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ABSTRACT
In the race towards next-generation systems of systems, the adop-
tion of edge and cloud computing is escalating to deliver the un-
derpinning end-to-end services. To safeguard the increasing attack
landscape, remote attestation lets a verifier reason about the state
of an untrusted remote prover. However, for most schemes, verifia-
bility is only established under the omniscient and trusted verifier
assumption where a verifier knows the prover’s trusted states and
the prover must reveal evidence about its current state. This as-
sumption severely challenges upscaling, inherently limits eligible
verifiers, and naturally prohibits adoption in public-facing security-
critical networks. To meet current zero trust paradigms, we propose
a general ZEro-Knowledge pRoof of cOnformance (ZEKRO) scheme,
which considers mutually distrusting participants and enables a
prover to convince an untrusted verifier about the correctness of its
state in zero-knowledge by ensuring that the prover cannot cheat.
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1 INTRODUCTION
To make cloud computing services more resilient to increasing in-
tegrity concerns and enable detection of malicious or vulnerable
software (e.g., Apache Log4j [13]), several proposals [1, 10, 11, 17,
22] have advocated leveraging trusted computing technology. This
technology relies on a Trusted Execution Environment (TEE) or
more commonly a Trusted PlatformModule (TPM) [20] deployed on
each node which acts as a trust anchor to store and report integrity
evidence about the node’s configuration. When a node’s software
stack boots up, it chronologically measures (hashes) each software
component and extends each measurement into a Platform Configu-
ration Register (PCR) of its TPM. To report the node’s configuration
integrity, the TPM uses a unique key to sign the aggregated PCR
value, which a remote verifier can then compare against a list of
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trusted reference values to determine whether it corresponds to a
trusted state. For enhanced integrity guarantees, we can also have
nodes continue measuring their software beyond the boot process,
e.g., using the Integrity Measurement Architecture (IMA) [16] or
Policy-reduced IMA (PRIMA) [7].

Despite their benefits, most existing remote attestation protocols
suffer scalability issues since the complexity of the verifier grows
with the complexity of the prover’s platform configuration [12].
Specifically, the verifier must continuously maintain an extensive
allowlist of trusted reference values for each prover, which becomes
prohibitively impractical for large networks. Furthermore, besides
inherent scalability issues, it is easy to prove that remote attestation
protocols that require the prover to disclose its configuration state
to verifiers fail under the honest-but-curious adversarial model [14]
since any dishonest verifier can easily link and identify the software
executing on the prover. The failure to respect a prover’s config-
uration privacy is known to raise serious privacy issues, such as
discrimination [15] and can even foster dedicated software attacks
against a vulnerable prover [23]. While catering to a platform’s con-
figuration privacy is essential from a security perspective, omitting
the exchange of such information can also help promote services to
mix more seamlessly in multi-domain coordinated services, includ-
ing multi-vendor environments [3], where contractual differences
would otherwise potentially prohibit such collaboration.

To remediate the privacy issue and simultaneously reduce the
verifier complexity in remote attestation, some proposals [1, 2, 5,
10, 11, 22, 23] offer different, more privacy-respecting mechanisms
for a verifier to reason about a prover’s correctness. However, these
schemes tend to either require an intermediate trusted third party
(TTP) between the prover and verifier to distill or hide the integrity
report from the verifier [1, 22], which limits network design and
overall responsiveness, assume that the prover’s configuration is
translatable into abstract properties which the verifier is knowledge-
able enough to interpret [2, 5], restrict who can verify a particular
prover [10, 23], incur high network overhead [9], or consider only
the load time measurements of a prover’s software stack [11].

This paper presents ZEKRO, a zero-knowledge proof of confor-
mance scheme that uses trusted computing abstractions to over-
come the barriers of configuration privacy and scalability. These
abstractions provide another building block for constructing scal-
able services that seamlessly mix in multi-domain environments
and are more resilient to integrity concerns. Our design includes
two crucial main innovations to overcome the limitations of existing
TPM-based privacy-respecting remote attestation protocols.

First, the ZEKRO scheme provides the trusted computing abstrac-
tion, called policy-restricted attestation key, that restricts a node’s
attestation key (secured in its TPM) to policies chosen by an au-
thorizing entity (e.g., a domain orchestrator) and ensures that the
node can only use the key to sign challenges if its configuration
satisfies a policy. By predicating its ability to sign on its configu-
ration correctness, we can verify its conformance using a simple
challenge-response protocol that neither requires nor reveals any
configuration information. Moreover, to update a node’s “trusted
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configuration state” during runtime (e.g., in response to patches),
the authorizing entity can reactively or proactively authorize new
policies restricting the node’s attestation key to a new configuration
state. Second, to control which of the already authorized policies
a node can satisfy during attestation, we propose creating poli-
cies that additionally require explicit, time-limited authorization,
called leases, to be satisfiable, which allows an authorizing entity
to control which policy can temporarily be satisfied.

To demonstrate ZEKRO’s performance, we evaluated a proof-of-
concept implementation on real hardware. Further, to ensure repro-
ducibility and verifiability of our results, we make our prototype
publicly available at https://github.com/anonavailability/ZEKRO.

2 RELATEDWORKS
When measuring a node’s software during runtime, one idea, which
IMA [16] employs, is to record measurements both into a TPM PCR
and a Measurement Log (ML). Due to the unpredictable order in
which components are loaded, the ML helps verifiers verify the re-
ported aggregated PCR value and whether each loaded component
is trusted based on reference values. However, such information dis-
closure raises concern, especially if measurements belong to differ-
ent tenants sharing a platform. To make it more privacy-respecting,
Container-IMA [10] proposed generating unique secrets to obscure
ML entries related to each tenant’s software, thus effectively re-
stricting verification of a particular tenant’s software to verifiers
that know the secret, in addition to the trusted reference values.

Similarly, to restrict verifiability only to “correct” verifiers, au-
thors of [23] propose obfuscating a PCR by recording random values
into the PCR and ML, which ensures that only a legitimate verifier
can perform the verification and others learn nothing. However,
the problems of dishonest verifiers and verifier complexity remain.

To avoid disclosing the low-level binary measurements (digests)
of the platform configurations and reduce the verifier complexity,
Property-Based Attestation (PBA) [5, 15], maps platform configura-
tions to more semantical security requirements, called “properties”,
which a prover can prove to fulfill without disclosing its concrete
configuration. However, bridging the semantic gap between digests
and properties, i.e., identifying what maps to which properties, is
not trivial and must be agreed upon beforehand. The same applies
to [2], where, differently to PBA, they propose grouping sets of soft-
ware and hardware versions into single digests using cryptographic
functions such as chameleon hashes [8], or group signatures [4].

To unload verifiers, authors of [1] propose having an interme-
diate third party between a prover and verifier who is trusted to
verify the prover’s measurements and vouch for the prover’s in-
tegrity. Similarly, the work in [22] proposes an attestation proxy
to mediate attestation requests between the prover and verifier
and translate the prover’s concrete configuration into properties
that are returned to the verifier. However, while effective, such
approaches limit network flexibility in practice and incur overhead.

