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Photonic Ising Machines constitute an emergent new paradigm of computation geared towards
tackling combinatorial optimization problems that can be reduced to the problem of finding the
ground state of an Ising model. Spatial Photonic Ising Machines have proven advantageous for
simulating fully connected large-scale spin systems. However, fine control of a general interaction
matrix J has only been accomplished so far through eigenvalue decomposition methods that either
limit the scalability or increase the execution time of the optimization process. We introduce and
experimentally validate a SPIM instance that enables direct control over the full interaction matrix,
allowing the encoding of Ising Hamiltonians with arbitrary couplings and connectivity. We demon-
strate the conformity of the experimentally measured Ising energy with the theoretically expected
values and then proceed to solve both the unweighted and weighted graph partitioning problems,
showcasing a systematic convergence to an optimal solution via simulated annealing. Our approach
significantly expands the applicability of SPIMs for real-world applications without sacrificing any
of the inherent advantages of the system. It paves the way to encoding the full range of NP problems
that are known to be equivalent to Ising models on SPIM devices.

In recent years, a growing effort has been devoted
toward implementing special-purpose physical machines
that simulate the Ising Hamiltonian. These machines
have garnered considerable attention for their poten-
tial to efficiently tackle optimization problems across di-
verse domains, as many non-deterministic polynomial-
time hard (NP-hard) problems can be mapped to the
Ising Hamiltonian [1–3]. Several physical implemen-
tations of Ising machines, employing either quantum
or classical schemes, have been developed. Quantum
Ising annealers have been realized by trapped atoms [4]
and ions [5], single photons [6] and superconducting
circuits [7]. In addition, their classical counterparts
have been realized in various physical platforms includ-
ing polariton condensates [8–11], stochastic magnetic
junctions [12], memristors [13], coupled electrical oscil-
lators [14], complementary metal oxide semiconductor
technologies (CMOS) [15], networks of coupled optical
pulses in a ring fiber [16, 17] and lately spatial photonic
Ising machines (SPIMs) [18].

Photonic Ising machines are of particular interest as
they exploit the advantages of mature optoelectronic
technologies and have been shown to address large-scale
combinatorial optimization problems [18, 19]. SPIMs, a
newcomer to the field, utilize holographic optical phase
modulation, leveraging 1) enhanced scalability, 2) all-to-
all connectivity, 3) room temperature operation, 4) in-
herent parallelism, 5) low cost, and 6) low power con-
sumption. Compared to other photonic Ising machines,
SPIMs utilize a straightforward optical configuration to
encode the physical parameters of the Ising Hamilto-
nian as distinct holographic phases on a discretized op-
tical wavefront with the use of spatial light modulators
(SLM) [20]. Since their introduction in 2019 [18], SPIMs
have showcased their applicability to adiabatic evolu-

tion methods [21], while the inherent system noise was
shown to be a valuable system resource guiding the con-
vergence towards low-energy states [22]. Additionally,
more advanced schemes utilizing optical non-linearities
have also been implemented to include four-body inter-
action terms [23, 24]. Furthermore, they have been used
to study the thermodynamics of Ising systems [25, 26],
and for tackling various NP-hard problems such as the
Number Partitioning Problem [27, 28], Max-Cut [29]
and Knapsack problems [30]. While several computa-
tionally interesting problems can already be handled by
SPIMs [31], the standard SPIM configuration is restricted
to Mattis-type interactions [32], a fact that poses a sig-
nificant limitation. Various approaches, such as vector-
matrix multiplication [33], time division [34] and wave-
length multiplexing schemes [35], have been suggested to
overcome this constraint, by decomposing the interaction
matrix J in a series of Mattis models that can then be in-
dependently treated with a SPIM, limiting however, the
scalability of the system or significantly increasing the
execution time of the optimization process.

