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Ising machines are an emerging class of hardware that promises ultrafast and energy-efficient solutions
to NP-hard combinatorial optimization problems. Spatial photonic Ising machines (SPIMs) exploit optical
computing in free space to accelerate the computation, showcasing parallelism, scalability, and low power
consumption. However, current SPIMs can implement only a restricted class of problems. This partial
programmability is a critical limitation that hampers their benchmark. Achieving full programmability of
the device while preserving its scalability is an open challenge. Here, we report a fully programmable SPIM
achieved through a novel operation method based on the division of the focal plane. In our scheme, a
general Ising problem is decomposed into a set of Mattis Hamiltonians, whose energies are simultaneously
computed optically by measuring the intensity on different regions of the camera sensor. Exploiting this
concept, we experimentally demonstrate the computation with high success probability of ground-state
solutions of up to 32-spin Ising models on unweighted maximum cut graphs with and without
ferromagnetic bias. Simulations of the hardware prove a favorable scaling of the accuracy with the
number of spin. Our fully programmable SPIM enables the implementation of many quadratic uncon-
strained binary optimization problems, further establishing SPIMs as a leading paradigm in non–von
Neumann hardware.
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Ising machines (IMs) are specialized devices designed to
solve quadratic unconstrained binary optimization (QUBO)
problems by finding the ground state of the corresponding
Ising model [1]. IMs harness physical effects exhibited by
the underlying system as a mechanism to accelerate the
ground-state search. Spatial photonic Ising machines
(SPIMs) encode Ising spins in the optical phase and exploit
spatial light modulation and coherent optical propagation in
free space to compute optically the value of the Ising
Hamiltonian [2]. Taking advantage of the spatial

parallelism [3], as well as the high resolution of spatial
light modulators (SLMs) and low-intensity continuous-
wave lasers, SPIMs showcased parallel operation, energy
efficiency, and scalability [2]. A key issue concerns their
programmability, i.e., the capability to program the spin
interaction matrix to realize any QUBO problem. The first
SPIMs could not map graphs with arbitrary connections.
This partial programmability restricts the class of problems
that can be implemented [4]. Recently, many approaches
have been pushed forward to extend the range of appli-
cability of SPIMs [5–18]. Among them, Ruan and co-
authors [12,13] developed the so-called gauge method that
allows a simple programming of the so-called Mattis
Hamiltonian (rank-1 interaction matrices). By exploiting
the gauge encoding, a SPIM implementing full-rank
coupling matrices has been demonstrated through their
decomposition over multiple wavelengths [18]. However,
this wavelength-division multiplexing scheme requires as
many wavelengths as spins and suffers from chromatic
dispersion, factors that limit its scalability. Achieving full
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programmability in SPIMs while maintaining scalability
remains an open challenge.
In this Letter, we present and experimentally demon-

strate a new SPIM based on focal plane division (FPD) to
solve any Ising model while preserving scalability. The
scheme uses a single SLM in a novel configuration to
decompose any Ising problem into a set of Mattis
Hamiltonians that are computed in parallel by dividing
and measuring the optical intensity on separate regions of
the camera sensor. This new arrangement of the setup
enhances the computing capability of SPIMs by enabling
the exploitation of the additional spatial degrees of freedom
of the focal plane. We experimentally demonstrate ground-
state solutions of different types of graphs: Möbius ladder,
max-cut, and max-cut with a ferromagnetic (FM) bias with
16 and 32 spins, with a success probability of 95%, 50%,
55%, and 10%, respectively. We compare simulations of
the hardware with simulated annealing (SA), showing that
the device accuracy scales favorably the number of spins.
Our fully programmable SPIM allows photonic computa-
tion of many QUBO problems.
The Ising model is defined by the Hamiltonian

HðσÞ ¼ −
1

2
σTJσ ð1Þ

with spin configuration σ ¼ ½σ1;…; σN � and σi ¼ �1,N the
number of spins, and symmetric real-valued interaction
matrix J. A fully programmable IM, thus, requires N2

programmable units.Most SPIMs [7,12] realized and solved
Eq. (1)with rank ðJÞ ¼ 1. TheseMattis-type interactions are
characterized by the outer product J ¼ ξξT . We decompose
the interactionmatrix of a general Ising problem into a linear
combination of Mattis problems J ¼ P