Like [1] in that no information is disclosed, but eliminating the
intermediate third party, the work in [11] proposed having a trusted
third party only involved initially to instruct a node in sealing (i.e.,
encrypting) a secret signing key to its trusted configuration state
using its TPM. This way, the node can only ever unseal (decrypt)
the secret key if its configuration has not changed. Thus, verifiers,

who know a node’s public key, can verify its integrity simply by
requesting it to sign a challenge using its secret key. However, there
are several problems with the sealing operation. First, the unsealed
secret key is exposed to software during attestation. Second, as
pointed out in [15], any configuration update (e.g., patches) would
effectively prohibit unsealing of the data (i.e., secret key).

To prevent exposing the signing key to software, the authors of
[9] proposed instead to create attestation keys, which is a special
type of asymmetric keys created inside a TPM, where the secret
part that is used for signing never leaves the protective shielding
of the TPM. Then, similar to [11], these attestation keys are created
under the supervision of a trusted third party with an authorization
policy that constrains the use of the secret part to a particular con-
figuration state. However, due to the brittleness of the authorization
policy, each node must create a new attestation key with a new
authorization policy whenever its configuration changes, result-
ing in a high computational overhead. Furthermore, the approach
does not consider software adversaries that might attempt to block
update requests to lock a node in a “trusted state”.

To solve these problems, we propose instead creating attestation
keys with “flexible” authorization policies that allow a named au-
thority (e.g., a domain orchestrator) to approve new policies that
restrict the same key’s use to new configuration states. Before we
explain our scheme, we first explain the necessary background on
how this functionality works in Section 3.1 and also how we make
nodes more resilient against software adversaries in Section 3.2.

3 TRUSTED COMPUTING CONCEPTS
This section presents the background necessary to understand the
proposed approach by describing the leveraged functionalities.

3.1 Enhanced Authorization
The TPM can be used as a combination lock for securing access to
TPM objects, such as cryptographic keys. To specify under which
circumstances an object can be accessed (i.e., what should be ful-
filled before access is granted) and what operations are permitted
once access is granted, we must first create a policy statement that
logically describes all of our conditions and the scope of the au-
thorization. To ensure statement interpretability, we must use the
available Enhanced Authorization (EA) TPM commands, which are
documented in part 3 of TCG’s specification [20]. For example, to
allow the use of an object only if a PCR has a specific value, we can
use the PolicyPCR command to reference which PCR should have
what value. We then translate our policy statement into an “policy
digest”, which is computed by aggregating a digest over each EA
command’s Command Code (CC) and command-specific arguments
(like an onion) as detailed in the documentation [20]. With a policy
digest, we can ask the TPM to create an object (e.g., an attestation
key) with this policy digest as its authorization policy.

To satisfy our object’s authorization policy, we must start a “pol-
icy session” with the TPM, to which it will associate a policy digest
internally. The rules are simple. To satisfy our object’s authorization
policy, we must invoke the correct combination of EA commands
with the correct arguments to make the session’s internal policy
digest match our object’s. Anytime we invoke the TPM to perform
some action using our object, e.g., to sign a message if the object is
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an attestation key, the TPM will first check if the current session’s
policy digest matches the authorization policy of the object. For
some EA commands, e.g., those that restrict the use of an object
only to a specific command and arguments, another session-specific
digest called the command parameter hash 𝑐𝑝𝐻𝑎𝑠ℎ is also used and
checked by the TPM before allowing an action to be performed.

3.1.1 Flexible Policy. This paper aims to use the EA functionality to
create an attestation key whose authorization policy is constrained
to a node’s correct configuration as measured into some PCR. Un-
fortunately, this is not possible with the PolicyPCR command since
it only allows one state. While we could create a policy statement to
permit several possible states by logically oring several PolicyPCR
commands, this requires knowing all future “good” states, making
it inherently impractical. Fortunately, there is a workaround to this
“brittleness” problem using the PolicyAuthorize command, which
allows creating a “flexible” policy owned by a secret key whose
public key is associated with the policy. In other words, whoever
owns the corresponding secret key of the public key that we com-
mit to in the policy digest has complete control to sign (approve)
policies during runtime that, when satisfied in a TPM session, will
also cause the object’s authorization policy to be satisfied. Suppose
we only have the PolicyAuthorize command as part of our policy
statement. In that case, the resulting “flexible” policy digest 𝑝𝑜𝑙 is
computed as 𝑝𝑜𝑙 ← H(H(𝐶𝐶𝑃𝑜𝑙𝑖𝑐𝑦𝐴𝑢𝑡ℎ𝑜𝑟𝑖𝑧𝑒 ∥ pk)∥ 𝑟𝑒 𝑓 ), where pk
is the public key, and 𝑟𝑒 𝑓 is an optional reference that restricts the
authorization policy. For example, we use each node’s unique iden-
tifier as the corresponding reference value to distinguish between
the authorization policy of different nodes in a domain.

Once we have a flexible policy, we can have the node create an
attestation key with a flexible authorization policy, thus allowing
the respective orchestrator to approve different restrictions to use
the key, e.g., depending on its currently accepted configuration.

To approve a policy, the orchestrator first creates the policy digest
to approve 𝑎𝑃𝑜𝑙 and then signs an authorization hash 𝑎𝐻𝑎𝑠ℎ ←
H(𝑎𝑃𝑜𝑙 ∥ 𝑟𝑒 𝑓 ) using its secret key, where 𝑟𝑒 𝑓 references the node.

Finally, to use the approved policy to satisfy the attestation key’s
authorization policy, the node first satisfies 𝑎𝑃𝑜𝑙 in a policy session
and then calls PolicyAuthorize with 𝑎𝑃𝑜𝑙 , a public key pk, its identi-
fier 𝑟𝑒 𝑓 , and a proof that H(𝑎𝑃𝑜𝑙 ∥ 𝑟𝑒 𝑓 ) was signed by the owner of
pk, which proves whether the current session’s policy digest was
approved. Then, if it holds, the TPM replaces the session’s policy
digest with H(H(𝐶𝐶𝑃𝑜𝑙𝑖𝑐𝑦𝐴𝑢𝑡ℎ𝑜𝑟𝑖𝑧𝑒 ∥ pk) ∥ 𝑟𝑒 𝑓 ), which permits the
use of the attestation key if it matches its authorization policy.

3.2 Trustworthy Runtime Measurements
While the TPM provides secure storage and reporting, the entity
that stores measurements into the TPM should be trustworthy. For
example, to create a chain of trust of the integrity of a platform’s
boot sequence, we could have each component, such as firmware
and boot drivers, first measure the next component into a TPM PCR
before passing control to that component. However, if we cannot
trust the code that measures the first component, called the core
root of trust for measurements, we cannot trust the PCR aggregate.

The most prominent method of extending such a chain of trust
into the operating system is IMA [16]. When IMA is used, it hooks
onto file-related system calls to remeasure a file (part of the trusted

computing base) into anML and a PCRwhenever the file is accessed.
To only remeasure a file when it is modified, the filesystemmust sup-
port i_version and, if needed (e.g., EXT3, EXT4), be mounted with
this option. When enforced, the filesystem updates the i_version
field of the inode associated with a file when a file is modified.