In this letter, we formulate an alternative spin-
interaction encoding for SPIMs that allows for manip-
ulating arbitrary coupling matrices J . Moreover, this
method offers scaling advantages in the case of sparse
models. Each term Jijσiσj of the Ising Hamiltonian
is directly encoded as an element of the phase matrix
imprinted on the SLM. We validate our method by di-
rectly comparing the theoretically expected to the exper-
imentally measured energy levels of a random spin glass
Hamiltonian. Then, we apply this scheme to the Graph
Partitioning Problem (GPP), showcasing persistently
high-quality solutions for problems of arbitrary sparsity.
Finally, we expand our approach to the weighted version
of the problem, where the coupling matrix Jij elements
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take random positive values.

SPIN-PRODUCT-ENCODING OF ARBITRARY
ISING HAMILTONIANS

The existing approach to treating Ising models by
SPIMs [18] is based on the correspondence of each SLM
pixel, a square with width L, to a spin of the Ising model.
Let ζi be the amplitude of the incoming electric field to
the i-th pixel. The SPIM adds a phase φi to the electric
field. In the simplest approach, this phase is equal to the
value of the corresponding spin, but in principle, it may
also contain a constant angle θi different for each pixel,
i.e., φi = σie

iθi . For the moment, let us assume that we
do not use this extra freedom, i.e., θi = 0.

For a given spin configuration σ = {σ1, . . . , σN }, the
corresponding SLM pixels are set to the appropriate
phases. The electric field is then Fourier-transformed
by a Fourier lens and projected onto the camera. The
captured image is the intensity
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The Ising energy is computed as H(σ) = −Ĩ (⃗0), which
yields
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∑
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ζiζ
∗
j φiφ

∗
j . (2)

The relation between the phases φi and the values of the
spins implies that the above Hamiltonian is simply the
Ising model

H(σ) = −
∑
i,j

Jijσiσj , (3)

with couplings

Jij = Re ζiζ
∗
j . (4)

Further assuming that the phase of the incoming electric
field is uniform, i.e., the amplitudes ζi are real, this cor-
responds to the Mattis model H ∝ −

∑
i,j ζiζjσiσj . This

approach results in a restricted class of models since the
number of controllable parameters (the amplitudes ζi) is
linear to the number of spins N . In contrast, the gen-
eral Ising model contains independent couplings whose
number scales as O(N2).

The main idea of this work is the following: Being
able to encode individual binary spins using an SLM
implies that one can also encode products of spins, as
they also take values ±1. It follows that SLM pix-
els can be assigned to products of spins instead of sin-
gle spins. In what follows, this method is called Spin-
Product-Encoding (SPE). This idea can be beneficial for

Ising models defined on sparse graphs because only non-
zero couplings are allocated to SLM pixels.

Let the Ising model be defined on an interaction graph
G = (V, E), with N = |V | spins identified by the index
i, and non-vanishing couplings only between the pairs of
spins (i, j) ∈ E. The Ising Hamiltonian reads

H(σ) = −
∑

(i,j)∈E

Jijσiσj , (5)

We match each pixel to a pair of spins (i, j) ∈ E. These
pixels add a phase delay to the electric field equal to
φij = σiσj . Furthermore, we employ an ancillary spin
σ0, assigned to one SLM pixel. Assuming real incoming
electric field amplitudes ζij and ζ for the set of pixels
assigned to spin pairs and the ancillary spin, respectively,
the Hamiltonian in Eq. (2) reads

H̃(σ0, σ) = −ζσ0
∑

(i,j)∈E

ζijσiσj

−

 ∑
(i,j)∈E

ζijσiσj

2

− ζ2. (6)

The first term of Eq. (6) is proportional to the Hamil-
tonian of a generic Ising model with couplings

Jij = ζζij . (7)

The last term is just a non-dynamical constant. The
second term, however, involves four-spin couplings. To
cancel the four-spin contributions, we obtain two mea-
surements of H̃ for the two values of σ0 while keeping
the rest of the spins fixed. Then we have

H(σ) = H̃(+1, σ) − H̃(−1, σ)
2 = −ζ

∑
(i,j)

ζijσiσj , (8)

i.e., the generic Ising model Hamiltonian with couplings
given by Eq. (7).

