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Spatial-photonic Ising machines (SPIMs) have shown promise as an energy-efficient Ising machine,
but currently can only solve a limited set of Ising problems. There is currently limited understanding on
what experimental constraints may impact the performance of SPIM, and what computationally
intensive problems can be efficiently solved by SPIM. Our results indicate that the performance of
SPIMs is critically affected by the rank and precision of the coupling matrices. By developing and
assessing advanced decomposition techniques, we expand the range of problems SPIMs can solve,
overcoming the limitations of traditional Mattis-type matrices. Our approach accommodates a diverse
array of coupling matrices, including those with inherently low ranks, applicable to complex NP-
complete problems. We explore the practical benefits of the low-rank approximation in optimisation
tasks, particularly in financial optimisation, to demonstrate the real-world applications of SPIMs.
Finally, we evaluate the computational limitations imposed by SPIM hardware precision and suggest
strategies to optimise the performance of these systems within these constraints.

The demand for computational power to solve large-scale optimization
problems is continually increasing in fields such as synthetic biology',
drug discovery’, machine learning’, and materials science™’. However,
many optimization problems of practical interest are NP-hard, which
means that the resources required to solve them grow exponentially
with the size of the problem®. At the same time, artificial intelligence
systems, including large language models with a rapidly increasing
number of parameters, are leading to unsustainable growth in power
consumption in data centers’. This has spurred interest in analog
physical devices that can address these computational challenges with
much higher power efficiency than that of classical computers. Various
physical platforms are being explored, including exciton-polariton
condensates’ ', lasers" ", optoelectronic oscillators'”’, CMOS ring
oscillators'*"’, and degenerate optical parametric oscillators®**. Many
of these platforms are known as Ising machines, which aim to solve an
optimization problem called the Ising problem by minimizing the Ising

Hamiltonian:

N N
H=- Z]ijsisj + Z h;s;, (1)
ij i

where spins s;=+1. Although this problem originates from a model of
ferromagnetism, where the first term is the coupling term with the coupling
strengths determined by matrix J and the second term represents the
external magnetic field of strength h, many NP problems have been mapped
to it with only polynomial overhead™, making it highly significant beyond its
original context.

Ising machines based on spatial light modulators (SLMs), known as
spatial-photonic Ising machines (SPIMs), have shown their effectiveness in
finding the ground state of Ising Hamiltonians, mainly due to their scalability™.
The principle of operation of SPIM is as follows. A coupling matrix J and a set
of random initial spin configuration {s;} are first encoded by SPIM hardware.
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SPIM then rapidly computes the current Ising Hamiltonian H through optical
means. This Hamiltonian value is then transmitted into a digital computer,
which must implement some algorithm that determines how spin config-
uration will be modified based on the H value. The modified spin configuration
is then re-encoded in SPIM hardware, and this iteration continues until H
converges to the desired minimum value. Experimentally, current SPIM
implementations typically encode the interaction matrix J by modulating the
amplitude at each pixel of the incident wave emitted by the laser using an
amplitude-modulating mask. The wave is then incident on a reflective SLM
that imprints a binary phase shift ¢; € {0, 77} that corresponds to each spin
5;€ {+1, —1} onto each pixel of the wave. The Hamiltonian value can be read
from a camera device that measures the intensity of the wave. This is used to
inform a digital algorithm, such as simulated annealing, to determine how to
modify the current spin configuration to find states with lower Hamiltonian.
The process of computing Hamiltonian optically and determining the next
spin flip digitally continues iteratively until convergence or a sufficiently low
energy state has been found. A schematic of this process is shown in Fig. 1.

The main advantage of SPIM lies in its ability to rapidly compute the
Hamiltonian value of any given coupling matrix and set of spin config-
urations. In this paper, we mainly study a theoretical model of SPIM, which
considers SPIM as optical hardware that provides us with fast access to
Hamiltonian values but neglects most experimental details that may limit
energy resolution. However, while considering this theoretical model, we
also considered the analog hardware nature of SPIM and would consider the
implication of its precision limitations on its capability in this paper.

One of the main limitations of current experimental implementations
of SPIM is that they primarily use Mattis-type coupling matrices'*****. The
Mattis-type matrix J is defined as the outer product of two identical vectors:

)

This formulation results in a rank-1 matrix with N degrees of freedom,
where N is the dimensionality of the vector &. Still, the coupling matrix of an
Ising Hamiltonian can be any real symmetric matrix with zeros on its
diagonal in general, encompassing up to N(N — 1)/2 degrees of freedom and
a rank that does not exceed N. Hence, this restriction of only using Mattis-
type matrices significantly limits the variety of Ising Hamiltonians that
SPIMs can effectively realize.

Recent advancements have expanded the types of matrices that SPIMs
can implement, thanks to innovations like the quadrature method™, the
correlation function method”, and the linear combination method™. The
quadrature method separates the amplitude-modulating mask and the SLM
into two regions, as shown in Fig. 2a. The first half of the amplitude-
modulating mask is denoted by vector & while the second half is denoted by
#. Both regions of the SLM imprint an identical set of phases {¢;} where
¢; € {0, 7} (which means that the maximum number of spins allowed for a
given SLM is halved), but in the second region, an arbitrarily chosen r-th

pixel that encodes spin s, is imprinted with phase shift of ¢, € {Z,

instead. This changes the form of coupling matrix elements Jj to:

],‘j:{

where {£} and {#;}, known as quadrature components, are freely chosen by
setting appropriate amplitude modulation in the first and second region of
the amplitude-modulating mask. This increases the number of free variables
to 2N but is still significantly smaller than N(N — 1)/2 for larger N values.
Furthermore, for a given coupling matrix Jj; it is not always clear whether
and how it can be decomposed into quadrature components that, when
recombined, accurately reproduce the desired matrix.

In contrast, the correlation function method allows for the evaluation
of matrices characterized by components of the form

zfifj = 2115
251'5]' + 211,

fori = rorj = rand i#j

3)

otherwise

Jij = G(x; — Xj)gifjv (€]
where G(x; — x;) can be an arbitrary function, and x; is the position of the ith
pixel on the focal plane. The Ising Hamiltonian can be effectively evaluated
using the correlation function method by calculating the correlation func-
tion of measured intensity values from SPIM against a distribution function
& derived via the inverse Fourier transform of the function G(x; — x;). The
schematics of this method are shown in Fig. 2b. While this method broadens
the range of matrices that can be represented, it introduces a limitation: the
dependency of the additional factor G solely on the difference between focal
plane coordinates x; — x; restricts output to matrices representing problems
with two-dimensional translation invariance. Consequently, this method
can only represent Ising problems with periodic geometrical properties.

The linear combination method, on the other hand, theoretically
allows for the representation of arbitrary matrices. This is achieved by
decomposing the required coupling matrix into a linear combination of
Mattis-type matrices:

R
Jy=> MEED. )
k=1

Each Mattis-type matrix is then sequentially realized in the SPIM, and all
outputs are electronically combined to produce the desired Ising
Hamiltonian with the accurate coupling matrix, as shown in Fig. 2c. Given
that rank(A + B) < rank(A) + rank(B), and rank(S(k) &® ) = 1,therank of
J is bounded by R. Theoretically, if rank R = N, any arbitrary matrix J can be
represented, although the number of optical adjustments and readouts
required also scales as O(N). Therefore, it is crucial to investigate whether
computationally challenging problems of fixed rank R, which does not
increase with problem size, can be represented. This highlights the potential
of SPIM to solve challenging optimization problems that can be mapped to
an Ising model with a low-rank coupling matrix.

