (n.d.). https://cloud.google.com/iot-core

Guo, T., Sharma, U., Wood, T., Sahu, S., & Shenoy, P. (2012). Seagull: Intelligent cloud bursting for enterprise 
applications. Proceedings of the 2012 USENIX Annual Technical Conference, ser. ATC’12.

Gusev, M., Koteska, B., Kostoska, M., Jakimovski, B., Dustdar, S., Scekic, O., Rausch, R., Nastic, S., Ristov, S., 
& Fahringer, T. (2019). A Deviceless Edge Computing Approach for Streaming IoT Applications. IEEE Internet 
Computing, 23(1), 37–45. doi:10.1109/MIC.2019.2892219

Hao, Z., Novak, E., Yi, S., & Li, Q. (2017). Challenges and software architecture for fog computing. IEEE 
Internet Computing, 21(2), 44–53. doi:10.1109/MIC.2017.26

Iorga, M., Feldman, L., Barton, R., Martin, M. J., Goren, N., & Mahmoudi, C. (2018). The NIST Definition of 
Fog Computing. NIST Special Publication 800-191.

Kailasam, S., Gnanasambandam, N., Dharanipragada, J., & Sharma, N. (2013, November). Optimizing ordered 
throughput using autonomic cloud bursting schedulers. Transactions on Software Engineering, 39(11), 1564–1581. 
doi:10.1109/TSE.2013.26

Kokkinos, P., Varvarigou, T. A., Kretsis, A., Soumplis, P., & Varvarigos, E. A. (2013). Cost and utilization 
optimization of amazon ec2 instances. 2013 IEEE Sixth International Conference on Cloud Computing, 518–525. 
doi:10.1109/CLOUD.2013.52

Kovachev, D., Yu, T., & Klamma, R. (2012). Adaptive computation offloading from mobile devices into the 
cloud. 2012 IEEE 10th International Symposium on Parallel and Distributed Processing with Applications, 
784–791. doi:10.1109/ISPA.2012.115

http://dx.doi.org/10.1007/3-540-48157-5_29
https://aws.amazon.com/greengrass/
http://dx.doi.org/10.4018/irmj.2015010102
http://dx.doi.org/10.1145/3368454
http://dx.doi.org/10.1109/JIOT.2016.2584538
http://dx.doi.org/10.1145/1966445.1966473
https://cloudify.co/
http://dx.doi.org/10.1109/MIC.2018.2883839
http://dx.doi.org/10.1145/2465848.2465854
http://dx.doi.org/10.1109/MIC.2019.2892219
http://dx.doi.org/10.1109/MIC.2017.26
http://dx.doi.org/10.1109/TSE.2013.26
http://dx.doi.org/10.1109/CLOUD.2013.52
http://dx.doi.org/10.1109/ISPA.2012.115


Information Resources Management Journal
Volume 34 • Issue 1 • January-March 2021

84

Leitner, P., Rostyslav, Z., Gambi, A., & Dustdar, S. (2013). A framework and middleware for application-level 
cloud bursting on top of infrastructure-as-a-service clouds. Proceedings of the 6th IEEE/ACM International 
Conference on Utility and Cloud Computing. doi:10.1109/UCC.2013.39

Liu, Y., Fieldsend, J. E., & Min, G. (2017). A framework of fog computing: Architecture, challenges, 
and optimization. IEEE Access: Practical Innovations, Open Solutions, 5, 25445–25454. doi:10.1109/
ACCESS.2017.2766923

Lorido-Botran, T., Miguel-Alonso, J., & Lozano, J. A. (2014, December). A review of auto-scaling techniques 
for elastic applications in cloud environments. Journal of Grid Computing, 12(4), 559–592. doi:10.1007/
s10723-014-9314-7

Mahesh, S., Landry, B. J., Sridhar, T., & Walsh, K. R. (2011). A decision table for the cloud computing decision 
in small business. Information Resources Management Journal, 24(3), 9–25. doi:10.4018/irmj.2011070102

Nebiolo. (n.d.). https://www.nebbiolo.tech/

OpenWhiskLean. (n.d.). https://github.com/kpavel/incubator-openwhisk/tree/lean

Papageorgiou, N., Apostolou, D., Verginadis, Y., & Mentzas, G. (2019). Fog Context Analytics. IEEE 
Instrumentation & Measurement Magazine.