The treatment of an arbitrary Ising model with this
method requires the modulation of the incoming laser
beam since the couplings Jij are determined by the am-
plitudes ζij . We can trade amplitude modulation for
phase modulation, which can be achieved by the SLM
pixels, as shown in the supplementary material [36].

Furthermore, this encoding scheme allows for flexible
partitioning of the Ising couplings, enabling a trade-off
between space and time complexity, as discussed in the
supplementary material [36].

EXPERIMENTAL CONFIGURATION

The optical configuration of our SPIM is depicted in
Fig. 1(a). Light from a stabilised continuous wave He-Ne
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Figure 1. (a) Schematic of the experimental setup. (b)
Images captured by the camera corresponding to the energy
computation according to Eq. (8) for a given spin configura-
tion. (c,d) The experimental energies versus the theoretical
ones for a sparse ferromagnetic system (c), and a sparse spin
glass system (d).

laser is expanded 10 times and impinges on a reflec-
tive spatial light modulator (SLM), Holoeye PLUTO-2.1-
NIR. In addition to the dynamic spin phase encoding, a
static holographic grating is applied to separate the 1st
diffracted order from the unmodulated reflected light.
The beam is then focused on a high QE Peltier-cooled
CMOS camera, Atik Camera ACICS 7.1. The region of
interest of the camera is selected around the 1st order
of the holographic grating. We record the modulated
laser light after impinging the SLM by placing a power
meter (PM) to compensate for camera intensity varia-
tions due to laser fluctuations and SLM flickering. Then,
the recorded image is normalized with the corresponding
power value captured by the PM.

Since the SPIM Ising energy is directly related to the
recorded light intensity, a calibration process takes place
at the beginning of each experimental run by compar-
ing the experimental energy values to the corresponding
theoretical ones. First, we sample random spin config-

urations uniformly distributed throughout the configu-
ration space. Then, we perform a linear fit between the
experimental and theoretical energies and obtain the nor-
malization factor and offset for the experimental ones.

Figure 1(c,d) presents the results of the above calibra-
tion process for a sparse ferromagnetic and a sparse spin
glass system, showing a perfect match between the cor-
responding experimental and theoretical energies. The
distribution of Jij for the case of the sparse ferromagnet
is P (J) = pδ(J −1)+(1−p)δ(J), while for the spin glass
is P (J) = p1[−1,1](J) + (1 − p)δ(J), where 1[−1,1] is the
uniform distribution in the interval [−1, 1] and p is the
edge probability of the graph. We used p = 0.05 for both
cases in Fig. 1(c,d).

GRAPH PARTITIONING

We apply our approach to the GPP, a member of the
NP-hard complexity class. This problem is suitable for
demonstrating our method’s ability to tackle problems
with arbitrary sparsity, overcoming the limitations of ex-
isting solutions.

The GPP considers an undirected graph G = (V, E)
with an even number N = |V | of vertices. The problem
asks for a partition of the set V into two subsets A and
B = V \ A of equal size, such that the number of edges
connecting the two subsets is minimized. The cut-set is
defined as C = {(i, j) ∈ E | i ∈ A, j ∈ B}, and the cost
for the GPP as the size of the cut-set C = |C|.

Following [3], the GPP can be mapped to the Ising
model using the following Hamiltonian

H = aHa + bHb, with (9a)

Ha =
(

N∑
i=1

σi

)2

, (9b)

Hb =
∑

(i,j)∈E

1 − σiσj

2 . (9c)

The term Ha penalises partitions into subsets of un-
equal size, while the term Hb corresponds precisely to
the cost C. In this work, we use a = b = 1. The map-
ping between the GPP and the above Hamiltonian works
as follows. Once the ground state of the Hamiltonian
is found, the graph vertices are assigned to the two sub-
sets according to the sign of the corresponding spins, i.e.,
A = {i | σi = 1} and B = {i | σi = −1}.