As before, if we cannot trust IMA, we cannot trust its measure-
ments. Similarly, we must also rely on a trusted entity to measure
a node’s configuration. This trusted entity must be isolated and im-
mutable. Note, however, that the choice of isolation, e.g., OS-based
process isolation, user/kernel-level isolation, or hypervisor-based
approaches, will depend on use-case-specific requirements. We as-
sume some Trusted Execution Environment (TEE) for this paper,
like ARM TrustZone or Intel SGX. However, note that since we
consider remote TEE invocation, it raises two problems. First, re-
quests can be blocked by an adversary to evade detection. Second,
the adversary can spoof measurements. To prevent both attacks,
we must ensure that the measurements are authentic and approved
policies are only temporarily satisfiable. One way to achieve the
first requirement, which we utilize, is to create a TPM object inside
the TPM’s non-volatile (NV) memory space of type PCR, which
allows us to associate an authorization policy to our PCR object as
described in Section 3.1 that allows the node’s TEE to authenticate
the measurements. Our solution to the second requirement is to
enforce a leasing mechanism, which we describe in Section 5.4.2.

3.3 Zero-Touch Enrollment
An attestation key (AK) is especially beneficial due to its inherent
restriction. Whereas unrestricted keys, when created inside a TPM,
can be used to sign any data, an AK, which is restricted, will not sign
any externally provided data structure that appears to be valid and
TPM produced but is not. Thus, if an AK is known to be protected by
a TPM, it may be relied on to report that TPM’s contents accurately.

In the context of zero-touch provisioning of a remote platform
equipped with a TPM, we must first verify the authenticity of the
TPM [18, 19, 21] and all other primitives that enable the subsequent
attestation. The core in zero-touch provisioning is the correct cre-
ation of the attestation key to secure the integrity of the attestation
process. For discrete TPMs, the manufacturer generally installs an
Endorsement Key (EK) and an associated certificate inside the TPM,
which allows verifying the EK’s authenticity and can further be
used to create a Local Attestation Key (LAK). However, the EK dif-
fers from an AK. An EK is a “storage key” used to protect (encrypt)
the secret key of other keys to allow safe storage outside the TPM,
and creating a LAK based on the EK requires some work [19].

Another method is to install an Initial Attestation Key (IAK)
and associated certificate, which can be used to create the LAK.
Specifically, by utilizing the inherent characteristics of attestation
keys, we can, after verifying the IAK’s certificate [19], verify that a
LAK is created in the same TPM by certifying it using the IAK.

4 SYSTEM AND THREAT MODEL
Before we delve into details of the ZEKRO scheme, we present the
considered setting and assumptions regarding protocol participants.

4.1 System Model and Security Assumptions
We consider a network setting with three types of entities:
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(1) Prover is an untrusted node equipped with a secure TPM
provisioned with a certified Initial Attestation Key (IAK) and
a secure element for providing secure runtimemeasurements.
We consider a TEE with a certified key pair for brevity for
the rest of the paper. Finally, to detect file modifications, we
assume a trusted filesystem that enforces i_version.

(2) Verifier is an untrusted node that knows the orchestrator of a
prover node and wants to remotely check the correctness of
the prover’s configuration (though not limited to this role).

(3) Orchestrator is a trusted entity that: (i) onboards each node
by verifying its initial key certificates, (ii) performs the zero-
touch configuration of each node’s LAK, and (iii) maintains
and approves each node’s acceptable configuration. We as-
sume that the orchestrator has already done the onboarding
(i), which lets us instead focus on more relevant challenges.

4.2 Threat Model
We consider a software adversary who, on some prover, exploits a
software vulnerability that allows it to modify that node’s critical
configurations that are part of the Trusted Computing Base (TCB)
as determined by the domain orchestrator. The adversary’s goal is
to remain undetected and may even attempt to disrupt the node’s
communication with the orchestrator to do so. Further, we assume
that verifiers are dishonest and attempt to infer information about
the prover’s configuration. However, we assume that verifiers do not
collude with the prover’s adversary to obtain prover information.

4.3 Objectives
Our scheme’s objectives are threefold: (i) any tampering of a prover
node’s TCB configurations or continued disobedience is detectable,
(ii) verifiers require no knowledge except the trusted key certificate
of a prover node’s orchestrator to verify the prover, and (iii) veri-
fiers learn no information from the verification process besides the
correctness of the prover’s configuration integrity.

5 THE ZEKRO SCHEME
We continue with the terminology used in our description of the
ZEKRO scheme. Thenwe proceed to give an overview of the scheme
before diving into its protocols with explicit reference to the re-
quired TPM commands found in part 3 of TCG’s specification [20].

5.1 Notation
As an accompanying reference while reading the protocol diagrams,
we consider the following symbols and simplified TPM terminology:

H(𝑚) Compute𝑚’s digest using collision-resistant hash function H.
Sign(𝑘,𝑚) Compute a cryptographic signature over𝑚 using 𝑘 .
𝔗 (@𝑐𝑜𝑛𝑓 ) Tracer, which, given a path, returns a tuple (𝑐, 𝑖𝑛𝑜, 𝑖𝑣𝑒𝑟 ) with

the contents 𝑐 , inode number 𝑖𝑛𝑜 , and inode version 𝑖𝑣𝑒𝑟 .
Vf (𝑒𝑥𝑝𝑟 ) Verification of 𝑒𝑥𝑝𝑟 , which interrupts if the evaluation fails.

𝑃𝐶𝑅 Platform Configuration Register, which is an extend-only struc-
ture internal to the TPM: 𝑃𝐶𝑅 ← H(𝑃𝐶𝑅 ∥ 𝑠𝑜𝑚𝑒𝑉𝑎𝑙)

𝑚𝑃𝐶𝑅 Mock PCR, which mimics a PCR and is used by the orchestrator
and provers to maintain the expected value of the NV PCR that
is used for recording measurements (needed for attestation).

𝐶𝐼𝐷 Configuration identifier associated with a𝑚𝑃𝐶𝑅 on the orches-
trator to reference a prover’s current configuration version.

𝐼𝐷 A unique (prover) node identifier.

ℌ Handle, which references an internally loaded TPM object.
𝑡𝑚𝑝𝑙 Template for a TPM object that describes its type and attributes.

𝐶𝐶𝑐𝑚𝑑 Command Code of the TPM command 𝑐𝑚𝑑 .
𝑒𝑥𝑝 Expiration time in some unit of time.
𝑟𝑒 𝑓 Policy reference used in policies to differentiate authorizations.
𝑝𝑜𝑙 Policy digest as described in Section 3.1, which, for our pur-

poses, is a chain of computations: 𝑝𝑜𝑙 ← H(H(𝑝𝑜𝑙 ∥𝐶𝐶𝑐𝑚𝑑 ∥
𝑛𝑎𝑚𝑒) ∥ 𝑟𝑒 𝑓 ) , where 𝑛𝑎𝑚𝑒 denotes a TPM object’s (e.g., a
key) name, which is generally a digest of its public area.