PreStoCloud. (n.d.). https://gitlab.com/prestocloud-project

Qian, H., & Andresen, D. (2014). Jade: An efficient energy-aware computation offloading system with 
heterogeneous network interface bonding for ad-hoc networked mobile devices. 15th IEEE/ACIS International 
Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing 
(SNPD). doi:10.1109/SNPD.2014.6888703

Qu, C., Calheiros, R. N., & Buyya, R. (2018). Auto-scaling web applications in clouds: A taxonomy and survey. 
ACM Computing Surveys, 51(4), 73. doi:10.1145/3148149

Reiss, C., Tumanov, A., Ganger, G. R., Katz, R. H., & Kozuch, M. A. (2012). Heterogeneity and dynamicity of 
clouds at scale: Google trace analysis. In Proceedings of the Third Symposium on Cloud Computing, ser. SoCC 
’12. ACM. doi:10.1145/2391229.2391236

Taher, C., Mallat, I., Agoulmine, N., & El-Mawass, N. (2019). An IoT-Cloud Based Solution for Real-Time 
and Batch Processing of Big Data: Application in Healthcare. In 2019 3rd International Conference on Bio-
engineering for Smart Technologies (BioSMART), (pp. 1-8). IEEE.

Taherizadeh, S., Stankovski, V., & Grobelnik, M. (2018). A Capillary Computing Architecture for Dynamic 
Internet of Things: Orchestration of Microservices from Edge Devices to Fog and Cloud Providers. Sensors 
(Basel), 18(9), 2938. doi:10.3390/s18092938 PMID:30181454

Tamrakar, K., Yazidi, A., & Haugerud, H. (2017). Cost efficient batch processing in Amazon cloud with deadline 
awareness. In 2017 IEEE 31st International Conference on Advanced Information Networking and Applications 
(AINA), (pp. 963-971). IEEE. doi:10.1109/AINA.2017.170

Tordsson, J., Montero, R. S., Moreno-Vozmediano, R., & Llorente, I. M. (2012). Cloud brokering mechanisms 
for optimized placement of virtual machines across multiple providers. Academic Press.

TOSCA. (n.d.). https://www.oasis-open.org/committees/tosca/

Trihinas, D., Tryfonos, A., Dikaiakos, M. D., & Pallis, G. (2018). Devops as a service: Pushing the boundaries 
of microservice adoption. IEEE Internet Computing, 22(3), 65–71. doi:10.1109/MIC.2018.032501519

Van Eyk, E., Toader, L., Talluri, S., Versluis, L., Uță, A., & Iosup, A. (2018). Serverless is more: From paas to 
present cloud computing. IEEE Internet Computing, 22(5), 8–17. doi:10.1109/MIC.2018.053681358

Wang, N., Varghese, B., Matthaiou, M., & Nikolopoulos, D. (2017). ENORM: A framework for edge node 
resource management. IEEE Transactions on Services Computing.

Wen, Y., Wang, Z., Zhang, Y., Liu, J., Cao, B., & Chen, J. (2019). Energy and cost aware scheduling with batch 
processing for instance-intensive IoT workflows in clouds. Future Generation Computer Systems, 101, 39–50. 
doi:10.1016/j.future.2019.05.046

http://dx.doi.org/10.1109/UCC.2013.39
http://dx.doi.org/10.1109/ACCESS.2017.2766923
http://dx.doi.org/10.1109/ACCESS.2017.2766923
http://dx.doi.org/10.1007/s10723-014-9314-7
http://dx.doi.org/10.1007/s10723-014-9314-7
http://dx.doi.org/10.4018/irmj.2011070102
http://dx.doi.org/10.1109/SNPD.2014.6888703
http://dx.doi.org/10.1145/3148149
http://dx.doi.org/10.1145/2391229.2391236
http://dx.doi.org/10.3390/s18092938
http://www.ncbi.nlm.nih.gov/pubmed/30181454
http://dx.doi.org/10.1109/AINA.2017.170
http://dx.doi.org/10.1109/MIC.2018.032501519
http://dx.doi.org/10.1109/MIC.2018.053681358
http://dx.doi.org/10.1016/j.future.2019.05.046