Fig. 1 | Schematic of SPIM. A laser beam passes
through an amplitude-modulating mask encoding
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Fig. 2 | Schematics of SPIM variants. a illustrates the quadrature method™. The

amplitude-modulating mask was divided into two regions, encoding vectors {£;} and
{n:} respectively. Spin configurations {¢,} are encoded identically in the two regions
on the SLM, but with one arbitrary spin having a phase shift of 77/2 relative to all other
spins. b illustrates the correlation function method”. The SLM encodes both the spin
configurations {¢;} and the Mattis vector elements {{;} by rotating each ¢; by an angle
arccos(¢;). A function G in the coupling matrix is first inverse Fourier transformed

o

into a distribution function g(u) where u is the spatial coordinate in the focal plane,
and then digitally integrated with intensity measurement I to produce the Hamil-
tonian H. c illustrates the linear combination method**. The coupling matrix is
decomposed into a linear combination of many Mattis-type matrices. Each Mattis-
type matrix is individually implemented and the intensity measurements from all
linear components are summed digitally to produce the overall Hamiltonian.

Many NP-complete problems have already been mapped to Ising
models®; however, for effective implementation on SPIMs, these Ising
models must have coupling matrices that are either low-rank or circulant.
This paper compares the performance metrics of existing Ising machines
and identifies computationally significant problems suitable for efficient
implementation on SPIM hardware or other hardware with similar coupling
matrix limitations. These include problems corresponding to Ising models
with inherently low-rank coupling matrices and discuss the practical lim-
itations of such models due to the increasing precision requirements of
SPIM hardware. In addition, we examine the feasibility of finding approx-
imate solutions to computational challenges by approximating them with
low-rank Ising models, and apply this method to the portfolio optimization
problem in finance. We also introduce a new variant of an NP-hard pro-
blem, the constrained number partitioning (CNP) problem, as a suitable
benchmark problem for future SPIM hardware, and address translationally

invariant problems that can be effectively resolved using the correlation
function method with SPIMs.

Results and discussion

SPIM performance, advantages, and generality

By exploiting the properties of light, such as interference and diffraction,
SPIMs and other SLM-based devices perform computations in parallel,
providing significant speed advantages over electronic systems.

SPIMs use spatial light modulation to emulate Ising problems, which
are fundamental to various optimization and machine learning tasks'>”.
They optically compute the Ising Hamiltonian from the phase-modulated
image of an amplitude-modulated laser beam. Light incident on the ith site
of the spatial light modulator with an amplitude &; is phase-modulated to
take Ising spin states. SPIMs can efficiently process all-to-all interactions
across tens of thousands of variables, with the computational time for
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calculating the Ising energy H scaling as O(N) for N spins’*’. However,
SPIMs are optimized for Ising problems with either rank-one interaction
matrices, Eq. (2), or low-rank R interaction matrices, Eq. (5), using multi-
plexing techniques™”. This still offers a computational advantage compared
to conventional O(N?) CPU operations if R < N. Despite the limitations to
low-rank problems, using SPIMs and similar devices for combinatorial
optimization has a significant advantage over other annealers.

The SPIM optical device comprises a single spatial light modulator, a
camera, and a single-mode continuous-wave laser. The power consumption
of an SLM (model Hamamatsu X15213 series) is 15 W. The power con-
sumption of a charge-coupled device camera (model Basler Ace 2R) is 5W.
The power consumption of a laser (Thorlabs HeNe HNL210LB) is 10 W.
Thus, the overall SPIM power consumption is 30 W. This can be compared
with the 16 kW needed to run a D-WAVE system’".

Table 1 provides a comprehensive comparison of various Ising
machines in terms of their scale, programmability, resolution of coupling,
time-to-solution (T'TS), energy-to-solution (ETS), and power consumption
metrics. Compared to the most well-established Ising machines, such as the
coherent Ising machine (CIM) and D-Wave, SPIM already demonstrates
lower power consumption and good scalability. Furthermore, SPIM can also
represent spin couplings with greater resolution, the importance of which
will be further explored in Section “Limitation of Low Rank Matrix
Mapping”.

Although this paper focuses on SPIMs, the results apply to other
alternative analog Ising machines that use similar methods of generating
coupling matrices. Specifically, these machines may also employ SLM and
techniques that allow the realization of low-rank interaction matrices
through the direct implementation of rank-one matrices or the linear
combination of multiple rank-one matrices. The problems we discuss in our
paper extend their applicability to various analog computational platforms
that share these experimental foundations.

Having established SPIMs’ general performance and benefits, we now
focus on a critical subset of problems characterized by inherently low-rank
structures.

Inherently low rank problems

Low rank graphs. Given the advantages of optical annealers based on
spatial light modulation, as previously discussed, it is crucial to under-
stand the structure of Ising coupling matrices. Every Ising coupling
matrix J can be associated with the (weighted) adjacency matrix of an
underlying (weighted) graph. One can then define the rank of a graph by
identifying it with the rank of its adjacency matrix. For graphs with
identical connectivity, the unweighted version will generally have a dif-
ferent rank from the weighted graph. We proceed by surveying some
known results about low-rank graphs.

In the unweighted case (corresponding to purely ferromagnetic or
antiferromagnetic Ising problems), the structure of low-rank graphs appears
to be highly constrained. For example, the only rank two graphs are the
complete bipartite graphs. Similarly, the only rank three graphs are the
complete tripartite graphs™. The complete graph has full rank but can be
reduced to a rank one graph by adding diagonal elements to the adjacency
matrix (see Section “Decomposition of Target Coupling Matrix”).

Introducing weights at the edges of the graph can strongly influence the
rank. For example, by placing weights on the edges of complete bipartite
graphs, any rank between 2 and N can be achieved™.

Graphs with weights that are +1 or —1 are known as signed graphs™.
Signed graphs that cluster into k groups of vertices that have a positive
coupling to vertices within the group and a negative coupling to vertices
outside have been shown to have a rank at most k.

The examples above show that most known low-rank graphs possess a
very special structure which limits the range of computational tasks that can
be implemented using such graphs. An example of a hard optimization task
with a low rank is given by Hamze et al.”’. They proposed constructing Ising
problems with tunably hard coupling matrices with exactly known rank.
This family of constructed Ising problems is known as the Wishart planted

Table 1 | Ising machine performance comparison

SPIM (projected)

spatial light
modulator
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2.5x10*
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oscillator
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optical parametric

oscillator

Technology

conducting qubit

55

1968

16384

10°
All-to-all (full)

Max spin count (N)

All-to-all (full)®

All-to-all (random)

optical (8 bit)

Sparse (full)

All-to-all (full) Sparse (full)

Sparse (full)

All-to-all (full)

FPGA

Connectivity (Programmability)

optical (~12 bit)

transmission gate (5

levels)
23 us

optical (N/A)
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flux storage
(5-6 bits)
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FPGA (+1 bit)

Representation of couplings
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~10 s

~2s
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~30 ps?

2.3ms

TTS (N ~ 100)

~0.1mJ
~50 W

~100J
~50 W

924 nJ

~0.1mJ
<10W

~75nJ®

>250 mJ
>25 kW

5.8mJ
200W

>460 mJ

>200 W
TTS is the well-known time-to-solution metric, while the ETS is the analogous energy-to-solution metric. The rightmost column shows the projected future performance of SPIM.

“Value obtained from simulation.

ETS (N ~ 100)

42 mwW

~2.5mW?

Power Consumption

"Value obtained considering electro-optics SLMs under development with frame rates greater than 1 GHz™®.
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ensemble, and they show a hardness peak for relatively small rank
R~ 1.63 + 0.073N, 6)

where N is the number of spins. This is not ideal as the required rank will
increase linearly with the size of the problem N to produce the hardest
problems, but it could still serve as a benchmark for small-scale SPIM-type
devices since at N = 100, the hardest problem only has rank R = 8.

Weakly NP-complete problems and hardware precision limitation.
Yamashita el al.*® proposed a mapping from the knapsack problem with
integer weights to an Ising problem with a coupling matrix J that can be
represented by Eq. (5) with rank(J) = 2, which does not grow with the size
of the problem. The problem is defined as follows: Given a set of items,
each having value v; and integer weight w; > 0, we would like to find a
subset of the items that maximizes the total value of items in the subset
while satisfying a constraint where the total weight of items in the subset
is not greater than a given limit W. The optimization version of the
knapsack problem with integer weights is known to be NP-hard™. Hence,
it was argued that the linear combination method can efficiently imple-
ment the Ising formulation of NP-hard problems on SPIM.