𝑐𝑝𝐻𝑎𝑠ℎ Command parameter hash, which is computed from the param-
eters of a TPM command as described in part 1 of TCG’s speci-
fication [20] and, for our purposes, is computed as: 𝑐𝑝𝐻𝑎𝑠ℎ ←
H(𝐶𝐶𝑐𝑚𝑑 ∥𝑝𝑎𝑟𝑎𝑚𝑠) , where 𝑝𝑎𝑟𝑎𝑚𝑠 refers to the command-
specific parameters. With a 𝑐𝑝𝐻𝑎𝑠ℎ, an authorizing entity can
restrict policies to a specific command and arguments.

𝑎𝐻𝑎𝑠ℎ Authorization hash as described in part 3 of TCG’s specification
[20], which for the: 𝑃𝑜𝑙𝑖𝑐𝑦𝐴𝑢𝑡ℎ𝑜𝑟𝑖𝑧𝑒 command has the form
𝑎𝐻𝑎𝑠ℎ ← H(𝑎𝑃𝑜𝑙 ∥ 𝑟𝑒 𝑓 ) to enable an authorizing entity to
dynamically approve a policy𝑎𝑃𝑜𝑙 to use the object, and for the
𝑃𝑜𝑙𝑖𝑐𝑦𝑆𝑖𝑔𝑛𝑒𝑑 command has the form 𝑎𝐻𝑎𝑠ℎ ← H(𝑛 ∥ 𝑒𝑥𝑝 ∥
𝑐𝑝𝐻𝑎𝑠ℎ ∥ 𝑟𝑒 𝑓 ) to enable signed authorization for 𝑒𝑥𝑝𝑖𝑟𝑎𝑏𝑙𝑒
execution of 𝑐𝑝𝐻𝑎𝑠ℎ in a TPM session whose nonce is 𝑛.

𝑡𝑘𝑡 Ticket, which the TPM computes for a specific command and
its arguments that later proves to the same TPM that it has
already performed the necessary (signature) verification.

{opk, osk} The orchestrator’s asymmetric keypair.
{tpk, tsk} A TEE’s certified asymmetric keypair.

𝐴𝐾 Attestation Key, a restricted signing key that can sign internal
TPM structures and has a public part 𝐴𝐾𝑝𝑢𝑏 and private part
𝐴𝐾𝑝𝑟𝑖𝑣, where 𝐴𝐾𝑝𝑟𝑖𝑣 never leaves a TPM unencrypted.

𝐼𝐴𝐾 Initial AK, which is initially created and certified inside a TPM.
𝐿𝐴𝐾 Local AK, which is remotely certified to reside inside a node’s

TPM by the local (domain) orchestrator.
𝑆𝐾 Storage Key, which is a restricted decryption key used as a

parent to wrap (encrypt) the private part of descendant keys,
thus ensuring child key secrecy when stored outside the TPM.

5.2 High-Level Overview
Fig. 1 shows the conceptual work-flow of the ZEKRO scheme consid-
ering the different entities described in Section 4.1. Our scheme aims
to facilitate zero-touch enrollment and configuration of deployed
nodes that execute privacy-critical services such that anyone can
efficiently verify the correctness of the service in zero-knowledge,
thus enabling stitching of privacy-respecting services. Note that, for
generality, our scheme succeeds the initial onboarding of the nodes,
where a domain orchestrator verifies a node’s TPM and TEE certifi-
cates and (possibly) verifies that its filesystem enforces i_version.
The scheme comprises three protocols: (i) prover enrollment, (ii)
configuration update, and (iii) oblivious remote attestation. Let us
start by clarifying the idea of each protocol while regarding Fig. 1.

5.2.1 Enrollment. To enable a deployed node to become a “publicly”
verifiable prover, it must first be securely enrolled by a certified
orchestrator that will then be responsible for continuously deter-
mining the node’s correct state, whose truthfulness is asserted to
verifiers in zero-knowledge. For this, the orchestrator configures
the node’s TPM with two objects: (i) a local attestation key (LAK)
created with a flexible authorization policy with the orchestrator
as its authorizing entity (step 1), and (ii) a non-volatile (NV)-based
PCR created with an authorization policy that binds the node’s TEE
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Figure 1: System model and conceptual work-flow after the
orchestrator has verified a prover’s TPM and TEE keys.

as its authorizing entity (step 2). The former assures that only the
orchestrator may approve policies that permit the use of the LAK.
Similarly, the latter ensures that only the TEE may approve policies
that permit modification of the NV PCR. Together, the TPM ob-
jects enable the orchestrator to continuously and securely predicate
the use of the LAK to the node’s currently trusted configuration
state by approving policies that require the NV PCR to contain
the currently expected (trusted) aggregate value, which is securely
maintained by the node’s TEE. Finally, although omitted from Fig.
1, the node must initially report the unique number and current
version of the inodes assigned to its configuration files to allow the
orchestrator to include inode information in approved policies to
ensure detection of unauthorized file modifications. Note that if the
initially reported information is incorrect, the prover cannot satisfy
approved policies since the TEE’s measurements would cause the
NV PCR to have a different value since the TEE always uses inode
information currently associated with the files.

5.2.2 Configuration Update. Once a prover is successfully enrolled,
its orchestrator’s responsibility is to approve policies that restrict
the prover’s use of its LAK, which can occur either routinely or upon
demand, e.g., due to a newly released patch. To approve policies for
a specific prover node, the orchestrator keeps a trusted reference
copy of that node’s currently correct configuration, including the
associated inode information, and a mock PCR, which it uses to
deterministically compute the expected value of the TEE’s NV PCR
once it has remeasured the node’s configuration (step 3).

Upon receiving a new approved policy for its LAK (step 4), the
prover invokes a trusted application running inside the Secure
World of its TEE, which: (i) securely measures the requested con-
figuration, (ii) authorizes a one-use policy for extending the mea-
surement into its NV PCR, and (iii) returns the measurement and
corresponding authorized policy to the prover’s Normal World,
where the prover uses the authorization to extend the measure-
ment into the NV PCR on behalf of the TEE (step 5). Note that we
elaborate on the motivation behind outsourcing the extension of the
NV PCR to the prover’s NormalWorld in Section 5.3.2. Furthermore,
to protect against an adversary blocking the orchestrator’s request
to measure the node’s configuration from reaching the node’s TEE
in an attempt to evade detection, we describe in Section 5.4.4 the

utilization of an accompanying leasing mechanism that enables the
orchestrator to grant the node only temporary ability to satisfy a
selected approved policy.

5.2.3 Attestation. The final, oblivious remote attestation protocol
is executed solely between a prover and a verifier, where the ver-
ifier represents anyone that, trusting the orchestrator, wishes to
determine the correctness of the prover. Like any remote attesta-
tion protocol, the verifier initiates the execution of the protocol
by challenging the prover with a fresh nonce (step 6). Then, due
to the nature of the LAK object and its strong dependency on the
TEE’s NV PCR, the verifier knows that if the prover can correctly
present a signature over the nonce using a LAK that was certified
by the orchestrator (steps 7 and 8), then this serves as irrefutable
evidence that it satisfies whichever policy that the orchestrator
approved. Thus, without knowing any of the prover’s configuration
details or what is executing on the prover, and without requiring the
prover to disclose any information, the verifier is convinced, in zero-
knowledge, that the prover’s configuration is correct. Conversely,
if the prover cannot supply such a signature, then the verifier can
reasonably assume that the prover cannot satisfy the orchestrator’s
policy. Note, however, that the freshness of the prover’s assertion is
directly correlated to the orchestrator’s frequency of approving new
policies, i.e., a higher update frequency leads to faster detection.