Information Resources Management Journal
Volume 34 • Issue 1 • January-March 2021

85

Yiannis Verginadis is an Assistant Professor at Athens University of Economics and Business and a senior 
researcher at the Institute of Communication and Computer Systems (ICCS). He has more than ten years of 
experience in R&D projects in several research areas such as: management of information systems, software 
engineering, workflow management, electronic government, electronic commerce and cloud computing. He holds 
Diploma and Doctoral degrees in Electrical and Computer Engineering from the National Technical University of 
Athens, Greece (2001 and 2006).

Dimitris Apostolou is Associate Professor in the Informatics Department of the University of Piraeus and Senior 
Researcher at the Institute of Communication and Computer Systems. His research concerns decision support, 
knowledge management and intelligent information systems. He is a member of the ΙΕΕΕ Computer Society and 
various national scientific and professional associations.

Salman Taherizadeh obtained his PhD in Computer Science at the University of Ljubljana in 2018.

Giannis Ledakis is Software Engineer at UBITECH.

Gregoris Mentzas is full Professor of Management Information Systems, School of Electrical and Computer 
Engineering, National Technical University of Athens and Director of the Information Management Unit (IMU). His 
area of expertise is information technology management and his research concerns knowledge management, 
semantic web and social computing. His recent research concerns big data management in multi-cloud environments 
and prescriptive analytics in Industry 4.0 cases especially for predictive maintenance. He has published 4 books 
and more than 200 papers in international peer-reviewed journals and conferences, has 5 best papers awards, sits 
on the editorial board of five international journals and has served as (co-)Chair or Program Committee Member 
in more than 55 international conferences.

Andreas Tsagkaropoulos is a PhD student in the Information Management Unit of the school of Electrical and 
Computer Engineering. He graduated in 2016 from the School of Electrical and Computer Engineering of the 
National Technical University of Athens (Greece), and his Diploma thesis was about enhancing the security of a 
personal cloud storage solution. He is working as a researcher in the Institute of Communications and Computer 
Systems, a technology research institute. His research interests include cloud application modelling and adaptation, 
serverless applications and cloud and edge infrastructure.

Nikos Papageorgiou holds a Diploma degree in Electrical and Computer Engineering (1998) and an MSc on 
“Engineering-Economic Systems” (2007) from the National Technical University of Athens, Greece. He also holds a 
Degree of Proficiency in English from Cambridge University and he is member of the Technical Chamber of Greece.

Fotis Paraskevopoulos is CEO of Existanze - #connectingdots, and currently he is a PhD candidate in the School 
of Electrical & Computer Engineering at NTUA. His current research interests include software engineering, 
knowledge management, semantic web, ontology-based modeling and collaboration services.

Zhang, F., Tang, X., Li, X., Khan, S., & Li, Z. (2019). Quantifying cloud elasticity with container-based 
autoscaling. Future Generation Computer Systems, 98, 672–681. doi:10.1016/j.future.2018.09.009

Zhang, W., Xu, L., Duan, P., Gong, W., Liu, X., & Lu, Q. (2014). Towards a high speed video cloud based on 
batch processing integrated with fast processing. In 2014 International Conference on Identification, Information 
and Knowledge in the Internet of Things, (pp. 28-33). IEEE. doi:10.1109/IIKI.2014.13

http://dx.doi.org/10.1016/j.future.2018.09.009
http://dx.doi.org/10.1109/IIKI.2014.13