K
k¼1 λkξkξ

T
k , so that

HðσÞ ¼ −
XK

k¼1

λkHkðσÞ ¼ −
1

2

XK

k¼1

XN

i;j¼1

λkξikξjkσiσj: ð2Þ

Therefore, a SPIM capable to implement the Mattis
Hamiltonian Hk can process a full-rank Ising problem
(K ¼ N) when operating through a multiplexing scheme
[16]. To encode each Hk in the optical field, we exploit
phase-only encoding by the gauge transformation method
[12,13]. Through this transformation,we pass frombinary to
circular spins that encode also the interaction by continuous
phase values. The coupling coefficients −1 ≤ ξik ≤ þ1 are
encoded by introducing a rotation of the Ising spin. The
gaugemap rotates each spin σi by an angleαik ¼ arccosðξikÞ
with respect to the z axis to obtain the spin vector σ0. The z
component σ0zik ¼ ξikσi is the effective spin that is encoded.
The Mattis Hamiltonian remains invariant under this trans-
formation [12], allowing one to implementHk by using the
sole optical phase.
To experimentally realize a fully programmable SPIM,

we design a FPD method to compute simultaneously all the

Hk by a single-shot intensity measurement. We apply an
eigendecomposition to the target J and use the eigenvectors
to define the coupling strengths λk in Eq. (2). As illustrated
in Fig. 1(a), to optically compute in parallel all the Hk, we
divide the SLM screen in K rows. Each row contains the
same Ising spin configuration σ. We then apply a different
Hk to each row by gauge encoding; i.e., we encode the ith
effective spin of the kth row according to ξik. Ising spins are
mapped into phase delays �π=2. On the SLM, each spin
corresponds to a macropixel made by c ¼ Px × Py pixels
that is phase modulated as

ϕl
ik ¼ σi

π

2
þ ð−1Þlαik; ð3Þ

being σ0zik ¼ exp ðiϕl
ikÞ, where l is the pixel index along the

x axis of the SLM (1 < l < Px) and the rotation angle αik is
applied to the ith spin of the kth row. Equation (3) is derived
in Ref. [12]. Each macropixel, thus, encodes information
on both the spin and its interactions. The division by rows is
an optimal method to exploit the SLM plane. Specifically,
we are programming N2 coefficients by a single SLM, in
analogy with optimal schemes for optical vector-matrix
multiplications [19].
To measure the optical intensity associated to each Hk,

we analyze by a camera the intensity distribution of the
propagated beam in the Fourier plane. Figure 1(b) reports
an experimental image showing the intensity on the focal
plane. We use a combination of a cylindrical lens and

(a) encoding of the Ising Hamiltonian

(c)

spin configuration

Gauge encoding 

(b) detection of the Ising energy

SLM       

digital feedback

focal plane division

camera   

cylindrical lens 

subject to Hi

Ising spin

interacting
spin

FIG. 1. SPIM by focal plane division. (a) Schematic of the SLM
screen division. The same spin configuration σ is encoded in each
row. We apply the gauge encoding to implement each Mattis
Hamiltonian Hk on each row. (b) Intensity detected in the focal
plane. By using blazed gratings, we perform a division of the
focal plane to separate the signals of different Hk. (c) Sketch of
the experimental setup. The spin energy is evaluated by the
measured intensities ½I1;…; IK �. The ground-state search oper-
ates by updating via digital feedback σ on the SLM according to
the measured energy and a SA algorithm.
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digital blazed gratings to ensure no mixing between the
signals of different rows and to spatially separate the
intensities Ik along the y axis of the camera sensor.
Each Ik gives a measurement of the energy of Hk for a
given σ. Note that Ik presents multiple internal spots
[Fig. 1(b)], which result from diffraction from the periodic
components of the SLM phase mask. Therefore, we first
identify the position of the kth focal spot (intensity
maximum) and then integrate the signal within a rectan-
gular region of interest (3 × 50 camera pixels) to accurately
measure the set of Ik. The optical Ising energy is evaluated
as F ¼ P

