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Abstract—In the face of an increasing attack landscape, it is
necessary to cater for efficient mechanisms to verify software
and device integrity for detecting run-time modifications in next-
generation systems-of-systems. In this context, remote attestation
is a promising defense mechanism that allows a third party, the
verifier, to ensure a remote device’s configuration integrity and
behavioural execution correctness. However, most of the existing
families of attestation solutions suffer from the lack of software-
based mechanisms for the efficient extraction of rigid control-flow
information. This limits their applicability to only those cyber-
physical systems equipped with additional hardware support.
This paper proposes a multi-level execution tracing framework
capitalizing on recent software features, namely the extended
Berkeley Packet Filter and Intel Processor Trace technologies,
that can efficiently capture the entire platform configuration
and control-flow stacks, thus, enabling wide attestation coverage
capabilities that can be applied on both resource-constrained
devices and cloud services. Our goal is to enhance run-time
software integrity and trustworthiness with a scalable tracing
solution eliminating the need for federated infrastructure trust.

Index Terms—Control-flow Integrity, Remote Attestation, Intel
Processor Trace , extended Berkeley Packet Filter, Tracing

I. INTRODUCTION AND BACKGROUND

Attacks that try to compromise the configuration integrity
of remote systems or subvert the control-flow of legitimate
computer programs, are a large concern towards the vision of
trustworthy “Systems-of-Systems” (SoS). The main challenge,
here, is how to securely detect such attacks with minimal
overhead on the target host platform. Towards this direction,
program tracing mechanisms have been proposed to record
run-time information and system audits about a program’s
execution and enable flexible and powerful offline analysis.
However, most of such software analysis solutions provide an
offline approach that first gathers system audit data, during
the execution of monitored functionalities, and then decode
this data to infer possible violations or other issues.

Unfortunately, this approach does not capture the real-time
constraints of emerging attestation security enablers [1] that re-
quire detailed dynamic tracing of properties stemming from di-
verse levels of a system’s architecture: kernel shared libraries,
low-level code, etc. resulting in an in-depth investigation of the
systems behaviour and execution flow towards detecting any
cheating attempts or if any type of (non-previously identified)
exploits are resident to the memory.

This work was supported by the European Commission, under the AS-
SURED and ASTRID Horizon 2020 projects with Grant Agreement No.
952697 and 786922, respectively.

To date, several remote attestation techniques have been
proposed to verify the integrity of a software or the control-
flow of devices. However, most of them are static and verify
only the software integrity of devices and only recently some
run-time Control-flow Attestation (CFA) and Control-flow
Integrity (CFI) schemes, leveraging control-flow information
of a program, have been proposed [2]. With CFA, sophisticated
attacks that tamper with state information in the program’s
data memory (e.g., the stack and the heap) can be detected.
CFA mechanisms can be also deployed as part of holistic
runtime risk assessment frameworks and contribute towards
a more concrete cyber risk quantification [3]. One of the
first dynamic CFA solutions was presented in C-FLAT [4]
where the focus was on measuring the valid execution paths
undertaken by embedded devices. However, this approach
requires instrumentation of all control-flow instructions, thus,
incurring significant performance overhead on the underlying
software tracing [1].

In general, while CFA provides strong security guaran-
tees and verifiable evidence on the correctness of a device’s
configuration and execution, enforcing control-flow integrity
in a practical way is challenging due to the inefficiency
of existing tracing solutions. Despite sustained interest in
CFA, current approaches try to overcome these limitations
by either targeting (custom) optimized generation of CFGs
(LO-FAT [5], LiteHAX [6], SCAPI [7] and BLINDTRUST
[8]) or leveraging hardware features ( [9], CFIMon [10],
µCFI [11], PITTYPAT [12], PT-CFI [13] and C-ITS [14]).
That is, current mechanisms require the physical devices to
be equipped with specialised hardware components to enable
tracing. These components can be either isolated co-processors
within the CPU of a system or completely standalone (out-of-
band) hardware parts. In both cases, they act as interposers and
have access to the CPU registers on per-cycle execution and
through low-level execution probes can detect register values
to track specific application execution.