5.3 Prover Enrollment
While the creation of a LAK and an NV PCR are both subsumed
under the initial enrollment protocol as described in Section 5.2.1,
we here separate them for clarity since the creation of each object
requires different operations that are unique to that specific object.

5.3.1 Secure Local Attestation Key Creation. Fig. 2 shows how the
orchestrator verifies that a node has correctly created a LAK in
the same TPM as the pre-provisioned IAK that was verified during
the node’s initial onboarding, as follows. First, to prepare an au-
thorization policy for the LAK which ensures that the orchestrator
is the object’s only authorizing entity, the orchestrator composes
a flexible policy digest which: (i) binds the orchestrator as the ob-
ject’s authorizing entity, and (ii) includes a reference to the specific
node’s unique identifier (𝐼𝐷) which allows the orchestrator, who
potentially orchestrates several nodes, to distinguish between au-
thorizations. Then, to inform the node’s TPM about how it should
create the LAK, including the LAK’s attributes and authorization
policy, the orchestrator sends a generic LAK template together with
the prepared authorization policy to the prover, who passes these
values as arguments in a call to its TPM to create the LAK. However,
because the TPM’s storage capacity is severely scarce, it cannot be
used to store several keys persistently. Thus, to protect the LAK’s
private part when it is stored external to the TPM, it is created as a
child of some storage key 𝑆𝐾 , where the purpose of 𝑆𝐾 is to wrap
(encrypt) the LAK’s private part for safe storage outside the TPM.

To prove that the LAK was created correctly, the prover loads it
back into its TPM, where the same 𝑆𝐾 is used internally to decrypt
its private part, and a handle referencing the loaded key is returned
that enables cryptographic operations targeting the LAK. Then, to
prove that the LAK resides in the same TPM as the IAK, the IAK is
used to sign a TPM-generated certificate that includes all creation
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TPM Prover 𝑰𝑫 Orchestrator
𝐼𝐴𝐾, 𝑆𝐾 ℌ𝐼𝐴𝐾 ,ℌ𝑆𝐾 {opk, osk}, 𝐼𝐴𝐾𝑝𝑢𝑏, 𝐼𝐷, 𝑡𝑚𝑝𝑙

𝑎𝑢𝑡ℎ𝑃𝑜𝑙 ← H(H(𝐶𝐶𝑃𝑜𝑙𝑖𝑐𝑦𝐴𝑢𝑡ℎ𝑜𝑟𝑖𝑧𝑒 ∥ opk) ∥ 𝐼𝐷)
𝑡𝑚𝑝𝑙, 𝑎𝑢𝑡ℎ𝑃𝑜𝑙ℌ𝑆𝐾 , 𝑡𝑚𝑝𝑙, 𝑎𝑢𝑡ℎ𝑃𝑜𝑙

TPM2_Create
(𝐿𝐴𝐾𝑝𝑢𝑏, 𝐿𝐴𝐾𝑝𝑟𝑖𝑣) ←$KGen(1𝑛, 𝑡𝑚𝑝𝑙, 𝑎𝑢𝑡ℎ𝑃𝑜𝑙) 𝐿𝐴𝐾𝑝𝑢𝑏, {𝐿𝐴𝐾𝑝𝑟𝑖𝑣 }𝑆𝐾

ℌ𝑆𝐾 , 𝐿𝐴𝐾𝑝𝑢𝑏, {𝐿𝐴𝐾𝑝𝑟𝑖𝑣 }𝑆𝐾
TPM2_Load

𝐿𝐴𝐾 ← (𝐿𝐴𝐾𝑝𝑢𝑏, 𝐿𝐴𝐾𝑝𝑟𝑖𝑣) ℌ𝐿𝐴𝐾

ℌ𝐿𝐴𝐾 ,ℌ𝐼𝐴𝐾

TPM2_CertifyCreation
Sig← Sign(𝐼𝐴𝐾𝑝𝑟𝑖𝑣, 𝑐𝑒𝑟𝑡𝐿𝐴𝐾 ) Sig, 𝑐𝑒𝑟𝑡𝐿𝐴𝐾 Sig, 𝑐𝑒𝑟𝑡𝐿𝐴𝐾 Vf (Sig, 𝑐𝑒𝑟𝑡𝐿𝐴𝐾 , 𝐼𝐴𝐾𝑝𝑢𝑏)

Vf ( {𝑡𝑚𝑝𝑙, 𝑎𝑢𝑡ℎ𝑃𝑜𝑙 } ∈ 𝐿𝐴𝐾𝑝𝑢𝑏)
Sig′ ← Sign(osk, 𝑐𝑒𝑟𝑡 ′

𝐿𝐴𝐾
)

Sig′, 𝑐𝑒𝑟𝑡 ′
𝐿𝐴𝐾

store
{
Sig′, 𝑐𝑒𝑟𝑡 ′

𝐿𝐴𝐾

}
Figure 2: Creation of a LAK with a flexible authorization policy based on an IAK.

details of the LAK. The certificate and signature are then sent back
to the orchestrator for validation and assurance that the key has
the correct characteristics. In particular, the orchestrator verifies:
that the LAK was created following the correct template and was
generated using a solid and white-listed cryptographic algorithm,
that the proper cryptographic method is used to secure its private
part, that it is attributed as a restricted and non-migratable signing
key, and that it has a flexible authorization policy bound to the or-
chestrator’s public key. Finally, if everything holds, the orchestrator
signs a certificate for the LAK using its secret key, which it gives to
the prover node to show to verifiers to prove its LAK’s validity.

5.3.2 Secure NV PCR Creation. Like the creation of the LAK, Fig.
3 shows the creation of the NV PCR, where, instead of the orches-
trator, the node’s TEE is now appointed as the object’s authorizing
entity to ensure authentic measurements. The orchestrator begins
by preparing an object template that instructs the node’s TPMwhen
defining the NV object’s characteristics, e.g., that it should behave
like a PCR. This object template, together with an authorization
policy requiring signed authorization from the node’s TEE to mod-
ify (extend or delete) the object, an index to reference the created
NV object, and an initial value 𝑖𝑣 that should be initially extended
into the NV PCR, are then sent to the prover node. Given these
values, the prover first calls its TPM to create the NV PCR. Then,
to extend the initial value into the created NV PCR, which requires
authorization from the TEE, the prover starts a TPM session and
then passes that session’s nonce together with the initial value and
NV PCR index to a trusted application executing inside the Secure
World of its TEE. To authorize the prover to extend the NV PCR
only once and only with the correct value, the trusted application
composes a command parameter hash 𝑐𝑝𝐻𝑎𝑠ℎ to restrict its au-
thorization to a single TPM command and arguments, namely the
𝑁𝑉 _𝑒𝑥𝑡𝑒𝑛𝑑 command with the initial value and NV PCR index as
arguments. Then, to provide signed authorization for the 𝑐𝑝𝐻𝑎𝑠ℎ,
the trusted application signs an authorization hash 𝑎𝐻𝑎𝑠ℎ over the
𝑐𝑝𝐻𝑎𝑠ℎ and the prover’s session nonce using its secret key that
restricts the authorization only to the currently active session.