Following a similar mapping strategy, we note that it is possible to use a
single rank-1 Mattis-type matrix to represent the NP-complete number
partitioning problem (NPP), which can be stated as follows: given a set of N
positive numbers, is there a partition of this set of numbers into two disjoint
sets such that the sums of elements in each subset are equal? This can be
easily mapped to the2 minimization problem of the Ising Hamiltonian
Hypp(s) = (Zﬁ\]nisi) , where n; are numbers given in the set, and
s;€{ —1, +1} are Ising spins, which denote which subset #; is assigned to.
This Ising Hamiltonian has a coupling matrix J;; = —n;n;, which is of the
Mattis-type, so one would expect that SPIM can readily implement any
number partitioning problem without using any special rank-increasing
methods mentioned in the introduction.

However, these two examples do not demonstrate that SPIM can
efficiently implement computationally intractable NP-hard problems. For a
number partitioning problem with N integers in the range [1, S], there exists
an algorithm that solves the problem in time scaling like O(NS)”. This is
known as a pseudo-polynomial time algorithm because if we consider the
number of binary digits L required to represent the largest integer S in the
problem, then it is given by L = [log,S]. The algorithm has running time
scaling like O(N2L), which still grows exponentially as L increases.

Problems with such pseudo-polynomial time algorithms belong to the
weakly NP-complete class, for which increasing problem size alone (in
terms of N for the number partitioning problem) is insufficient to make it
computationally hard. These problems are only computationally intractable
(i.e., having only an algorithm whose run time grows exponentially) if the
number of digits used to represent the maximum input L grows. If the
number of digits representing the maximum input is allowed to grow, in
both of the above mappings to the Ising Hamiltonian, the number of digits
in the coupling matrix elements J; will also have to grow.

Hence, to simulate a weakly NP-complete problem whose solution
requires exponentially growing resources on a classical computer, the preci-
sion of SPIM optical hardware will need to grow to encode larger integers
represented by more binary digits L involved in these problems. This is
unlikely to be realized in experiments because the precision with which cou-
pling matrices can be implemented in SPIM is a fixed number of significant
digits, likely much smaller than problem input sizes of practical interest.

Given that NPP with limited binary precision is not NP-hard, studying
the statistical properties of random NPP instances is still interesting because
it may inform potential modifications or constraints to the problem that can
increase its complexity. Historically, NPP was analyzed by Mertens™, with
subsequent extensive rigorous study by Borgs et al.”. It was found that the
average hardness of a randomly generated NPP instance, where N integers
are uniformly randomly selected from the range [1, 2], is controlled by a
parameter x = £. When x> &, they require O(2) operations to solve, but

when « < k,, average problem instances require O(N) operations to solve.
We demonstrate a short basic derivation of the critical parameter x, =1 in
the limit of N — oo below, which is the only parameter responsible for
characterizing the phase of the problem, whether it is a “hard” phase (x > «,)
or “easy” phase (k < x,).

One can introduce the signed discrepancy D of the numbers, given the
binary variables s;" as

N
D= Z n;s;. (7)

i=1
D can be interpreted as the final distance to the origin of a random walker in
one dimension who takes steps to the left (s; = —1) or to the right

(si = +1) with random stepsizes (n;). One can calculate the average
number of walks that ends at D as

QD) = Z<5 <D - i n,.s,.> > (8)

{s}

where ( - ) denotes averaging over the random numbers n and ¢ is the
Kronecker-delta function. Just as in a typical random NPP instance, all n;’s
are identically and uniformly selected from the range [1, 2], so in
subsequent calculations, we use the notation (n)=(n;) for all integer
i € [1, N]. For fixed {s; } and large N, the distribution of D can be treated as
Gaussian with mean

(D) = (n) ) s, ©
and variance

(D*) = (D> = N({n*) — (n)’)
N (10)
=2 (1+0(™")).

Nt +oe)
To obtain an explicit expression for the average number of walks that ends at
a distance D from the origin, (D), we note that the summation over all {s;}
in Eq. (8) is a summation over all possible random walk trajectories. For a
random walk with a large number of steps N, its possible trajectories are
dominated by those where 3_;s; =0, so in the summation, we only consider
such terms and (D) = 0. Hence, for such terms, to the leading order in L,
one can express the probability of the walk ending at a distance D as

p(D) (11)

24/3 6D?

2L/2nN ( 2N )
For a given set of integers {n;}, the random walk must end at even (odd) D
values if >, is even (odd). Hence, to approximate the discrete probability
distribution of D with the above Gaussian probability density p(D), the
probability of ending the random walk at distance D should be 2p(D) for any
given D value. Hence we can obtain an explicit expression for the average
number of walks that ends at a distance D from the origin, Q(D):
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This value, denoted as «,., is crucial for indicating the phase transition. When
K < K, on average, there exists an exponential number of perfect partitions
where the discrepancy D = 0; however, when « > k,, none exists.

Another essential aspect of such a simple random walk model is the
possibility of tracing the effects of finite size. For instance, even with a
relatively small system size of around N'= 17 units, the critical value of
k. ~0.9 is due to the finite-size scaling window of the transition. These
effects become more pronounced in hardware systems that operate with
limited variables.

This statistical analysis aligns with our previous discussion, which
suggested that to generate computationally hard NPP instances, both the
number of integers N and binary digits L must increase, which can be
challenging in practice. Nevertheless, despite its limitations, NPP is a sui-
table platform for integrating additional modifications or constraints,
making it adaptable for deployment on hardware with limited physical
resources.

To modify the NPP so that hard instances can be implemented on
precision-limited SPIM hardware, one can consider the so-called con-
strained number partitioning problem (CNP), which will be discussed in
more detail in Section “Constrained Number Partitioning Problem”. It is a
variation of the original NPP where, apart from splitting integers into groups
with equal sums, we also aim to meet an additional requirement known as a
cardinality constraint. This constraint ensures that the difference between
the numbers of integers in one group and another equals a specific value.

Limitation of low rank matrix mapping. Our investigation in Section
“Low Rank Graphs” suggests that low-rank graphs often exhibit highly
constrained connectivity, such as complete bipartite or tripartite graphs.
This is expected since a low-rank adjacency matrix represents a low-
dimensional manifold with reduced degrees of freedom. Consequently,
the problems they represent are not likely to be NP-hard. Section
“Weakly NP-Complete Problems and Hardware Precision Limitation”
further indicates that to describe a problem which requires exponentially
growing time to solve on a classical computer, it is necessary to either
allow the rank or the precision of each matrix element to increase with the
problem size. This evidence strongly suggests the following hypothesis
may be true: “It is not possible to find constant integers L and K such that
there exists an Ising problem with coupling matrix J with rank K and
maximum input precision L = [log, (max; 3 U))} such that the number
of operations required to find its ground state scales as O (2" ), where N is
the number of spins in the Ising problem.” Given this understanding, it is
still possible to utilize SPIM to tackle NP-hard problems with the fol-
lowing two approaches:

1. Find approximate solutions to hard problems by approximating them
with alow-rank matrix and then solving the approximate problem with
SPIM. This is discussed in Section “Low Rank Approximation”.

2. Identify NP problems whose precision requirement L and rank
requirement K grow slowly as the problem size N increases while
maintaining their hardness. One possible candidate problem is pre-
sented in Section “Constrained Number Partitioning Problem”.

Low rank approximation
Building on our understanding of low-rank problems, this section explores
the practical application of low-rank approximations.