In all of these approaches, however, there is always the com-
promise between performance, security and usability. This sets
the challenge ahead: How to provide near real-time low-level
code inspection and tracing, thus, capturing the requirements
of CFA while striking a balance between precision of control-
flow information, efficiency and transparency?

Contributions: This paper presents a novel hybrid tracer
that enables the in-depth investigation and tracing of a sys-
tem’s configuration and operation while simultaneously meet-
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ing these three requirements. Our approach is a software-
assisted (or pseudo-hardware-based, due to the prerequisite
existence of an Intel processor) solution based on a two-tier
granularity tracing technique that combines two of the most
prominent mechanisms, namely the extended Berkeley Packet
Filter (eBPF) and Intel PT [11], [13], [15], [16]. The main
idea is that the installed eBPF and IntelPT probes will be
programmed to intercept internal operations towards producing
a run-time control-flow path. Such probes can be used to
capture the execution of specific software components in both
physical and virtual devices so that we can check and attest the
integrity of the execution behaviour based on already defined
policies from embedded devices to cloud services. Overall, this
new family of tracing mechanisms is precise since IntelPT
has all program’s control-flow traces; it is efficient since
the combination of these tracing techniques provide different
levels of details of logged information and are activated only
when needed by the CFA, thus, enhancing the security and
trustworthiness of the integrity verification steps; finally, it is
transparent such that it requires no binary instrumentation,
and can be readily deployable on commodity systems.

II. CONTROL-FLOW ATTESTATION BASED ON
MULTI-LEVEL TRACING

This section describes the high-level conceptual architecture
of the proposed tracing mechanism [1]. The core component,
as can be seen in Figure 1, is the Runtime Tracer, which is
deployed on the target devices we wish to attest by tracing
specific properties. As is the case in typical remote attestation
protocols, such as in [4], we assume the existence of a Veri-
fication Engine which is the typical Verifier actor responsible
for assessing the attestation-related data and events registered
by the Prover device. More specifically, the core responsibility
of the Verification Engine is to verify the integrity, the authen-
ticity and the freshness of the captured traces by leveraging
cryptographic tools, such as digital signatures. Such traces
that represent the current system state (of the target devie)
and can be used for assessing it’s overall security posture
are collected by he Runtime Tracer; including the eBPF-based
tracing and the binaries hashing for CIV, and Intel-PT-based
tracing for low-level mission-critical processes. The outcome
of the tracing process is in all cases the extraction of the
corresponding CFGs (in the context of CFPA) and/or binary
hashes (in the context of CIV).

The motivation behind this multi-level (i.e., eBPF and Intel-
PT based) approach is that the employed attestation should
not target the whole stack of a system’s architecture, unless
there is an indication of suspicious activities. More precisely,
the scope of monitoring and tracing granularity should be
increased only when additional evidence and information need
to be collected, on a detected incident, for the assistance in
finding the province of the attack as well as in the development
of new enforceable attestation policies that should be able to
catch this newly identified threat. A detailed activity diagram
of the flow is depicted in Fig. 1. As aforementioned, this
escalated tracing leverages two of the most prominent tracing

Fig. 1. Multi-level architecture activity diagram

mechanisms towards overcoming the pressing challenge of
lightweight process monitoring:

• eBPF1 execution hooks capable of providing near real-
time low-level code inspection, thus, capturing the strict
constraints of SoS-enabled ecosystems, and

• Intel PT2 introspection agents capable of traversing the
entire physical memory of a Cyber Physical System
(CPS), via Direct Memory Access, for known execution
signatures which can then be used to navigate to the
relevant information to be traced. This approach allows
fast tracing without affecting the normal system execution
(non-intrusive).