To solve the GPP, we implement the Hamiltonian of
Eq. (9) on the SPIM using a hybrid encoding scheme. We
implement Ha using the existing approach found in [18]
and Hb using the new encoding scheme proposed in this
work. The term Ha has homogeneous couplings and is
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Figure 2. Simulated (a,b,c) and experimental (d,e,f) results
for a graph partitioning Hamiltonian, showing the total (H)
and individual (Ha and Hb) energies (a,d), the magnetization
(b,e), and the cost (c,f) as a function of the optimization iter-
ations. The inset in (c) depicts the different annealing sched-
ules that were tried (grey) and the one that was used (red).
Inset in (f) shows a graphical representation of a toy exam-
ple of the graph partitioning problem. The dashed lines in
(b,c,e,f) represent the solution obtained by the METIS pack-
age.

fully connected, which is the ideal case for the existing
method, as the number of pixels required scales linearly
with the number of spins. On the other hand, the term
Hb has sparse couplings, which is the ideal case for the
new encoding scheme, as the number of pixels required
scales linearly with the number of edges of the interaction
graph |E|. The two terms are computed sequentially in
two steps, and the final energy is obtained by summing
the two contributions.

Figure 2 illustrates the simulation and experimental
results by applying the proposed optical encoding scheme
to the GPP. In this case, we considered a graph with
N = 100 vertices and an edge density of p = 0.05. In
addition, we used the software package METIS [37] that
implements a state-of-the-art algorithm for GPP [38] to
compare with our results.

Both the simulation and experimental results are ob-
tained by running a Simulated Annealing (SA) op-
timization algorithm to minimize the Hamiltonian in
Eq. (9). Various annealing schedules were implemented
and tested, as shown in the inset of Fig. 2(c). Among
them, the linear additive (red line) was selected because
we empirically found that it provides the best results.

The simulation results were obtained by developing a
model based on Fresnel diffraction theory. The model in-
corporates the optical encoding of the spins and interac-
tions among them as additional phase masks, mimicking
the role of the SLM.
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Figure 3. Multiple runs obtained experimentally for the
Unweighted Graph Partitioning Problem (GPP) (a,b) and the
Weighted Graph Partitioning Problem (WGPP) (c,d). Both
instances have N = 100 and p = 0.05. Each column shows the
total energy (a,c) and the cost (b,d) for 10 (a,b) and 5 (c,d)
different initial spin configurations, showing that the SPIM
systematically finds solutions with comparable cost to that
obtained by METIS. The insets show all individual runs.

The top panel of Fig. 2(a,c) presents the evolution of
the total energy, H, and the two individual energy terms,
Ha and Hb, as defined in Eq. (9), as a function of the
iteration number of the SA algorithm. After several iter-
ations, the SA algorithm converges to a minimum for the
total energy. The cost C, obtained by the simulated and
experimental solution of the GPP, is shown in Fig. 2(c,f).
The red cross on the graphs denotes the optimal cost
C∗ obtained from the minimization procedure, while the
dashed line shows the solution of the METIS package.
In particular, the simulation and experimental values are
C∗

sim = 61 and C∗
exp = 58, respectively, while C∗

metis = 60.
The simulation above and experimental values were

obtained by selecting the spin configuration that mini-
mizes the cost while having vanishing magnetization, see
Fig. 2(b,e), implying that we are only interested in so-
lutions that split the graph into two equal subsets, as
required by the GPP. Both values are comparable to the
METIS solution. The experimental value slightly out-
performs both simulation and METIS, highlighting the
versatility of our method to address arbitrary graphs us-
ing the SPIM optical architecture.