Decomposition of target coupling matrix. Many strongly NP-complete
problems have been mapped to Ising problems with only polynomial
overhead”. However, the resultant coupling matrices usually have no
fixed structure beyond being real and symmetric, so a general method to
decompose any target coupling matrix J into the form given by Eq. (5) is
required. This can be achieved by singular value decomposition (SVD),
which decomposes any matrices J into vectors u and v such that
Jij= ZLlAkuf-k) v](-k) , where R is the rank of the matrix J. For any sym-
metric J, it will lead to u = v, so SVD will produce the smallest possible set
of Mattis-type matrices that represents the target matrix"'.

However, SVD gives no upper bound to the number of digits required
in components of u or v to represent J, so the problem presented in Section
“Limitation of Low Rank Matrix Mapping” still exists. It is not possible to
guarantee that a given coupling matrix J can be represented by vectors u®
whose precision is limited.

In general, the rank of matrix J will be full rank, so R = N where Nis the
number of spins in the Ising problem. Note that the diagonal entries of
coupling matrix J modify the Ising Hamiltonian by a known constant, since
H(s) = Z?]J]ijsisj = fo#i Jijsisj + >_Ji- Hence, one might try to con-
struct a coupling matrixJ’ = J + D, where D is a diagonal matrix, chosen so
that the rank of the coupling matrix J’ is minimized, and then implement
this matrix in SPIM. The ground state of this problem will be identical to that
of the original problem.

However, the problem of finding the diagonal entries of a real sym-
metric matrix that minimizes the number of its non-zero singular values is a
variant of the additive inverse eigenvalue problem". As far as we know, this
particular variant is still an open problem, and the best current result was
demonstrated by Philips”, which showed that with 2V — 1 free diagonal
elements, one can set N eigenvalues to 0. Since a N by N coupling matrix can
have maximum rank N but only N free diagonal elements, the rank
reduction achieved through varying diagonal elements will likely be expo-
nentially smaller than the maximum rank. Hence, in subsequent discussion,
we are not going to make use of this technique. However, in principle, one
can always convert a given coupling matrix J into J' to slightly reduce its rank
and then apply the low-rank approximation technique discussed in the
following subsections.

How fields influence rank. Ising-type problems with a magnetic field
(i.e., a term linear in the spins in the Hamiltonian) can be reduced to a
problem without a field by adding an auxiliary spin. The initial Hamil-
tonian with external field given in Eq.(1) is equivalent (up to a constant
difference) to the following Ising Hamiltonian without external field:

N
H's) = =) " Jhss;, (15)

ij=0
with J' ﬂ) =] &. =— ’% and an additional free constant /. The auxiliary spin

is fixed as sp = 1. What is the rank of this new coupling matrix with respect to
the original one? Note that the coupling matrix J" in Eq. (15) is of the form

()

As long as hy# 0, via elementary row and column operations, one can

(16)

transform
hy  —h/2 hy 0
and hence
rank JP = rank(h,) + rank (] - ﬁhTh> <rank] + 2. (18)
0

Low rank approximation of coupling matrices. Given any Ising pro-
blem with external fields, we can convert it into another Ising problem
with no external field and a coupling matrix with a rank at most two
higher. We can then use SVD to decompose the resultant coupling matrix
into the linear combination of Mattis-type matrices. This decomposition,
in general, produces N terms, where N is the dimension of the coupling
matrix, and the precision of each term is not bounded. Under low-rank
approximation, we retain only the K largest A, terms in the sum produced
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Fig. 3 | Optimization performance with low rank
approximated coupling matrices. a The energy of
approximate solutions is plotted against the rank of
the approximate coupling matrix. The exact inter-
action matrix represents a random, unweighted,
undirected graph with 1000 vertices, all with anti-
ferromagnetic couplings. The coupling strengths are
rounded to the nearest 2”* in the approximation.

b The energy of approximate solutions is plotted (I
against the precision of the approximate coupling 2 4
matrix. A full-rank (R = 1000) matrix and two low-
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k=1

where K < rank(J), andJ is the low rank approximation of the exact coupling
matrix J. Because now only an approximate solution is required, the pre-
cision in fgk) can also be limited by truncating excess digits.

The low-rank approximation method was used by Frieze and
Kannan* to find an approximate solution to the strongly NP-complete
problem of maximum cut, in which one is required to find a partition of
the node set V of a graph G(V, E) such that the partition maximizes the
total weight of edges that cross the partition. It was shown that even
with the precision in fgk) limited to multiples of 1/(|V|K?), the proposed
algorithm can still find an approximate solution within O(|V|*/v/K)
of the maximum cut in time polynomial in |V]. However, this method
of using low-rank approximation to find approximate solutions to hard
problems remains largely unexplored in the context of Ising machines.
It is unclear how the number of Mattis-type matrices K and the trun-
cation of ¥ will impact the quality of approximate solutions found by
Ising machines and to what extent these two quantities can trade off
against each other to maintain the required quality of the approximate
solution.

Low-rank approximation of random coupling matrices. To investi-
gate the feasibility of using a low-rank approximation to find approx-
imate solutions to Ising problems with SPIM, a random interaction
matrix for an Ising problem was generated and then decomposed into
constituent Mattis-type matrices using SVD. Only matrices corre-
sponding to the K largest singular values A, were retained, while the
remaining matrices were discarded. Each element of the retained Mattis-
type matrices was rounded to the nearest 27", This resulted in a rank K
approximate matrix with precision L.

Figure 3 compares the quality of solutions obtained using varying
values of K and L. Figure 3a, b show results from the low-rank, limited-
precision approximation of a random 1000-vertex unweighted connectivity
graph, where each pair of vertices has an equal probability of being con-
nected or unconnected. Figure 3¢, d show results from a sparse 3-regular
random graph, where each vertex is connected to 3 other random vertices.
From Fig. 3a, ¢, we observe that the quality of solutions obtained from 8-bit
precision approximations is indistinguishable from solutions obtained from

full-precision calculations, regardless of the rank of the approximate cou-
pling matrix. This suggests that SPIM can still find highly accurate
approximate solutions to Ising problems with both dense and sparse cou-
pling matrices, even with limited precision.

This observation is further supported by Fig. 3b, d. It can be seen that
with at least 6 bits of precision, SPIM can find low-energy solutions com-
parable to those found by full-precision machines using the same algorithm.
However, the loss of accuracy is more pronounced in dense graphs than in
sparse graphs.

The main advantage of SPIM lies in the fast calculation of energy for
any given spin configuration. Still, the gradient of energy change with
respect to spin flip is not readily accessible to SPIM, so SPIM can only work
with gradient-free optimization algorithms. Results shown Figs. 3b, d sug-
gests that given the constraint of available algorithms for SPIM, the precision
of at least 6 binary bits will not be a limiting factor of the optimization
performance of SPIM hardware.

However, the quality of the approximate solution is highly depen-
dent on the rank of the approximated coupling matrix. In both dense and
sparse graphs, the energy of the approximate solution increases rapidly
as the rank of the approximate coupling matrix decreases. Therefore, for
a general random matrix, the precision of the Mattis-type matrices is not
a significant factor in the quality of the approximate solution, but the
rank of the approximate matrix is. For a SPIM architecture that com-
putes Ising energy contribution from each rank-1 component by time-
multiplexing, this dependence on the rank is likely to lead to much
longer computation times per iteration, thus limiting the efficiency of
SPIM hardware.

In Section “Low Rank Approximation for Portfolio Optimization”, we
discuss a practical application in finance where a low-rank matrix can often
approximate the matrix in question, making it suitable for implementation
in SPIM hardware.