Initially, the efficient and highly scalable eBPF technology
is focused on the user space and used to monitor the configura-
tion of a targeted binary or the sequence of executed software
commands. This allows for the tracing of the configurational
integrity of the target device without posing any significant
overhead (Section III). These eBPF hooks are enhanced with
more thorough tracing capabilities based on the use of the
emerging Intel PT. eBPF technology is used to continuous
monitor kernel shared libraries, system calls, shared data,
memory address space etc., while Intel PT enables the in-depth
investigation of the systems’ behaviour for detecting possible
exploits to the program and data memory. The utilization and
granularity of this tracing process depends on the behavioural
and attestation of the device; that is, if the initial attestation
(based on the instantiation of the eBPF tracing) fails to meet
some pre-specified requirements, then new policies can be
enforced for automatically deploying the Intel PT tracer which
will in turn gather more detailed data on how, why and which

1BPF Compiler Collection (BCC): https://github.com/iovisor/bcc#tools
2Intel PT: https://software.intel.com/content/www/us/en/develop/blogs/

processor-tracing.html
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executable was behaving as potential point of intrusion. On the
other hand, if no alarms are triggered, then the lightweight
eBPF tracer will continue to monitor the device and send
the gathered data through attestation reports as verifiable
evidence of a device’s trustworthiness. More specifically, if
the attestation based on the eBPF traces fails, a more detailed
investigation is performed through Intel-PT-based hooks for
low-level mission-critical processes. The outcome of the trac-
ing process is, in all cases, the extraction of the corresponding
CFGs (in the context of CFA [1]) and/or binary hashes (in the
context of Configuration Integrity Verification [17]).

III. EVALUATION OF TRACING TECHNIQUES

This section presents a detailed evaluation of the effective-
ness on extracting a system’s behavior and the performance of
the aforementioned tracing technologies in order to uncover
any adoption challenges and critically appraise the viability
of such solutions in the CIV and CFA context for achieving
systems’ operational assurance.

A. On the Scientific Value of the Experimentation Setup

In what follows, we first start by documenting the as-
sumptions made while designing the set of experiments to
be performed. We focus the experimental evaluation on the
computational complexity of the configuration or behavioural
properties to be traced and analyze the timings of the indi-
vidual tracing technologies without considering any possible
constraints that might be posed by the specification of the
underlying hardware (e.g., resources, memory structure, etc.).
Trust is evaluated by (securely) measuring the state (and con-
figuration behavior) of a device at any given point in time, and
then comparing the measured state with reference (expected)
states. This is captured through the following assumptions:

• AS1 - Availability of Resources: Depending on the
complexity of the codebase to be traced, a fluctuating
amount of allocated resources may be required on the
underlined system. In fact, this is supported by the
analysis of Section III. Thus, for demonstration purposes
of this work, we assume that all the resources needed for
the tracing are available, and the tracing is agnostic of
the hardware specifications.

• AS2 - Immutability: The measurement process must be
immutable, such that the tracer always returns the cor-
rect (actual) measurements. To enable secure tracing we
assume that the tracer is part of the Trusted Computing
Base (TCB) of the monitored system. It is out of the
scope of this work to investigate on isolated processing
environments. In fact, this is a common assumption in
software-assisted CFA protocols.

• AS3 - Functional Tracing Properties: In order to de-
ploy the necessary hooks and tracing configurations, the
underlined system must be equipped with the respective
enablers. For instance, in our case Intel-PT requires the
existence of an Intel processor.

B. eBPF Tracer Evaluation

As aforementioned, the designed eBPF tracer aims to pro-
vide an efficient solution both in the context of CIV by tracing
data of interest, such as the configuration of the binaries
included in the whitelist to be loaded in a host, but also in
the context of CFA for the tracing sequence of commands
of targeted resources. In this section, we offer an evaluation
in the context of the Trust Computing realm, by tuning the
tracer to intercept and decode the sequence of Trusted Platform
Module (TPM) commands exchanged in a virtualised TPM
instantiation, where a dedicated TPM is triggered by TCG
Software Stack (TSS)-enabled cloud-based applications. The
designed tracer is built on top of BPF Compiler Collection
(BCC) and the deployed hook intercepts the TCP/IP packets
exchanged between the TPM and a TSS.