k λkIk.
The experimental device is illustrated in Fig. 1(c). A

linearly polarized continuous-wave 100 mW laser at λ ¼
532 nm is expanded on a phase-only SLM (Hamamatsu
LCOS-SLM X15213S). The phase modulation in Eq. (3) is
applied by using 213 levels of precision within the interval
½0; 2π�. The SLM operates with a measured diffraction
efficiency of 0.005. The phase modulated beam is imaged
by a cylindrical lens (focal length f ¼ 150 mm, NA ¼ 0.1)
on a 12-bit CMOS camera (Basler a2A2590-60umPRO).
The total optical power impinging on the camera
is 0.05 mW.
We experimentally validate the fully programmable

SPIM by evaluating its performance in finding the ground
state of various Ising problems for N ¼ 16. We select a
macropixel size of 18 × 18 pixels, chosen to maximize the
computational accuracy. The ground-state search is con-
ducted by using digital feedback to recurrently update the
spins according to a Metropolis-Hasting algorithm fed by
the optical energy F. During the machine run, the spin
temperature is varied via a SA algorithm implemented
following Ref. [20]. We choose three types of graphs that
are widely used as benchmarks for IMs [1]: Möbius ladder,
max-cut, and max-cut with FM bias (biased). Möbius
ladder is a circulant graph where every spin interacts
antiferromagnetically Jij ¼ −1 with its nearest neighbors
and the diametrically opposite spin. For the considered
max-cut graphs, the Jij are extracted randomly among 0

and −1 with 0.5 probability. The max-cut with FM bias is a
complete random binary graph defined by setting Jij ¼ �1

with 0.5 probability. Figure 2 shows the computing result
for each graph over 20 machine runs with different initial
conditions. Convergence is achieved on the order of 102

iterations. We compare the experimental solutions with a
SA algorithm [20]. The success probability Psuc is calcu-
lated with respect to the best SA solution. We obtain the
ground state with Psuc of 95%, 50%, and 55%, respectively.
This performance difference reflects the fact the Möbius
ladder is polynomially solvable, while max-cut graphs are
classified as NP-hard [21,22]. We remark that also the
SPIM operates through SA but using the optically energy
F. Both SA hyperparameters have been fine-tuned to
achieve optimal results. To ensure the agreement between
the experimental energy F and the corresponding Ising
Hamiltonian, we monitor these quantities while the
machine is running. As shown in Fig. 2, they are anti-
correlated at every iteration despite experimental noise,
proving the correct operation of the SPIM during the
optimization.
To prove the scalability of the FPD scheme, we scale up

the experimental device and implement larger fully con-
nected graphs. The macropixel size c is the key factor to
scale up our SPIM. The number of SLM pixels required for
general problems of size N scales as c × N2, with c that is
tunable within a range that depends only on the experi-
mental setup. By reducing the macropixel size to c ¼
9 × 9 pixels, we implement 32-spin fully connected biased
max-cut graphs (1024 programmable couplings). This scale
is 2 times larger than achieved by wavelength-multiplexed
SPIMs [18] and competes with photonic and electronic
state-of-the-art IMs that have full programmability without
relying on digital hardware to implement the interactions
[15,23]. Figure 3 reports the obtained energy histogram in
comparison with SA. We achieve Psuc ¼ 10% and a good
agreement between the two energy distributions. The
performance drop is due to the lower signal-to-noise
ratio on the focal plane when reducing the macropixel.
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FIG. 2. Ground-state accuracy of the SPIM by FPD with N ¼ 16 for (a) Möbius ladder, (b) max-cut, and (c) max-cut with
ferromagnetic bias. The energy histograms show a ground-state probability of 95%, 50%, and 55%, respectively. Insets shows the
optical energy F and the value of the Ising Hamiltonian during an experimental run.
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This limitation can be overcome by improving the NA and
dynamic range of the imaging system.
To assess further the scalability, we conduct simulations

of the SPIM up to N ¼ 100 on the same type of graphs of
the experiments. Figure 4 shows the energy histogram for
N ¼ 100 compared with SA. For the Möbius ladder, max-
cut, and max-cut with FM bias, we obtain a Psuc of 18%,
18%, and 13%, respectively. In all three cases, the accuracy
of the simulated device matches the SA performance. This
indicates that the SPIM can perform optimizations with
accuracy comparable to heuristic algorithms. Figure 4 also
reports Psuc at different N, along with the probability of
finding low-energy states within a% of the energy