Low rank approximation for portfolio optimization. Low-rank
approximations of covariance matrices S are well studied” ™. If only a
small sample of observations is available, and the number of variables N is
large, then the sample covariance matrix will include a significant amount
of noise. A low-rank approximation can filter out this noise so that the
covariances reflect the true underlying structure of the data. Such a
technique is commonly used in portfolio optimization*, which relies on
an accurate covariance matrix between the N assets. In this section, we
present a formulation of the portfolio optimization problem for direct
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Fig. 4 | Portfolio optimization with low rank (@)

C;

approximation. a Frequency histogram of eigen- 501
values obtained from the covariance matrix of S&P

500 stock data. There are only a few dominating 40
eigenvalues, and most eigenvalues are orders of
magnitude smaller than the dominant ones.

b Equal-weighted cardinality-constrained portfolios
constructed from the full rank covariance matrix

S (blue), K =20 low rank matrix §' (orange), and
K =5 low rank matrix (green). The cumulative
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return percentage of each portfolio is calculated as

0] ST, w - 1(t), where V(0) is the initial value of

the portfolio at ¢ = 0. Here, A = 0.5, y = 1, and g = 20.
The portfolios were built by minimizing Eq. (21)
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using commercial solver Gurobi. Frequency data for
each eigenvalue bin in (a) can be found in Supple-
mentary Data 2 file. The time series data for the full
rank, K =5, K = 20 lines if (b) can be found in the
Supplementary Data 3, 4, 5 files respectively.
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encoding into the SPIM hardware, utilizing the low-rank covariance
matrix approximation.

Portfolio optimization involves creating an investment portfolio that
balances risk and return. The objective is to allocate assets y; optimally to
maximize expected returns y while minimizing risk ¢. The problem is
formulated in the Markowitz mean-variance optimization model*~*' with
objective function

H:(l_A)‘/’_M"

20
=1 —-V)w'Sw —Am"w, (20)

where the scalar A € [0, 1] quantifies the level of risk aversion, and w; € [0, 1]
with Zf\’ w; = 1 are portfolio weights that describe the proportion of total
investment in each asset. S;; = Cov(y;, y;) is the covariance between the i-th
and j-th assets, and m; is the expected return of asset y;. The covariance
matrix S and return forecast vector m are typically derived from historical
time-series data™.

Markowitz’s mean-variance portfolio optimization naturally maps to
the quadratic unconstrained mixed optimization (QUMO) abstraction™.
However, with equal weighting, the problem converts to quadratic
unconstrained binary optimization (QUBO). Equal-weighted portfolio
optimization, where w; € {0, 1/q} for g selected assets, has been shown to
outperform traditional market capitalization-weighted strategies™ . In this
case, weights w; can be transformed to Ising spins s; ¢ 2qw; — 1. We extend
the model to include a cardinality constraint that limits the portfolio to a
specified number of assets, maintaining the QUBO abstraction. This is
equivalent to constraining q to a predetermined value. Diversification can be
controlled through cardinality constraints, providing an additional
mechanism to manage portfolio volatility. The objective function can be
expressed as an explicit Ising Hamiltonian

H=(1—/l)wTSw—/lmTw—}—11(qlTw—q)2
_Z( j ’1)551
Amp 1=
+Z< <——q)——rg+ 7 ZS,-]->S,-+C7
i

where parameter # controls the magnitude of the cardinality constraint
and ¢ is a constant offset. We can identify the Ising coupling matrix
elements as J; = L= )‘S + 1, and external magnetic field field strength as

@1

hy=nE—q) - '—|—1 ’\Z S By introducing an auxiliary spin to

absorb linear ﬁelds w1th the method given in Section “How Fields Influence

Rank” and discarding constants, the objective function becomes H = —sJ"s.
Realizing portfolio optimization in SPIM architectures requires coupling
matrix J to be low rank. This is achieved through low-rank factor analysis
(FA), a low-rank approximation technique common in quantitative
finance®.

To compute coupling matrix J, covariance matrix § is first esti-
mated from historical time-series data on the set of asset returns r(¢).
However, accurately estimating S from historical data can be chal-
lenging due to noise, high dimensionality, and limited data*. FA
assumes observed data are linearly driven by a small number K of
common factors, such that r(t) = ¢+ Bf(t) + &, where c€ RV is a
constant vector, B € RVN"*K is the factor loading matrix with K< N,
£(t) € R¥ is a vector of low-dimensional common factors and ¢ € RY
is uncorrelated noise. The unobservable latent variables f(t) capture
the underlying patterns shared among the observed variables. FA
implies the covariance matrix consists of a positive semi-definite low-
rank matrix plus a diagonal matrix such that the transformed covar-
iance matrix is S’ = BBT +W¥¥. For low-rank factor analysis,
rank(BB") < K*. The diagonal matrix ¥ becomes a linear field term in
the binary formulation, and it follows from Eq. (18) that S’ remains
low rank. Indeed, in the Ising QUBO abstraction with auxiliary
variable, coupling matrix J* has rank J' <rankJ 4 2 <rankS'+
rank(1 ® 17) + 2 = rank ' + 3. Therefore, the transformed coupling
matrix remains low rank.

Covariance matrix S and expected returns vector m are point statistics.
We use these to minimize the time-independent objective function (20), or
equivalently, the Ising Hamiltonian (21), to obtain the optimal set of
portfolio weights. We can then back-test our results on the time-dependent
return data r(f) to observe portfolio returns w - r(t) over time. Figure 4
illustrates the decomposition of the covariance matrix to its low-rank form
and shows the proximity of portfolio returns over time constructed in the
full-rank and low-rank paradigms. The full universe of stocks can be vast, so
decomposing covariance matrices into low-rank forms provides computa-
tional advantages in subsequent calculations. For example, the New York
stock exchange contains over 2300 stocks, whilst in Fig. 4, we consider only
the 503 stocks tracked in the S&P 500 index.

For a quadratic unconstrained continuous optimization problem, if the
coupling matrix is positive semi-definite as the covariance matrix is, then the
problem is convex for any linear field term. However, for QUBO problems,
even if § and hence J is positive semi-definite, the problem is not necessarily
easy to solve. The binary constraint makes the feasible region discrete, not
convex, which is why QUBO problems are generally NP-hard. SPIMs derive
a temporal advantage over classical computing due to optical hardware
implementing fast and energy-efficient computation. This is particularly
crucial in high-frequency trading, where optimal portfolios must be
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calculated over microseconds to minimize latency in placing orders™*, We
note that while at the moment SPIM hardware is not able to achieve the
microsecond time-to-solution (TTS) performance required for high-
frequency trading tasks, as shown in Table 1, SPIM is projected to be able
to meet this TTS requirement when SLM with higher operating frequency
currently under development becomes available.

Constrained number partitioning problem

To further illustrate the utility of SPIMs in tackling complex problems, we
introduce the CNP problem, examining its characteristics and computa-
tional challenges.

Definition and characteristics of the constrained humber partition-
ing problem. In Section “Weakly NP-Complete Problems and Hardware
Precision Limitation”, it was shown that although the Number Parti-
tioning Problem (NPP) can be mapped to an Ising problem with a rank
one coupling matrix, its complexity grows as O(N2%). Therefore, solving
difficult NPP instances would require increasing the precision L of SPIM
hardware. The hardness of a random instance of NPP was characterized
by Gent et al.”” and Mertens", who presented numerical evidence sug-
gesting that the average complexity of a random instance is directly
correlated with the probability of a perfect partition. A perfect partition,
also known as a perfect solution, is a partition where the difference in the
sum of the elements in the two subsets is 0 or 1, meaning that the signed
discrepancy D =2 n;s;, as introduced in Eq.(7), is 0 or 1. The studies
suggested that when the number of integers N in the problem is large, if
the probability of a perfect solution in a random instance tends to 1 (i.e.,
limy_, ., [P (perfect solution) = 1), then the average problem is easy.
Conversely, if limy_, [P (perfect solution) = 0, then the problem is
hard. It was rigorously shown that there is a phase transition separating
the regimes of the asymptotic existence of a perfect solution, controlled by
a parameter «=L/N, with P (perfect solution) — 0 when x>« =1.
This analytical study corroborates our previous discussion that when Nis
large, L must also be large for the problem to be hard.