More specifically, we triggered various TPM commands to
measure the actual overhead of eBPF tracing. When a TPM
command is executed, the TSS takes on the task of marshalling
the data. That is when the eBPF tracer starts its execution by
intercepting the commands at the network layer, it handles the
packets so as to extract the proper payload in order to unmask
the traced events and acquire structured information of the
TPM commands sequence.

In this case, the properties of interest are the actual timing of
a function to be executed, and the time required by the tracer
to monitor the executed function. By comparing these two
timings we can define the tracing overhead. The timing results
of basic TPM commands can be found in TABLE I. Stage
1 refers to TPM command preparation and data marshalling.
Stage 2 is the time required from the data marshalling to the
interception of the outbound write packet (from the TSS to
the TPM). Stage 3 is the elapsed time right after we receive
the response from the TPM until we decode the parsed and
traced executed functions. With these facts in mind, we see
that on average, Stage 1 takes 0,006865 secs, Stage 2 takes
0,236163 secs, and the Stage 3 takes 0,014625 secs. Hence,
the overhead of the eBPF tracer is given by calculating the
percentage of Stage 3 w.r.t the total time required to execute
a TPM command, i.e., Stage3/(Stage1+Stage2)×100. We
conclude that the eBPF solution has an average overhead of
6.02% which proves the fact that eBPFs execution hooks are
very efficient and lightweight. It is important to note that this
overhead includes both the interception and the unmasking
of the commands from the packet payload, advocating the
efficient execution of our eBPF tracer.

C. Intel PT Tracer Evaluation

The evaluation of the Intel PT tracer is based on different
test cases, written as simple C programs, to provide repre-
sentative codebases for covering diverse challenging aspects.
All test cases were compiled with GCC’s optimization level
set to 0. This ensures fine-grained control over the control-
flow of the test case via source code. The effectiveness and
efficiency of the implemented solution was evaluated based
on the tracer’s ability to output the correct control-flow profile
for the target test case in Section III-C1. The performance
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TABLE I
EBPF TRACING SEQUENCE OF TPM COMMANDS TIMINGS (SECONDS)

TPM commands Stage 1 Stage 2 Stage 3
TPM CC Startup 0,007531 0,256136 0,000118
TPM CC CreatePrimary 0,007523 0,246996 0,137073
TPM CC Create 0,008129 0,246298 0,003777
TPM CC Create 0,008110 0,240702 0,006160
TPM CC Load 0,003019 0,245251 0,004703
TPM CC EncryptDecrypt 0,007668 0,229365 0,001704
TPM CC PCR Extend 0,008806 0,226297 0,003735
TPM CC EncryptDecrypt 0,007701 0,238259 0,000154
TPM CC Quote 0,002381 0,219403 0,002293
TPM CC VerifySignature 0,008388 0,233758 0,001026
TPM CC Shutdown 0,006260 0,215326 0,000140
Average (in seconds) 0.006865 0.236163 0.014625

was measured against two scaling profiles: a high- and a
low-complexity one. As will be analysed in Section III-C2,
complexity refers here to the target test cases’ branch densities.
The maximum complexity, in this context, would be a code-
base consisting exclusively of branching instructions, while the
minimum would contain no branching instructions aside from
the final return. In our evaluation we utilise two scaling factors
to instrument the number of executed instructions, and thus the
complexity, in the target program. Due to space limitations, the
codebases used for the following cases are given in this GitHub
repository3. The interested reader can refer to this repository
for more examples, source codes and performance graphs.

1) Effectiveness of Control-flow Extraction: As has been
reported in the literature [4], [15], one of the major challenges
of extracting the control flow of a program lies on the fact
that codebases include conditional branches and loops that can
lead to an explosion of possible control flow paths. That is,
we opt to evaluate the effectiveness of the designed IntelPT
tracer under a test case which considers a loop containing a
conditional branching instruction and a function call. Thus,
this case tests the combination of all of the branch types.