Note that if the trusted application could communicate directly
with the TPM (or we had chosen another isolation mechanism), we
would not necessarily need the command parameter hash. However,

it is impractical to communicate with the TPM directly from within
a trusted application due to their inherently small codebase and
limited APIs, and it would require a large chunk of the TPM software
stack (TSS) to manage an entire TPM session. Therefore, we instead
have the TEE authorize permission to extend the measurement into
the NV PCR, which can be outsourced to the Normal World since
it is nonreusable and cannot be used to extend incorrect values.

Given signed authorization from the TEE, the prover runs the
𝑃𝑜𝑙𝑖𝑐𝑦𝑆𝑖𝑔𝑛𝑒𝑑 command with the TEE’s signature, its active session
nonce, 𝑐𝑝𝐻𝑎𝑠ℎ, and a handle to the TEE’s public key. Assuming
the authorization was correctly signed, the 𝑃𝑜𝑙𝑖𝑐𝑦𝑆𝑖𝑔𝑛𝑒𝑑 command
updates the session’s policy digest and sets the session’s command
parameter hash to the authorized 𝑐𝑝𝐻𝑎𝑠ℎ, thus restricting which
command the prover can execute. Then, to extend the TEE’s NV
PCR, the prover runs 𝑁𝑉 _𝐸𝑥𝑡𝑒𝑛𝑑 , where, assuming the session’s
policy digest matches the NV PCR’s authorization policy and the
command arguments match the session’s command parameter hash,
the TPM will update the NV PCR with the provided initial value.
Afterward, to keep track of the value of the NV PCR, the prover
records the extension in its local mock PCR. Finally, similar to the
LAK creation process described in Section 5.3.1, the prover proves
that the NV PCR was created correctly by certifying it using its IAK,
which the orchestrator verifies by inspecting the signed certificate.

5.4 Configuration Update
Securely equipped with a LAK and an NV PCR, Fig. 4 shows how the
orchestrator can reliably approve policies that permit the prover to
use its LAK only if its current configuration is correct by predicating
policies on the authentic contents of the TEE’s NV PCR, as follows.

5.4.1 Calculating the Golden Hash. Let us assume that the orches-
trator wants to allow the prover to use its LAK only if its current
configuration is correct. To simplify the discussion, let us narrow
the scope of the considered configuration to a single configura-
tion file, whose unique filesystem location on the prover is @𝑐𝑜𝑛𝑓 .
To create such a policy, the orchestrator must first compute the
expected (trusted) value of the prover TEE’s NV PCR after it has
been extended with the correct configuration measurement. To
compute the expected value, the orchestrator computes a hash over
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TPM Prover 𝑰𝑫 Orchestrator
𝐼𝐴𝐾, tpk ℌ𝐼𝐴𝐾 ,ℌtpk 𝐼𝐴𝐾𝑝𝑢𝑏, tpk, 𝑡𝑚𝑝𝑙, 𝑖𝑑𝑥, 𝑖𝑣

𝑎𝑢𝑡ℎ𝑃𝑜𝑙 ← H(H(𝐶𝐶𝑃𝑜𝑙𝑖𝑐𝑦𝑆𝑖𝑔𝑛𝑒𝑑 ∥ tpk))
𝑖𝑑𝑥, 𝑡𝑚𝑝𝑙, 𝑎𝑢𝑡ℎ𝑃𝑜𝑙, 𝑖𝑣𝑖𝑑𝑥, 𝑡𝑚𝑝𝑙, 𝑎𝑢𝑡ℎ𝑃𝑜𝑙

TPM2_NV_DefineSpace
def 𝑁𝑉𝑖𝑑𝑥 with 𝑡𝑚𝑝𝑙 bound to 𝑎𝑢𝑡ℎ𝑃𝑜𝑙

start session for writing 𝑖𝑣 into 𝑖𝑑𝑥POLICY
TPM2_StartAuthSession

fresh POLICY session 𝑝𝑠
𝑝𝑠.𝑛 ←$ {0, 1}𝜆 ℌ𝑝𝑠 , 𝑛 call TEE to authorize writing of 𝑖𝑣 into 𝑖𝑑𝑥

TEE
{tpk, tsk}

𝑖𝑑𝑥, 𝑖𝑣, 𝑛 store 𝑖𝑑𝑥
𝑐𝑝𝐻𝑎𝑠ℎ ← H(𝐶𝐶𝑁𝑉 _𝐸𝑥𝑡𝑒𝑛𝑑 ∥ 𝑖𝑑𝑥

∥ 𝑖𝑑𝑥 ∥ len(𝑖𝑣) ∥ 𝑖𝑣)
𝑎𝐻𝑎𝑠ℎ ← H(𝑛 ∥ 𝑐𝑝𝐻𝑎𝑠ℎ)
Sig← Sign(tsk, 𝑎𝐻𝑎𝑠ℎ)

Sig, 𝑐𝑝𝐻𝑎𝑠ℎ

unlock write access to 𝑖𝑑𝑥ℌ𝑝𝑠 ,ℌtpk, Sig, 𝑛, 𝑐𝑝𝐻𝑎𝑠ℎ

TPM2_PolicySigned
Vf (𝑝𝑠.𝑛 = 𝑛)

Vf (Sig,H(𝑛 ∥ 𝑐𝑝𝐻𝑎𝑠ℎ), tpk)
𝑝𝑠.𝑝𝑜𝑙 ← H(H(𝐶𝐶𝑃𝑜𝑙𝑖𝑐𝑦𝑆𝑖𝑔𝑛𝑒𝑑 ∥ tpk))

𝑝𝑠.𝑐𝑝𝐻𝑎𝑠ℎ ← 𝑐𝑝𝐻𝑎𝑠ℎ

write 𝑖𝑣 into 𝑖𝑑𝑥ℌ𝑝𝑠 , 𝑖𝑑𝑥, 𝑖𝑣

TPM2_NV_Extend
Vf (𝑝𝑠.𝑝𝑜𝑙 = 𝑁𝑉𝑖𝑑𝑥 .𝑎𝑢𝑡ℎ𝑃𝑜𝑙)

Vf (𝑝𝑠.𝑐𝑝𝐻𝑎𝑠ℎ = H(𝐶𝐶𝑁𝑉 _𝐸𝑥𝑡𝑒𝑛𝑑 ∥ 𝑖𝑑𝑥
∥ 𝑖𝑑𝑥 ∥ len(𝑖𝑣) ∥ 𝑖𝑣))

𝑁𝑉𝑖𝑑𝑥 ← H(𝑁𝑉𝑖𝑑𝑥 ∥ 𝑖𝑣)
store𝑚𝑃𝐶𝑅 ← H(0 ∥ 𝑖𝑣)
finally certify the creation of 𝑖𝑑𝑥ℌ𝐼𝐴𝐾 , 𝑖𝑑𝑥