Borgs et al.*’ generalized these results to another problem known as the
CNP problem. In a random CNP problem, there exists a set of N integers
uniformly and randomly chosen in the range [1, 2"], under the constraint
that the set must be partitioned into two subsets whose cardinalities differ by
a given value S, known as the bias. The goal is to minimize the difference in
the sum of elements in each subset, known as the discrepancy. Given a CNP
problem with integers #y, 15, . ..., nyand bias S, it can be mapped to an Ising
problem by defining the Ising Hamiltonian

(e (9]

1

(22)
N N

- Z(—ninj + A)sisj —248 s, + A8,
i i

where each spin s; denotes which subset the number #; is assigned to. The
first term on the first line of Eq. (22) minimizes the discrepancy between
sums of two subsets, while the second term enforces the constraint that the
cardinalities of subsets must differ by S, as long as constant A is sufficiently
large. The second line of Eq. (22) puts the energy into the explicit Ising form,
where coupling matrix elements are J;; = n;n1; — A and there is an external
field with field strength — 2AS. By introducing an auxiliary spin as men-
tioned in Section “How Fields Influence Rank”, the external field term can be
subsumed into the coupling term at the cost of increasing the rank of the
coupling matrix by up to two and increasing the dimension of the coupling
matrix by one. The original coupling matrix has rank two, so this problem
will have a coupling matrix of rank up to four when implemented on SPIM
hardware, regardless of the number of integers in the problem.

It was found that the probability of a perfect solution for a random CNP
instance is controlled by x and an additional parameter bias ratio b = S/N. It

was rigorously shown that asymptotically as N — co when b>b, = /2 — 1,
itis trivially easy to find the best partition because the bias is so large that it is
almost always optimal to assign all largest elements to the smaller subset.
This is known as the “ordered” phase. When b <b,, the probability of
existence of a perfect solution has a similar phase transition as in NPP, where
P (perfect solution) — 0 when % > k.. However, the critical value x, was
found to be a function of b, and k. moves towards 0 as b increases towards b,.

This suggests that CNP can be a perfect candidate for imple-
mentation on SPIM hardware because an average random CNP instance
can be computationally hard even if L < N (i.e., k < 1) as long as b is
sufficiently close to b.. Two areas need to be explored to establish that
this problem is computationally hard and suitable for implementation
on SPIM. Firstly, the authors of ref. 60 did not rigorously show that the
existence of a perfect solution is correlated with the hardness of the CNP
problem instance like it is in NPP. Secondly, in a system with finite size
N, there will exist a non-zero value of k_ .. which leads to the smallest
precision L required for the average problem to be hard. This value is
obtained when bias ratio b is as close as possible to b, given that S must be
an even or odd integer depending on N. Finite-size effects are likely to
make the transition between the easy and the hard phase gradual, with an
intermediate region where the probability of having a perfect solution is
close to neither 0 nor 1. In the following subsection, we will numerically
investigate this phase transition with a finitely sized system and
understand the precision requirement for a moderately sized CNP
problem that is still computationally hard.

Computational hardness of random CNP instances. As the number of
integers N'in a CNP problem increases, the probability of finding a perfect
partition will undergo a phase transition from 0 to 1, but the critical value
of N, where this happens is expected to increase as bias S of the problem
increases because it is increasingly challenging to balance the sums in
each subset while fulfilling the constraint of greater cardinality difference.
This trend is observed in Fig. 5a. A complete picture of the phase tran-
sition landscape is shown in Fig. 5b, which is the probability of the
existence of a perfect solution in a random CNP problem with fixed
precision L =12, meaning that all integers are selected uniformly ran-
domly from the region [1, 2"], but with various different numbers of
integers N and bias S. We can observe a “hard” phase in which the
probability of a perfect solution’s existence is low (labeled as region 2 in
the color map) and a “perfect” phase in which the probability of a perfect
solution’s existence is close to 1 (labeled as region 3). It can be observed
that the phase transition between the “hard” and “perfect” phases is not
sharp, and there exists an intermediate region where the probability of a
perfect solution being present is neither close to 0 nor 1. This can be
attributed to the finite system size N. Unlike the theoretical studies pre-
sented by Borgs et al.”’, which depicts the asymptotic behavior when
N — oo, this phase diagram models a finite system implementable in
SPIM hardware. From the phase diagram, we observe that region 2, where
the probability of a perfect solution’s existence is close to 0, extends into N
values much greater than L =12 used in the simulation. Hence, this
numerical experiment suggests that it is possible to realize CNP problem
instances with size N much greater than hardware precision L on SPIM
and still keep the parameters in region 2, where the probability of a perfect
solution being present is very low.

Next, we must understand if problem instances in region 2 represent
computationally hard instances. The existing state-of-the-art pseudo-
polynomial time algorithm for number partitioning problems is the com-
plete differencing algorithm*’. As shown in Fig. 6, the algorithm performs
the search in a depth-first manner through a tree. The root comprises all
integers in a descending order. At each node with more than one element,
the node leads to new branches. The left branch takes the difference of the
first two elements of the parent node, denoting the decision to assign the two
leading elements into two different subsets. The right branch takes the sum
of the first two elements of the parent node, denoting the decision to assign
the two leading elements to the same subset. The only integer in each leaf
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Fig. 5 | Perfect solutions in CNP problems. a The

probability of the existence of a perfect solution is 10 e 1.0
plotted against various problem sizes N at fixed ' bias ."./ ’ ,'/)

values of bias S. b The color map shows the prob- 08| —— 1 ol 0.8
ability of the existence of a perfect solution in a - 3 / / .-'f '
random CNP problem instance with N integers and =06 o 0.6
various bias values, and the integers are chosen £ =8 ,l" / I.-"

uniformly and randomly in the range [1, 2"]. The g 0.4 /. | Iu" 0.4
probability at each point in the phase space is cal- o / ?

culated over 200 random instances. Three phases are 0.2 sl / 0.2
identified in the figure, separated by the orange and i A

red dash lines. Region 1, 2, and 3 correspond to the 0.0 | it

“ordered”, “hard”, and “perfect” phases proposed in 0 5 10 15 20 25 0.0
ref. 60. Region 1 in the graph is not drawn because it N

is likely to be trivially easy to find the optimum
partition in this region for an average problem
instance, so it is not meaningful to investigate the
probability of a perfect solution’s existence in this
region. Data used to plot (a) and (b) can be found in
the data tables given in the “Figure 5a” tab of the
Supplementary Data 1 file and in the Supplementary
Data 6 file, respectively.
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Fig. 6 | Schematic search tree of the complete differencing algorithm. Orange
branch leads to the perfect solution, which has the best possible discrepancy of 1. If
the algorithm searches from left to right, as shown here, then it will terminate after
searching the first branch since the perfect solution will be found, and all other
branches will be discarded.

node indicates the final discrepancy corresponding to the partition defined
by the route from the root to the leaf.

This algorithm has a worst-case time complexity that grows expo-
nentially with N but relies on pruning rules to help it avoid searching
through large chunks of the solution space that cannot produce a solution
better than the current best-found solution. For example, an entire branch
can be discarded when the difference between the largest element and the
sum of all other elements exceeds the best-known solution. It is known that
for random NPP instances that have size N much greater than the precision
limit L, this algorithm, on average, only needs to visit O(IN) number of nodes
in the search tree to find the optimal solution. This remarkable reduction in
search time from the worst case of O(2V) to O(N) is because the probability
of the existence of a perfect solution is close to 1 in the average case (when
N>>L). Hence, the algorithm will likely quickly find the perfect solution,
which has the smallest possible discrepancy between sums of the two par-
titions (0 or 1), and terminate because no better solution is possible, thus
pruning away the vast majority of the solution space.

This algorithm has also been adapted for a particular case of CNP
known as the balanced number partitioning problem, where the bias S is set

to 0°'. The adapted algorithm is still efficient when N >> L. This is unchanged
from the NNP case - because the algorithm will likely find the perfect
solution quickly and terminate before searching an exponential number of
nodes in the solution space. Hence, it is reasonable to expect that even in the
case of CNP, to avoid searching the exponentially large solution space, there
needs to exist exponentially many degenerate optimal solutions scattered in
the solution space so that any “good” algorithm can quickly find one of them
and terminate before visiting an exponential number of nodes. In other
words, if the number of degenerate ground states is not growing expo-
nentially with N, while the total solution space is constantly increasing as 2~,
this suggests that the problem will be computationally hard.