This test case (under the name “t6” in our repository) was
used in order to evaluate the ability of the IntePT tracer to
capture the execution flow of a complex, but still auditable
codebase. Due to space limitations, we opt to analyse the most
complex scenario; however, more examples can be found in
our repository. As can be seen in Fig. 2, the assembly code
reveals the execution flow of the codebase of interest. The
CFG of Fig. 2 illustrates the flow of each iteration of the
loop, with the addition of both the single conditional branch
and the function call and subsequent context re-entry. We
have to note that for simplicity reasons our analysis was not
expanded outside the context of the target function, i.e., the
main function, while the condition evaluated is the logical
inverse of the if-condition in the source code.

More specifically, the loop starts with an unconditional jump
instruction to the set of instructions that evaluate the loop
condition and jumps to the top of the loop’s contents. Con-
sequently, the flow meets the if statement and the respective
conditional jump that leads to the function call. The code re-

3https://github.com/ubitech/Multi-level-Execution-tracing-evaluation-Intel-PT

Fig. 2. Test case ontrol-flow graph

Fig. 3. Test case trace output

enters the main context and takes a conditional jump at the
while and the inner if statement; enters the function context;
and, upon return, terminates its execution. As can be seen in
Fig. 3, the aforementioned assembly-based flow is reflected
to the IntelPT tracing output, which indicates the combination
of these control-flow structures. The decoder outputs a jump
to the top of the loop contents, followed by the conditional
jump of the if statement and the context switch to the function.
Then, the tracer captures again the second loop execution with
the respective conditions and the function call.

As also depicted in Fig. 3, the tracer outputs the specific val-
ues of the memory addresses (0xFFFFFFF ) that represent
the various states in the overall control-flow sequence compris-
ing multiple jump, call and ret instructions; instructions that
will change the program counter of the system’s execution to
point to a different state (memory address). More specifically,
these values point to the addresses where the program counter
register will point for executing the next instruction in the
normal execution flow. This feature is very important as it
enables the in-depth investigation of the system’s operation in
case of an identified deviation from the normal CFG.

Given the tracing output, it becomes clear that IntelPT is
a solution that can cope with the documented challenges and
barriers of control-flow extraction when dealing with loops,
conditions, and function invocations [4], [15]. In addition,
IntelPT enables control-flow extraction with adjustable tracing
granularity levels depending on the selected configurations.
Thus, based on the tracing requirements, one can configure the
process to limit the scope to functions and libraries of interest
or to treat other codebases as black boxes, if by nature cannot
be exploited by attackers to modify their execution flow.
More details on the performance of Intel PT under various
granularity tracing scenarios are given in Section III-C3.

2) Performance Evaluation: After documenting the viabil-
ity of the IntePT tracer to offer an accurate CFG of a codebase,
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TABLE II
INTELPT TRACING PERFORMANCE EVALUATION CASES

Case High-Complexity test case
ID Prim.

Factor
(PF)

Secon.
Factor
(SF)

Without
trace (ms)
min/max

With
trace (ms)
min /max

Overhead

HC.1 1 0,2 / 4,14 5,76 / 5.397,76 26,42x to 2.184,38x
HC.2 101 0,22 / 15,8 5,97 / 5.480,87 26,12x to 409,13x
HC.3 103 to 106 102 0,34 / 148,07 6,22 / 5.337,76 17,29x to 38,51x
HC.4 103 1,5 / 1.342,46 6,03 / 5.449,92 2,69x to 3,24x
HC.5 104 14,2 / 13.002,38 18,07 / 17.060 1,09x to 35,54x

Low-Complexity test case
LC.1 1 0,2 / 3,78 2,52 / 1.722,46 11,61x to 1.189,63x
LC.2 101 0,23 / 14,75 2,36 / 1.748,74 9,25x to 130,1x
LC.3 103 to 106 102 0,37 / 142,84 2,67 / 1.757,86 3,2x to 12,35x
LC.4 103 1,71 / 1.413,17 5,07 / 2.761,13 11,76x to 196,62x
LC.5 104 14,44 / 13.895,4 30,65 / 34.583 24,63x to 175,59x Fig. 4. HC.5 test case performance timings

in what follows, we stress test our tracer under different
conditions in order to evaluate the additional overhead incurred
in both cases of high- and low-complexity tests.

a) High-complexity test case: This test case designed to
facilitate two scaling factors, as it contains two for loops, one
in the main function and another inside a function outside the
trace context, which is called in every iteration of the main
loop. The number of iterations for the outer and inner loops
are called the primary and secondary scaling factors, PF and
SF, respectively. The PF ranges from 103 to 106 in increments
of 1000 and we opt five exponential increments: 1, 101, 102,
103 and 104 for the SF. The source code of the target program
is given in our repository under the name “t7”.