TPM2_NV_Certify
Sig← Sign(𝐼𝐴𝐾𝑝𝑟𝑖𝑣, 𝑐𝑒𝑟𝑡𝑖𝑑𝑥 ) Sig, 𝑐𝑒𝑟𝑡𝑖𝑑𝑥 Sig, 𝑐𝑒𝑟𝑡𝑖𝑑𝑥 store𝑚𝑃𝐶𝑅 ← H(0 ∥ 𝑖𝑣)

Vf (Sig, 𝑐𝑒𝑟𝑡𝑖𝑑𝑥 , 𝐼𝐴𝐾𝑝𝑢𝑏)
Vf ( {𝑖𝑑𝑥, 𝑡𝑚𝑝𝑙,𝑚𝑃𝐶𝑅, 𝑎𝑢𝑡ℎ𝑃𝑜𝑙 } ∈ 𝑐𝑒𝑟𝑡𝑖𝑑𝑥 )

Figure 3: Creation of a NV PCR controlled by the prover TEE’s public key.

the contents of the currently correct version of the prover’s con-
figuration file, denoted 𝑐𝑜𝑛𝑓 , including its known location @𝑐𝑜𝑛𝑓 ,
inode number 𝑖𝑛𝑜 , and current inode version 𝑖𝑣𝑒𝑟 , which it extends
into its local mock PCR. Note that by including (committing to) the
file location, we effectively prevent any adversary from feeding the
prover’s TEE with a spoofed path since the TEE’s measurement
would differ. Similarly, the inclusion of the inode number and ver-
sion ensure that any unexpected deletion or modification of the
configuration file is detected. Finally, the orchestrator computes
a unique configuration identifier 𝐶𝐼𝐷 as a hash over the current
value of the mock PCR and the node’s identifier (𝐼𝐷).

5.4.2 Approving the Policy. To approve a policy for the node’s LAK
that is unique to the current configuration identifier 𝐶𝐼𝐷 and re-
quires that the TEE’s NV PCR contains the currently expected value,
the orchestrator creates an approval policy 𝑎𝑃𝑜𝑙 that has two condi-
tions, namely that the node presents: (a) signed authorization from
the orchestrator with explicit mention of𝐶𝐼𝐷 and (b) that the TEE’s
NV PCR contains the expected value. To authorize the approved
policy, the orchestrator signs an authorization hash 𝑎𝐻𝑎𝑠ℎ over
the approved policy and a reference to the node’s 𝐼𝐷 , such that
the approved policy will work (match) only with the authorization
policy of the specific node’s LAK. Note here that the purpose of the
first part (a) of the approved policy is to allow the orchestrator to
enforce a leasing mechanism on its approved policies. For example,

to permit the node to satisfy an approved policy 𝑎𝑃𝑜𝑙 whose part (a)
references some 𝐶𝐼𝐷 , the orchestrator must sign an authorization
hash that references 𝐶𝐼𝐷 . Furthermore, by including an expiration
in the authorization hash, the node’s TPMwill revoke the authoriza-
tion after a set time, thus requiring the node to request a new “lease”
from the orchestrator to continue satisfying the approved policy.
Finally, because the orchestrator controls which 𝐶𝐼𝐷 it authorizes
and presumably chooses the most recent, we effectively castrate
any adversary attempting to lock any prover in a “good” state.

5.4.3 Configuration Remeasurement. When a new policy has been
approved, the orchestrator sends it together with the location of
the measured configuration file(s) and the approved policy’s signed
authorization hash to the prover node. The node then uses its TPM
to verify the signature with a handle to the orchestrator’s public key.
Since signature verification is expensive, and the node must prove
the approved policy’s authenticity every time it attempts to satisfy it
to use its LAK, the TPM outputs a ticket if the signature verification
was successful, where the ticket is supplied as evidence to the TPM
that it has already verified the approved policy’s authenticity.

Then, to remeasure its configuration (or part thereof), the prover
starts a new TPM session and passes the session’s nonce together
with the configuration location in a call to the trusted application
executing inside the Secure World of its TEE. Then, using its ac-
curate tracer mechanism, the trusted application: (i) retrieves the
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TPM Prover 𝑰𝑫 Orchestrator
opk, tpk ℌopk,ℌtpk,𝑚𝑃𝐶𝑅 {opk, osk}, 𝐼𝐷,𝑚𝑃𝐶𝑅, 𝑖𝑑𝑥, 𝑐𝑜𝑛𝑓 , 𝑖𝑛𝑜, 𝑖𝑣𝑒𝑟, 𝑒𝑥𝑝

ℎ ← H(𝑐𝑜𝑛𝑓 ∥@𝑐𝑜𝑛𝑓 ∥ 𝑖𝑛𝑜 ∥ 𝑖𝑣𝑒𝑟 )
update𝑚𝑃𝐶𝑅 ← H(𝑚𝑃𝐶𝑅 ∥ ℎ)
update𝐶𝐼𝐷 ← H(𝑚𝑃𝐶𝑅 ∥ 𝐼𝐷)
𝑎𝑃𝑜𝑙 ← H(H(𝐶𝐶𝑃𝑜𝑙𝑖𝑐𝑦𝑆𝑖𝑔𝑛𝑒𝑑 ∥ opk) ∥𝐶𝐼𝐷)
𝑎𝑃𝑜𝑙 ← H(𝑎𝑃𝑜𝑙 ∥𝐶𝐶𝑃𝑜𝑙𝑖𝑐𝑦𝑁𝑉 ∥H(𝑚𝑃𝐶𝑅) ∥ 𝑖𝑑𝑥)
𝑎𝐻𝑎𝑠ℎ ← H(𝑎𝑃𝑜𝑙 ∥ 𝐼𝐷)
Sig← Sign(osk, 𝑎𝐻𝑎𝑠ℎ)

@𝑐𝑜𝑛𝑓 , 𝑎𝑃𝑜𝑙, Sig, 𝑎𝐻𝑎𝑠ℎℌopk, Sig, 𝑎𝐻𝑎𝑠ℎ

TPM2_VerifySignature
Vf (Sig, 𝑎𝐻𝑎𝑠ℎ, opk)

generate 𝑡𝑘𝑡 𝑡𝑘𝑡 store 𝑡𝑘𝑡 that 𝑎𝑃𝑜𝑙 is authorized by opk
store approved policy 𝑎𝑃𝑜𝑙
start session for writing measurement into 𝑖𝑑𝑥POLICY

TPM2_StartAuthSession
fresh POLICY session 𝑝𝑠

𝑝𝑠.𝑛 ←$ {0, 1}𝜆 ℌ𝑝𝑠 , 𝑛 call TEE to measure config and authorize write

TEE
{tpk, tsk}, 𝑖𝑑𝑥

@𝑐𝑜𝑛𝑓 , 𝑛 (𝑐, 𝑖𝑛𝑜, 𝑖𝑣𝑒𝑟 ) ← 𝔗 (@𝑐𝑜𝑛𝑓 )
ℎ ← H(𝑐 ∥@𝑐𝑜𝑛𝑓 ∥ 𝑖𝑛𝑜 ∥ 𝑖𝑣𝑒𝑟 )
𝑐𝑝𝐻𝑎𝑠ℎ ← H(𝐶𝐶𝑁𝑉 _𝐸𝑥𝑡𝑒𝑛𝑑 ∥ 𝑖𝑑𝑥