Here, we investigate two versions of the CNP problem. The first is a
decision problem: given a CNP instance, determine if a perfect solution
exists. The complete differencing algorithm was adapted by enforcing the
bias constraint and then used on many random CNP problem instances
with given size N and bias S. The number of possible configurations that
must be searched before the determination can be made is shown in Fig. 7a.
It can be observed that the number of searched configurations first increases
exponentially with N before hitting a peak. We note that the average
hardness of problems, as indicated by the number of configurations sear-
ched, peaks at around the same time as the phase transition from the “hard”
phase to the “perfect” phase shown in Fig. 5a. This is because if a perfect
solution exists, the algorithm can locate it early on without searching the
entire configuration space. If no perfect solution exists, the algorithm will
likely have to search most of the configuration space to rule it out. Hence,
our numerical test shows that CNP and NPP are likely to behave similarly,
with the existence of a perfect solution correlated with the problem
being easy.

Considering that the random CNP instances used in Fig. 7a have a
constant precision limit L = 12, the figure also shows that a random CNP
instance can remain hard for greater and greater values of N > L as bias S
increases, since even the state-of-art complete differencing algorithm would
have to search an exponentially increasing number of nodes before finding
the solution. This feature of CNP is particularly useful for SPIM, because it is
likely to be far easier to scale up the number of spins in the hardware than to
increase the precision of control over their coupling strength in physical
hardware.

The second version of CNP problems we investigate is a harder opti-
mization problem: given a CNP instance, find the best partition, regardless
of whether it is perfect. Figure 7b shows the degenerate ground states in
randomly generated CNP problem instances with different bias parameters
b= S/N but with fixed precision L = 12. When N is smaller than L, it can be
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observed that the number of degenerate ground states did not grow expo-
nentially with N for all values of bias ratio parameters b, which corresponds
to the lower-left corner of region 2 in Fig. 5b. When N is larger than L, the
number of degenerate ground states grows exponentially with N for smaller
values of b. For the largest considered b value of 0.4, the number of
degenerate ground states is approximately constant by an order of magni-
tude, even as the total solution space grows exponentially with N. This
strongly suggests that for the largest bias ratio b value, the problem remains
computationally hard even as N grows while the precision L is fixed.

Hence, results shown in Fig. 7 suggest that random CNP problems with
large bias ratio values can be meaningful benchmark problems for testing
the performance of SPIM hardware in solving computationally hard pro-
blems because they have limited precision requirements and can be mapped
to Ising problem with a low-rank coupling matrix.

Translation invariant problems

Beyond low-rank and constrained problems, translation invariant problems
offer another interesting domain for SPIM applications. This section
investigates how these problems can be effectively represented and solved
using SPIMs.

"Realistic” spin glass. The correlation function method enables SPIM
to encode translation invariant (or cyclic) coupling matrices. This type of
coupling matrices can be used to study “realistic” spin glasses with
nearest-neighbor couplings that live on a hypercubic lattice with periodic
boundary conditions in d dimensions*>*”’. For d=1 and d=2, these
systems can be encoded using a modified Mattis-type matrix of the form
given by Eq. (4), where

Hg(x; — Xj)
0 otherwise.

for |x; —x|=1

Gl —x) = { (23)

Here, Hg(k) is an arbitrary function. One could create “glassy” coupling
matrices by choosing H (k) = cos(wk) to be sinusoidal with a suitable
frequency. That is precisely how (up to decay over distance) the Ruderman-
Kittel-Kasuya-Yosida exchange coupling gives rise to the anomalous
magnetic behavior measured in dilute magnetic ions in insulators that kick-
started the field of spin glasses™ .

A three-dimensional spin glass could be approximated by dividing the
focal plane into L x L blocks and connecting nearest-neighbor spins and
spins from neighboring blocks. This would modify Eq. (23) to read

Hg(x; — x;) for |x; — x| =L%ac{0,1}

0 (24)

Gx;, —x;) =
(x; =) { otherwise.

However, this would add some additional couplings not present in the actual
cubic lattice because the nearest neighbors from different blocks in the focal
plane are still connected. This method could be iterated to approximate

higher dimensional lattices, but it would lead to even more unwanted
additional couplings.

Another way to create frustration on a given lattice is to set Hg(k) =1
identically but add additional anti-ferromagnetic connections to next-
nearest neighbors by setting

+1 forlxi—le =1
Gkx; —x)=( -1 for | x;—x;ll;, =2 (25)
0 otherwise,
where || - ||; denotes the L; norm. Spin models with such coupling are also

known as J;-J, models”®. Using the correlation function method, these

highly frustrated coupling matrices can be realized on SPIM architecture,
and the performance of sampling-based algorithms implemented on SPIM
for minimizing the Ising Hamiltonian of these spin glasses can be
investigated.

Circulant graphs. When an Nx N shift matrix P acts on a vector
x = (x, Xa, ..., X,), the components of x shift such that the order of the x;
change. We describe P as cyclic or circular since each component x; is
shifted by one around a circle. P* turns the circle by two positions, and
every new factor P gives one additional shift. P" gives a complete 27 shift of
the components of x and therefore PV = Iy, where I is the N x N identity
matrix. A circulant matrix C is a polynomial of a shift matrix. In general

C=cly+cP+c,PP 4 .. ey PV (26)
which always has constant diagonals. The eigenvalues A of P, given by
Px = Ax, are the N-th roots of unity. This follows from PV = Iy to get AN = 1.
The solutionsare A = w, w?, ..., w" ', 1 with w = exp(27i/N). The matrix of
eigenvectors is the N x N Fourier matrix

1 1 1 - 1
1 w w? -1

F=|1 wh w21 7 (27)
1 wN-1 ,20N-D wN=DN-1)

with orthogonal columns. Orthogonal matrices like P have orthogonal
eigenvectors, and the eigenvectors of a circulant matrix are the same as the
eigenvectors of the shift matrix. All information of a circulant matrix C is
contained in its top row ¢ =(co, ¢y, ..., cn—1), With the N eigenvalues of C
given by the components of the product Fc. When the adjacency matrix of
an undirected graph is circulant, the eigenvalues are guaranteed to be real.
This is because an undirected graph has a symmetric adjacency matrix, and
symmetric matrices have real eigenvalues.
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(a) (b)

Fig. 8 | Ground state Ising spin configurations. a State S, where each neighboring
spin alternates, and b State S; where there are two positions, opposite on the ring, for
which neighboring Ising spins are the same. For ] < ], the neighboring couplings
dominate, and Sy is the ground state, whereas for J > Ji, the cross-ring couplings
exert a greater influence and S; is the ground state.

An example of a graph structure with a circulant adjacency matrix is a
Mobius ladder graph. This 3-regular graph with even number of vertices N'is
invariant to cyclic permutations and can be implemented on SPIM hard-
ware with each vertex of the M6bius ladder graph representing an Ising spin.
The Ising spins are coupled antiferromagnetically according to the 3N/2
edges of the Mdbius ladder graph. Each vertex is connected to two neigh-
boring vertices arranged in a ring, and a cross-ring connection to the vertex
that is diametrically opposite, as illustrated in Fig. 8. When N/2 is even, and
for large cross-ring coupling, no configuration exists where all coupled Ising
spins have opposite signs, and thus, frustrations must arise. The Ising
Hamiltonian we seek to minimize is given by Eq. (1) with no external
magnetic field and a coupling matrix J given by the Mbius ladder weighted
adjacency matrix. The correlation function method can encode the weights
of any circulant graph, which for Mébius ladders is given by

-1 for|i—jl=1,
;=4 -1 forli—jl=N/2,

0 otherwise .