A small SF leads to the worst-case-scenario with maximum
control-flow complexity. In the HC.1 case of TABLE II, where
SF=1, each iteration of the main loop causes a jump and a call
which returns after a single iteration of the inner loop, making
for an extremely branch-dense execution. The results show a
deviation from 0,2 to 4,14 ms for the target program without
tracing, and 5,76 to 5.397,76 ms for the tracer. Taking a look
over the results of TABLE II for the tracing case, on can note
that the tracer performs in a rather stable manner. However,
it becomes obvious that when compared with the program’s
execution timing an overhead is added, as the tracer tries to
cope with the decoding of an extremely branched execution
flow. For the HC.1 case, the performance overhead ranges from
26,42x to 2184,38x among the measured execution timings.

As the SF increases, so does the total execution time of
the target program without tracing. This is reasonable, as the
total iterations of the double-loop codebase needs more time
to complete. However, the time needed for tracing shows a
stable behavior regardless the increasing SF. This is because
the high SF, i.e., the increased time spent by the code in the
internal loop (which is out of the tracing context), gives the
opportunity to the tracer to catch up the codebase execution
and decode the captured execution flow without increasing
the overhead. This is advocated by the timing measurements
of TABLE II (With/Without trace (min/max)) for the HC.1-4
cases. Specifically, it can be observed that the execution time
increases among the cases, while tracing remains rather stable,
leading to steady decrease of the posed overhead.

The HC.5 case is of special interest. The time spent execut-
ing instructions outside the trace context allows the decoder
to catch up with the end of the trace buffer’s contents. Briefly
put, when the decoder catches up with the tracer, it must note
its position in the buffer, re-synchronize to the previous Packet
Stream Boundary (PSB) packet and read until it reaches the
same place again, at which time there will likely be more to
read. A graph of the results is shown in Fig. 4. We need to note
here the greatly increased variance in the tracing execution
time. This is correlated with the number of bytes the decoder
must re-read after re-synchronization. Target program timings
now range from 14,2 to 13.002,38 ms, with tracing taking
from 18,07 to 17.060 ms. The performance overhead incurred
ranges from 1,09x to 35,54x.

b) Low-complexity test case: To form a clear picture on
the scaling characteristics of the IntePT tracer, we created a
low-complexity codebase which contains a single loop in the
main function. As in the high-complexity case, the PF controls
the number of iterations in the main loop. On the other hand,
the SF is the number of non-branching instructions between
branches inside the trace context. The source code of the target
program is given in our repository under the name “t8”. Our
codebase includes macros to allow multiple repetitions of the
ADD instruction equivalent to a++. The SF instructed 1, 101,
102, 103 and 104 executions of the ADD instruction. TABLE II
summarises the execution times of both the standalone target
program and the tracing process across the range of the PF
and SF scaling values.

LC.1 case shows very large performance overheads, as only
one non-branching instruction separates the jump instructions
for each iteration of the loop. The execution time of the
standalone target program ranges from 0,2 to 3,78 ms, while
the tracer runtime ranges from 2,52 to 1722,46 ms, incurring
performance overheads between 11,61x and 1.189,63x. Taking
a look over the LC.2 and LC.3 results, we note a visible growth
in the runtime of the target program, but the tracing timings
remain at the same levels among LC.1-3 cases, demoting that
the increment on the SF indeed eases the tracer to stay in sync
with the target program execution. For the LC.2 and LC.3
we note a decrease in the performance overhead incurred by
tracing w.r.t. to execution timings without trace. The LC.4 and
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TABLE III
INTEL PT TRACER TIMING (IN SECONDS) FOR VARIOUS GRANULARITY