minimum. For large N, approximate solutions are found
with high probability and a favorable scaling. We test 100
random graphs and simulate 20 SPIM runs for graph. The
interquartile ranges show that distinct graph instances have
a different impact the convergence. The effect, related to the
hardness of max-cut and biased max-cut graphs, has been
also observed in coherent IMs [24] on 16-spin cubic graphs
as a graph-dependent Psuc distribution.
We analyze the possible advantage of our SPIM over

digital hardware and other IMs in terms of the expected
computation time and energy efficiency. We estimate the
SPIM run time as τrun ¼ τiterNiter ¼ τSLMαN, where τiter is
the iteration time, Niter the number of iterations, τSLM the
SLM response time, and α a parameter tunable by the
annealing schedule. The resulting time to solution [1] reads
as τsol ¼ τSLMαN½lnð0.01Þ= lnð1 − PsucÞ�. The performance
of our proof of concept is limited by the 60 Hz SLM frame
rate (τSLM ≈ 0.02 s). By considering electro-optic SLMs
with frame rates > 1 GHz that are under development [25],
we get τsol ∼ 10 μs on 100-spin biased max-cut (Psuc from
Fig. 4). This value compares with the τsol ≈ 30 μs of the
best-performing digital architectures [26]. At N ¼ 104, the
estimated τSLM to compete with specialized digital hard-
ware becomes τSLM ∼ 10−5 s, i.e., only one order of
magnitude smaller than off-the-shelf MEMS-based SLMs
[27]. This shows the favorable scaling of τiter of SPIMs vs
digital computing, i.e., the so-called optical advantage [5].
When comparing with the performance of coherent IMs
on biased max-cut [28,29], we find that our SPIM is
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FIG. 3. Accuracy of the SPIM by FPD for N ¼ 32 on fully
connected biased max-cut graphs. Energy distribution of the
experimental and SA solutions (Psuc ¼ 10%).
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FIG. 4. Scaling analysis of the SPIM accuracy. Energy histograms on 100-spin (a) Möbius ladder, (b) max-cut, and (c) biased max-cut
graphs for the simulated SPIM and SA. The probability of finding low-energy solutions within a% of the energy minimum is shown by
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competitive for τSLM ∼ 10−7 s (10−5 s) at N ¼ 100 (1000).
As for energy efficiency, our SPIM has low power con-
sumption: It works by using 10 mW of optical power and
overall consumes Ptot ¼ 50 W (coherent IMs have Ptot ∼
1 kW [30]). We estimate the energy to solution as
Esol ¼ Ptotτsol, which gives Esol ∼ 0.1 mJ for 100-spin
max-cut (comparable with predictions for optoelectronic
IMs [31,32]). At this scale, the most energy-efficient IMs
that are based on memristors [33,34] and stochastic
electronic oscillators [35,36] have a predicted Esol ∼ 100
nJ. Importantly, while for these IMs Ptot will grow con-
siderably with N, for our SPIM Ptot is independent of the
machine scale. This property suggests a possible advantage
at a large scale also in energy efficiency.
Our fully programmable SPIM can reach large scales by

shrinking further the macropixel and employing more SLM
pixels. In our setup, we use a only central portion of the
SLM (300 × 300 pixels) to avoid aberrations and vignet-
ting that affect the accuracy. By exploiting the entire SLM
screen via optics with larger NA, we can accommodate
more than 100 all-to-all connected spins already by the
demonstrated macropixel size. Available high-resolution
SLMs (10 million pixels) within an engineered imaging
setup would allow us to realize more than 1000 spins
readily by using modes of c ¼ 16 pixels, indicating a
promising route to reach an advantage in computational
performance.
In conclusion, we have demonstrated a fully program-

mable and scalable SPIM based on the division of focal
plane. The device is simple, algorithm agnostic, low cost,
and compact by using low-power monochromatic light and
phase-only modulation by a single SLM. Our work
provides an advantageous method to optically accelerate
the computation of QUBO problems.
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