(28)

The two types of coupling—neighboring and cross-ring—have different
coupling strengths, the former fixed at J;; = —1 whilst we take the latter as
an adjustable parameter J;; = —J, with ] constrained to the domain [0, 1].
The ground state takes two configurations depending on the value of J, as
shown in Fig. 8. The two states, denoted S, and S; have Ising energies
Ey=(J —2)N/2 and E; =4 — (J+ 2)N/2 respectively. For the regime
J <Jarit = 4/N, S is the ground state whilst for J > J.;; the energy penalty
due to opposite spins having the same Ising spin sign becomes large and
the ground state changes to S;. For even N/2 and canonical shift matrix

0 I
p— N-1 )
1 of
where 0 is a column vector of zeros of length N — 1, the weighted Mdbius
ladder adjacency matrix can be expressed as J = —P — JPY? — PV, where
the coefficients of  the polynomial in P are

c=(0,-L0,...,0,—J,0, ..., 0, —1). The N eigenvalues of J come from
multiplying the Fourier matrix F with vector ¢ to give

(29)

Ao —1-J—-1
A o JuN/2 N1
A _ —w? — JWAN/2 _ y2N-D) 7 (30)

— N1 iy N=DN/2 L (N=1(N=1)

which simplifies to A, = —2 cos(2mn/N) — J(—1)". For small J, the first
term dominates, and the largest eigenvalue is Ay, =2 — J. For large J, the
second term has an effect, and the largest eigenvalues are
Anjpsr = 2cos(2/N) + J. The eigenvectors of these eigenvalues, pro-
jected to the nearest corner of the hypercube [—1, 1]", correspond to states S,
and S;, respectively. The critical value of J at which A, = Anjp41 Occurs
atJ, = 1 — cos(27/N).

Circulant graphs can be expressed as polynomials of shift matrices,
from which eigenvalues and eigenvectors are calculated. This allows for a
mathematically tractable analysis of the graph structure and its properties,
revealing regions of parameter space for which optimization methods can
falter. Moreover, circulant graphs are technologically feasible on SPIM
hardware when utilizing the correlation function method”. To see how
circulant graphs can contain non-trivial structures resistant to simple local
perturbations, we note that for Mobius ladder graphs with J € [J,, Jsi the
eigenvalue corresponding to Sy is less than that for S; despite S, being the
lower energy (ground) state. Indeed, Cummins et al.”” found that gradient-
based soft-amplitude solvers, such as the coherent Ising machine™*, will
encounter difficulty in recovering the ground state when J € [J,, Joie] with
ground state probability decreasing as the spectral gap increases. The
transformation from excited state S; to ground state Sy requires N/2 spin
flips, representing a significant energy barrier to overcome. Therefore, local
perturbations are not enough to bridge the distance between hypercube
corners of the ground and leading eigenvalue states. This may be overcome
by using SPIM hardware paired with a sampling-based algorithm to provide
feedback during each iteration of the minimization process, particularly if
multiple SPIMs can be coupled to achieve a massively parallel paradigm that
can efficiently sample the phase space of solutions of circulant graphs.

Conclusions

SPIMs are emerging physical computing platforms with distinct strengths
and practical constraints, setting them apart from conventional digital
computing technologies. As advancements in engineering and materials
technology continue, these platforms are expected to see enhanced cap-
abilities. It is, however, imperative to identify problems and methods that
can effectively utilize these unique strengths, providing a robust basis for
benchmarking their performance. This paper identifies several classes of
problems that are particularly well-suited for SPIM hardware. SPIMs are
shown to efficiently address practical problems such as portfolio optimi-
zation through low-rank approximation techniques. Furthermore, the CNP
problem, a variation of the classic number partitioning problem, serves as a
valuable benchmark for comparing the performance of SPIMs with that of
classical computers. The analytically solvable circulant graph provides
insights into the differences in performance between gradient-based algo-
rithms, prevalent in many current Ising machines, and sampling-based
algorithms that can be implemented on SPIMs. Additionally, SPIMs have
the potential to realize many “realistic” spin glasses, extensively studied
within the realm of statistical mechanics, thereby making numerous theo-
retical models experimentally viable.

Our study also highlights the importance of precision and rank in
relation to the constraints of SPIM hardware. While low-rank approx-
imations can render problems more manageable on SPIMs, the precision
required for these approximations can impact computational efficiency
and the accuracy of solutions. Therefore, future research must explore
methods to optimize the balance between rank and precision. Beyond
portfolio optimization, SPIMs demonstrate potential in solving various
NP-hard problems through innovative mapping techniques. Advanced
decomposition methods, such as SVD, enable SPIMs to manage more
complex coupling matrices, expanding their applicability across different
optimization tasks.

In conclusion, SPIMs represent a promising advancement in compu-
tational technologies. By focusing on low-rank approximations, CNP, and
the implementation of sophisticated algorithms, this paper sets the stage for
future investigations into the capabilities and applications of SPIMs. Con-
tinued research and development in this area are crucial for fully realizing
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the potential of SPIMs, paving the way for novel solutions to some of the
most challenging computational problems. The broader implications of this
research extend to fields such as finance, logistics, and data science, where
SPIMs could significantly enhance performance and efficiency, leading to
substantial advancements.

Methods

Simulations on low rank approximation

In Section “Low-Rank Approximation of Random Coupling Matrices”,
we first generated a random unweighted, undirected graph with 1000
vertices, all with anti-ferromagnetic coupling, where each edge has an
equal probability of having a value of 0 or —1, and a random 3-regular
graph with anti-ferromagnetic non-zero couplings. The coupling
matrices then underwent SVD. The approximate Ising coupling matrix
was constructed by recombining K Mattis-type constituent matrices
with the highest singular values, whose elements were rounded to the
nearest 27", The approximate Ising problem was then solved through a
simulation of SPIM, where a random group of spins was chosen at each
step and flipped, and the new Ising energy of the system was calculated.
The spin flips were accepted only if the new Ising energy decreased. As
the simulation progressed, larger groups of random spins were chosen to
prevent the system from being trapped in local minima of the Ising
energy landscape since large clusters of spin flips lead to discontinuous
movement in the energy landscape and prevent the system from being
bounded by energy barrier surrounding alocal minimum. For each set of
parameters, 100 different random sequences of spin flips were used to
produce the scatter of final energies.

When investigating the application of low-rank approximation on
portfolio optimization problems, stock data from 2020-01-01 to 2023-01-01
was used. Low-rank approximated covariance matrices with rank 5 and 20,
as well as the full rank covariance matrix S were calculated from stock data
by using the factor analysis tools provided by Python software package
“PyPortfolioOpt”. Its eigenvalue distribution was then calculated and shown
in Fig. 4a. By substituting the covariance matrices into Eq. (21) and mini-
mizing the objective function with commercial optimizer Gurobi, an opti-
mized set of portfolio components were produced, and was then used to
produce Fig. 4b.

Simulations on constraint number partitioning problems

CNP problem instances were produced by randomly generating integers
in the range [1, 2]. In all our investigations, we used a precision limit of
L =12. The complete differencing algorithm, as described in Fig. 6, was
adapted to solve the CNP problem by taking into account the bias
requirement of the CNP problem. If a branch became too unbalanced in
terms of the cardinality of the two subsets that the bias requirement
became impossible to satisfy, then the branch would be pruned, so that
no computational resources were wasted in searching the impossible
branch. The adapted algorithm, like the complete differencing algorithm,
is guaranteed to find the perfect solution if it exists. This algorithm was
run on 200 different random problem instances for each set of bias and
dimension values to produce the probability of existence of a perfect
solution for that parameter set. However, to determine the degeneracy of
the ground state, regardless of whether the state is a perfect solution,
requires the enumeration of the complete solution space to count the
total number of degenerate ground state solutions. Hence, the results
presented in Fig. 7b were produced by enumerating all possible divisions
of the initial integer set.
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