SCENARIOS

Binaries Full decoding All branches All main branches
Binary 1 5,2515 0,17496 0,03698
Binary 2 6,11039 0,20266 0,06549
Binary 3 72,03029 3,25014 0,04501
Binary 4 313,66655 8,32616 1,24342

LC.5 cases are of particular interest. As was the case for HC.5
case, the increased SF give the chance to the decoder to catch
up with the tracer and require re-synchronization, and thus,
increasing the performance overhead. This behavior justifies
the incurred performance overheads of 196,62x and 175,59x
for the LC.4 and LC.5 cases respectively.

3) Various Granularity Scenarios: This section elaborates
on additional evaluation cases to demonstrate that the type
and granularity of the decoding and pre-processing of the
data pulled from the Intel PT tracing can greatly impact the
performance of the tracer. That is, we examine the execution
time of a full decoding of the entire assembly codes executed
(Full decoding), then we chose to only filter and decode all
the branches that the binary takes (All branches), and finally
we measure the decoding of all the branches within the main
function (All main branches). The timing results (in seconds)
can be found in TABLE III with each row representing a
different binary with incremental codebase complexity and
each column denoting a different decoding granularity.

One can observe that the complexity and size of the exe-
cuted code, greatly impacts the performance of the tracing and
decoding of our tracer. For instance, the 4th binary with a full
decoding requires 313,66 secs while the 1st and simplest binary
with full decoding takes only 5,25 secs. Another important
observation is that doing a full instruction tracing and decoding
on any assembly command requires considerable time since it
decodes the entire chain of execution of commands, even at
the level of the operating system. However, if we focus on
the branch instructions, we have a reduction in time of around
96%, while further narrowing down to only specific function to
trace for its branches (e.g. main) can have even better results.

4) Compiler Optimizations: In our work we evaluated the
effect that compiler optimizations may have on the Intel PT
tracing performance. We compiled two of our case studies
with the “-O3” compiler option which will enable all possible
compile-time optimizations. On the 2nd binary the time for
tracing the main function branches before the optimizations
was 0,06549 secs and after the optimizations 0,04422 secs,
while doing the same on the 3rd binary, the timing before
the optimizations was 1,24342 sec, while after 1,30259 sec.
It seems that the compiler optimizations will not necessarily
lead to better tracing performance, as those results are in the
margin of statistical error.

IV. DISCUSSION AND CRITIQUE

This section provides a discussion of our proposed “hybrid”
type of tracing solution, while posing some open issues that

still need to be considered if CFA is to reach its full potential.
Program tracing solutions can sufficiently record run-time in-
formation about a program’s execution and enable flexible and
powerful offline analysis. Therefore, they have become funda-
mental techniques extensively leveraged in software analysis
applications and forensics [18]. Those techniques aim to the
generation of the CFG through static program binary testing.
However, such offline and rigid forensics analysis methods
set several barriers, as they mainly have to ensure that the
produced tracing output has not been tampered, while the
detection of events takes place after the occurrence of the
incident. Thus, we need to investigate and aim for online
flexible tracing solutions.

Although detailed tracing and introspection can be resource
intensive, it is required for proper and thorough attestation
schemes. Thus, we argue that a practical way forward is
basically to provide a multi-level detail tracing mechanism that
can actually incorporate different types of tracing mechanisms
with varying levels of granularity in order to provide much
higher scalability. Our evaluation results advocate that eBPF
can handle efficiently both the interception and the processing
of the traced events, while Intel PT can operate with acceptable
overhead when configured to a reasonable granularity level and
targeting a specific application scope. Such an optimization
allows for better security-performance of the end solution as it
allows for a timely response to security incidents. In addition,
the proposed “hybrid” tracing approach could allow parallel
tracing of different aspects of a running application, having
the eBPF and Intel PT tracers acting in parallel, focusing
on different aspects of the execution, while sending all the
created traced data to the decoder for processing. To this
direction, what is proposed, is an attempt for an online tracing
and decoding configuration, where during runtime, the tracer
feeds the data to the decoder so as to allow the CFG to
be generated spontaneously without having to wait program
execution completion. In fact, this is a major challenge in the
field and the misalignment between the tracer and the decoder
has a major impact in the tracing performance.