For the graph appearing in Fig. 2, we performed 10
distinct experimental trials starting from different initial
spin configurations to showcase the systematic conver-
gence to a low-energy state. The average energy and cost
obtained from this process are depicted in Fig. 3(a,b).
The average optimal cost is C∗

exp = 62 ± 1.8 and is de-
picted by the red cross. For reference, the METIS solu-
tion is C∗

metis = 60.
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To demonstrate the ability of the method to han-
dle general Ising models as well, we proceed with the
weighted version of the GPP (WGPP). In WGPP, the
graph is defined as the triplet G = (V, E, w), where
wij ∈ N∗ is the weight of the edge (i, j). The objective
in this case is to partition the vertices into two subsets,
minimizing the cost C =

∑
(i,j)∈C wij . For the WGPP

the Hb term of Eq. (9) takes the form

H
(weighted)
b =

∑
(i,j)∈E

wij
1 − σiσj

2 . (10)

Following the theoretical description provided in the sup-
plementary material [36], we encode the wij using two ad-
jacent pixels with θij = arccos(wij/wmax). Figure 3(c,d)
depicts the results obtained from a graph with |V | = 100,
p = 0.05. The wij are uniformly random integers in the
range [1, wmax] with wmax = 100.

The results are consistent with the unweighted case.
Our method successfully finds solutions comparable to
those obtained by the METIS package.

Apart from the method’s ability to address arbitrary
Ising models, it also scales well for sparse graphs: The
number of free parameters of the Ising model scales as
O(N2). However, for sparse graphs, many of these pa-
rameters are zero; hence, they do not contribute to the
system’s energy. By encoding only the non-zero cou-
plings, our method requires an SLM with a number of
pixels that scales as O(|E|).

To quantify the method’s ability to address sparse
graphs, we performed experiments to solve the GPP for
various values of the edge probability p. The results of
those experiments are presented in Fig. 4 where the op-
timal cost is plotted as a function of p. In addition to

the experimental realizations, Fig. 4 includes the results
obtained from the simulation model, the METIS pack-
age, and the theoretical prediction for the optimal cost
obtained by the replica method [1, 39], namely

C∗(p) = N2

4 p − 0.38N3/2
√

p(1 − p). (11)

Since the first term in Eq. (11) does not depend on the
optimization [39], we present in the inset of Fig. 4 the
improvement due to optimization ∆ = pN2/4 − C∗. No-
tably, the agreement between the simulation and METIS
is perfect and almost matches the theoretical optimum.
The agreement of the experimental results with the rest
is satisfactory, especially for sparse graphs, i.e., small val-
ues of p.

CONCLUSION

We have introduced and experimentally validated a
novel encoding scheme for SPIMs, effectively augment-
ing their functionality and applicability without sacrific-
ing scalability or speed. This scheme directly encodes any
Ising Hamiltonian’s full interaction matrix J through a
two-step iteration process. The method requires O(|E|)
pixels; hence, it is particularly advantageous in the case
of sparse graphs in comparison to existing implementa-
tions [36]. In the worst case (fully connected graphs),
|E| ∼ N2, the method becomes equivalent to the worst
case (full-rank graphs) of existing implementations. Nev-
ertheless, its ability to trade space complexity for time
complexity by partitioning the Ising couplings allows the
method to be implemented on any SLM, regardless of its
size, unlike existing approaches.

We applied this method to our SPIM instance to solve
the unweighted and weighted graph partitioning prob-
lems, demonstrating comparable quality solutions with a
GPP-specific algorithm for a varying degree of sparsity.
Notably, our method can be easily expanded to Hamil-
tonians having p-spin interactions [36], which play an
equally important role in combinatorial optimization [40].
As the SLM technology enters the MHz range [41], SPIMs
are poised to become a powerful and versatile technology
for real-world applications.
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TRADING AMPLITUDE MODULATION FOR PHASE MODULATION