In order to close this gap, we argue that a well-suited
solution for the realisation of the proposed architecture is the
use of a ring buffer. A ring buffer provides an ideal FIFO
buffer that allows the incoming data to be processed in the
correct order and priority and, given the fact that the expected
buffer size is predictable, a ring buffer is an optimal solution.
In the input of this buffer, the tracer can be attached to feed
tracing data as soon as they are available and on the output,
the decoder digests data as fast as its capabilities allow and it
proceeds with the control flow graph creation.

To the best of our knowledge, the most prominent tracing
solutions in the context of CFA, which can also be instantiated
in resource constraint systems, assume the existence of ad-
ditional specialised hardware elements to perform the tracing
and CFG extraction. The fact that our approach is based on an
embedded feature of widely used Intel processors, renders our
solution a pseudo-hardware-based one, as we do not assume
the existence of additional hardware. Nonetheless, we need

2021 IEEE International Mediterranean Conference on Communications and Networking (MeditCom)

517
Authorized licensed use limited to: University of Thrace (Democritus University of Thrace). Downloaded on March 14,2025 at 15:32:46 UTC from IEEE Xplore.  Restrictions apply. 



to highlight the need to move towards pure software-based
tracing solutions that will be generic and applicable in a wide
range of application domains without the limitations posed by
the hardware aspects of devices.

In fact, purely software-based tracing solutions could offer
great flexibility and configurability of the tracing mechanism.
Crucially, such a solution can be also backwards-compatible
with the trusted computing software stack available on most
machines today, enabling tracing with high trust assurances.
This mode of operation relies on software that resides within
the same trust domain of the application to be traced, and the
device being inspected. However, we need to consider that the
current trusted software stack libraries used to interact with
the underline trusted component of a system can be attacked
if a host machine is compromised. Thus, it becomes clear that
while tracing exhibits strict security and trust requirements is
not one and the same with secure tracing which is the trust
anchor towards secure attestation variants.

In this direction, we need to guarantee the operational
integrity of such a critical software component as the tracer.
When capitalising on hardware-based solutions for tracing,
the trust assurance is delegated to the robustness and security
qualities of the hardware. However, for software-based tracing
we need to find a trust anchor to meet such strict security
requirements. To realise secure tracing, the corresponding
enabler needs to be part of the trusted computing base of a
system so that it can be protected in an isolated processing
environment in which it can be securely executed; without
direct dependencies to rest of the system. Hence, in order to
overcome the aforementioned limitations posed for realising
the secure purely software-based tracing, we need to adopt
strong isolation mechanisms and consider secure architectural
designs such as RISC-V [19]. The system-level organization
of a RISC-V platform can range from a single-core micro-
controller to a many-thousand-node cluster of shared-memory
manycore architectures. Even small systems-on-a-chip might
be structured as a hierarchy of multiprocessors to modularize
internal operations and to provide secure isolation.

V. CONCLUSIONS

In this work, we presented an efficient and lightweight archi-
tecture that effectively extracts rigid control-flow information
to be then used for enabling the new generation of control-
flow attestation schemes. Our approach is based on the novel
reuse of the eBPF and Intel PT technologies for collecting
and checking both the configuration and execution properties
of a device’s codebase while striking a balance among the
key requirements of precision, efficiency and transparency.
This hybrid solution addresses challenges such as slow de-
coding and incomplete control traces by leveraging appropriate
structures (ring buffers) to optimize the entire tracing process.
Our prototype and the evaluation results demonstrate that our
architecture can satisfy all the strict performance requirements
cementing our vision that such a new breed of tracing mech-
anisms can be a key enabler for supporting the realization of
trustworthy next-generation smart-connectivity SoS.
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