The treatment of an arbitrary Ising model requires the modulation of the incoming laser beam, since the couplings
Jij are determined by the amplitudes ζij . Here we show how we can trade amplitude modulation for phase modulation.
This is convenient since the phase modulation can be achieved by a single SLM. This can be done by doubling the set
of pixels corresponding to the spin couplings. We distinguish the pixels corresponding to the same spin coupling using
the upper index (±). It is essential to take advantage of the extra spin-independent phase delay that can be introduced
by the SLM pixels. Namely, we introduce them so that obey θ+ij = −θ−ij ≡ θij . In other words, φ±

ij = σiσje
±iθij . The

last part of the SLM is again composed by one pixel that causes no phase delay to the electric field. No modulation of
the incoming electric field is applied, i.e. ζ+ij = ζ−ij = ζ. It is a matter of simple algebra to show that the Hamiltonian
in Eq. (7) in the main text reads

H̃(σ0, σ) = −ζ2σ0

∑
(i,j)∈E

cos θijσiσj − 4ζ2

 ∑
(i,j)∈E

cos θijσiσj

2

− ζ2. (S.1)

Repeating the same procedure as described in the main text, we obtain two measurements of H̃, then using Eq. (8)
in the main text we find

H(σ) = −ζ2
∑

(i,j)∈E

cos θijσiσj , (S.2)

which is the generic Ising model with couplings

Jij = ζ2 cos θij , (S.3)

i.e. we managed to tune all couplings Jij without modulating the laser beam, but solely with the use of the SLM, via
the choice of appropriate values for the angles θij .

EXTENDING THE ENCODING SCHEME TO THE p-SPIN MODEL

Let us consider a model with p-spin interactions, i.e.

H(σ) = −
∑

1≤i1<···<ip≤N

Ji1...ipσi1 . . . σip . (S.4)

This Hamiltonian can be encoded in the same way as the Hamiltonian of Eq. (3) in the main text that contains only
2-spin interactions. Each pixel is associated with a unique product of p spins, σ1σ2 . . . σp, that has a non-vanishing
coefficient in the Hamiltonian (S.4). Let the incoming field amplitude to this pixel be ζi1,i2,...,ip . We also introduce
an ancillary spin σ0 that is associated with a single pixel of the SLM, where the incoming electric field amplitude is ζ.
Finally, we configure the SLM pixels to add a phase delay to the electric field equal to σ1σ2 . . . σp. It directly follows
that the cost functional, i.e., the intensity measured at the center of the Fourier space, reads

H̃(σ0, σ) = −ζσ0

∑
1≤i1<···<ip≤N

ζi1...ipσi1 . . . σip −

 ∑
1≤i1<···<ip≤N

ζi1...ipσi1 . . . σip

2

− ζ2, (S.5)

Fixing the amplitudes so that

Ji1,i2,...,ip = ζζi1,i2,...,ip (S.6)
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allows the encoding of the Hamiltonian (S.4) via two iterations, using Eq. (8) in the main text.
The incoming amplitude modulation can be avoided by doubling the size of the SLM via the same mechanism as

the one described in the previous section. Let us note that a model with local magnetic fields of the form

H(σ) =
∑

(i,j)∈E

Jijσiσj −
N∑
i=1

hiσi (S.7)

can be encoded similarly by treating the local field terms as p-spin interactions with p = 1.
The generic model containing p-spin interactions has

(
N
p

)
∼ Np independent couplings. Thus, it is clear that its

encoding in a SPIM via SPE requires an SLM with that many pixels. As for the p = 2 case, the technique will have
better scaling properties in the case of models with sparse tensors J , as only the non-vanishing elements are allocated.

SPACE AND TIME COMPLEXITY

The two main resources that come into play in the context of SPIMs are the number of SLM pixels and the number
of time steps required to determine the energy. Here, one SLM/CMOS cycle is considered as a single time step. In
principle, loading an array of O(n) elements onto the SLM requires at least O(n) time steps due to the memory copy
operation. However, in the context of SPIMs, the memory copy operation is orders of magnitude faster than the
SLM rise/fall time, which is of the order of milliseconds. Therefore, the computation time is dominated by the SLM
rise/fall time; hence, we consider the memory copy operation as instantaneous. We refer to these as the space and
time complexity, respectively. This section discusses our method’s space and time complexity and compares it to
existing methods.

At the time of writing, the only available single-SLM methods for encoding arbitrary Ising models on SPIMs rely
on time-division multiplexing (TDM) [1] and wavelength-division multiplexing (WDM) [2]. Both methods decompose
the coupling matrix into a sum of rank-1 matrices and encode these simpler models separately—either at different
time steps (TDM) or different wavelengths (WDM). Moreover, in both these approaches, the SLM pixels are mapped
to individual spins.

In TDM, each of the simpler models is encoded separately in the SLM, and its contribution to the Ising Hamiltonian
is measured independently. This kind of encoding allows the use of a smaller SLM, as it only needs to encode one
of the simpler component models at a time. However, this advantage comes at the cost of multiple measurements—
one for each component model—equal to the rank of the coupling matrix. WDM follows a similar decomposition
approach but encodes all component models simultaneously in the SLM, each at a different wavelength. This kind of
multiplexing enables the total Ising Hamiltonian contribution to be measured in a single step. In essence, TDM and
WDM achieve the same goal, with WDM effectively trading time complexity for space complexity.

In contrast, our method, Spin-product-encoding (SPE), takes a different approach. Instead of decomposing the
coupling matrix, it directly encodes only nonzero couplings, mapping SLM pixels to spin products. It always requires
two time steps to determine the energy. For an Ising model with N spins and random couplings—such a model
naturally is fully connected (|E| = N (N − 1) /2) and full rank (rank(J) = N)—SPE appears to have a space
complexity of N(N − 1)/2 and a time complexity of 2, similar to WDM. In fact, the two methods are identical up to
a factor of two, trading time complexity for space complexity.

However, SPE offers a key flexibility advantage: Since coupling matrix elements (and thus the Ising Hamiltonian
terms) are directly encoded in the SLM, SPE can naturally incorporate the core idea of TDM. One can partition the
couplings into subsets, encode only one subsets at a time, and sum the measurements to obtain the total energy. In
other words, SPE enables a trivial decomposition of the Ising Hamiltonian into any set of components containing a
subset of the original couplings. Consequently, the naive assumption that SPE always requires N(N − 1)/2 space
complexity is incorrect—one can trade space complexity for time complexity, achieving a space complexity as low as
1.

The space and time complexity of the three methods are summarized in the table below. Notice that space
complexity has to be doubled in all methods if one desires to trade amplitude modulation for phase modulation as
described in Section

Space complexity Time complexity
TDM [1] N rank(J)
WDM [2] N rank(J) 1
SPE (minimum time) |E| 2
SPE (minimum space) 1 2|E|
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The above arguments lead us to several conclusions:

1. Since SPE allows trading space complexity for time complexity, the product of time and space complexities
is a useful measure of efficiency. This is supported by the fact that TDM can be viewed as WDM with time
complexity exchanged for space complexity.

(a) The product of time and space complexities for TDM and WDM is N rank(J)

(b) The product of time and space complexity for SPE is |E|

2. The above complexities suggest that SPE is advantageous for sparse graphs, whereas TDM or WDM is for low-
rank graphs. This fact makes these approaches complementary since low-rank graphs tend to be fully connected,
while sparse graphs are typically full-rank.

3. Both WDM and SPE (configured for minimal time complexity) have comparable time complexity, O(1). How-
ever, in terms of space complexity:

(a) SPE is preferable for sparse graphs whenever |E| < N rank(J).

(b) SPE allows space complexity to be traded for time complexity. If |E| exceeds the available SLM size, the
couplings can be partitioned into subsets smaller than the SLM capacity and processed sequentially—an
option unavailable in WDM.
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