∥ 𝑖𝑑𝑥 ∥ len(ℎ) ∥ ℎ)
𝑎𝐻𝑎𝑠ℎ ← H(𝑛 ∥ 𝑐𝑝𝐻𝑎𝑠ℎ)
Sig′ ← Sign(tsk, 𝑎𝐻𝑎𝑠ℎ)

Sig′, 𝑐𝑝𝐻𝑎𝑠ℎ,ℎ

unlock write access to 𝑖𝑑𝑥ℌ𝑝𝑠 ,ℌtpk, Sig′, 𝑛, 𝑐𝑝𝐻𝑎𝑠ℎ

TPM2_PolicySigned
Vf (𝑝𝑠.𝑛 = 𝑛)

Vf (Sig′,H(𝑛 ∥ 𝑐𝑝𝐻𝑎𝑠ℎ), tpk)
𝑝𝑠.𝑝𝑜𝑙 ← H(H(𝐶𝐶𝑃𝑜𝑙𝑖𝑐𝑦𝑆𝑖𝑔𝑛𝑒𝑑 ∥ tpk))

𝑝𝑠.𝑐𝑝𝐻𝑎𝑠ℎ ← 𝑐𝑝𝐻𝑎𝑠ℎ

write ℎ into 𝑖𝑑𝑥ℌ𝑝𝑠 , 𝑖𝑑𝑥,ℎ

TPM2_NV_Extend
Vf (𝑝𝑠.𝑝𝑜𝑙 = 𝑁𝑉𝑖𝑑𝑥 .𝑎𝑢𝑡ℎ𝑃𝑜𝑙)

Vf (𝑝𝑠.𝑐𝑝𝐻𝑎𝑠ℎ = H(𝐶𝐶𝑁𝑉 _𝐸𝑥𝑡𝑒𝑛𝑑 ∥ 𝑖𝑑𝑥
∥ 𝑖𝑑𝑥 ∥ len(ℎ) ∥ ℎ))

𝑁𝑉𝑖𝑑𝑥 ← H(𝑁𝑉𝑖𝑑𝑥 ∥ ℎ)
update𝑚𝑃𝐶𝑅 ← H(𝑚𝑃𝐶𝑅 ∥ ℎ)
start session to get lease for part (A) of 𝑎𝑃𝑜𝑙POLICY

TPM2_StartAuthSession
fresh POLICY session 𝑝𝑠

𝑝𝑠.𝑛 ←$ {0, 1}𝜆 ℌ𝑝𝑠 , 𝑛 𝑛

Lease Renewal
𝑎𝐻𝑎𝑠ℎ ← H(𝑛 ∥ 𝑒𝑥𝑝 ∥𝐶𝐼𝐷)
Sig← Sign(osk, 𝑎𝐻𝑎𝑠ℎ)Sig, 𝑒𝑥𝑝,𝐶𝐼𝐷submit lease to get ephemeral ticketℌ𝑝𝑠 ,ℌopk, Sig, 𝑛, 𝑒𝑥𝑝,𝐶𝐼𝐷

TPM2_PolicySigned
Vf (𝑝𝑠.𝑛 = 𝑛)

Vf (Sig,H(𝑛 ∥ 𝑒𝑥𝑝 ∥𝐶𝐼𝐷), opk)
generate 𝑡𝑘𝑡 ′, which expires in 𝑒𝑥𝑝 𝑡𝑘𝑡 ′ store 𝑡𝑘𝑡 ′ that lease for𝐶𝐼𝐷 is authorized

store policy (configuration) reference𝐶𝐼𝐷

Part (A)
Part (B)

Figure 4: To enforce a new configuration state on a prover, the orchestrator approves a policy for the prover’s LAK that is (i)
restricted to the new state and (ii) requires time-limited authorization to use.

content and inode information about the requested configuration
file and (ii) computes a hash (measurement) over the file’s contents,
its filesystem location, and the associated inode number and version.
Finally, similarly to how it authorized extending an initial value into
its NV PCR as described in Section 5.3.2, the trusted application cre-
ates an authorization hash to authorize a one-time policy to extend
the measurement into its NV PCR, which the prover subsequently
uses to update the NV PCR and also its mock PCR.

5.4.4 Leasing. Finally, depending on the update frequency and the
considered expiration time for leases, the prover must repeatedly

request new leases from the orchestrator to continue satisfying part
(a) of the currently approved policy. To get a new lease, the prover
must start a new TPM session and send the session’s nonce to the
orchestrator, who then signs an authorization hash that includes the
session nonce, some expiration time, and the current configuration
identifier𝐶𝐼𝐷 . These values together with the signed authorization
hash are then returned to the prover who, in the same TPM session,
must pass them in a call to 𝑃𝑜𝑙𝑖𝑐𝑦𝑆𝑖𝑔𝑛𝑒𝑑 , where, if everything holds,
a self-expiring ticket will be returned that proves to the TPM that
the orchestrator signed these specific arguments, which can be used
to temporarily satisfy part (a) of the currently approved policy.
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5.5 Oblivious Remote Attestation
When challenging a prover with a nonce, Fig. 5 shows how the
prover attempts to satisfy an approved policy 𝑎𝑃𝑜𝑙 to use its LAK to
sign the nonce. To satisfy 𝑎𝑃𝑜𝑙 , the prover starts a new policy ses-
sion, over which it runs (i) 𝑃𝑜𝑙𝑖𝑐𝑦𝑇𝑖𝑐𝑘𝑒𝑡 with a ticket proving that
it has signed authorization from the orchestrator, and (ii) 𝑃𝑜𝑙𝑖𝑐𝑦𝑁𝑉
with the index of its TEE’s NV PCR and the expected value, which
it maintains in its mock PCR. If the ticket is correct and has not
expired, the TPM updates the session’s policy digest with a value
corresponding to part (a) of 𝑎𝑃𝑜𝑙 . Similarly, if the expected value
matches the contents in (ii), the TPM updates the session’s policy
digest with a value corresponding to part (b) of 𝑎𝑃𝑜𝑙 . Finally, as-
suming that the session’s policy digest matches 𝑎𝑃𝑜𝑙 , the prover
can run 𝑃𝑜𝑙𝑖𝑐𝑦𝐴𝑢𝑡ℎ𝑜𝑟𝑖𝑧𝑒 with its 𝐼𝐷 , 𝑎𝑃𝑜𝑙 , the orchestrator’s pub-
lic key, and a ticket proving 𝑎𝑃𝑜𝑙 was signed by the orchestrator.
If everything holds, the TPM replaces the session’s policy digest
with the “flexible policy digest”, which specifies the orchestrator’s
public key as the authorizing authority and references the node’s
𝐼𝐷 . Assuming the session’s policy digest matches the LAK’s autho-
rization policy, the prover can sign the nonce using its LAK and
subsequently send the signature and its LAK certificate back to the
verifier in a single pass, where, if everything holds, the verifier is
convinced that the prover is currently in a correct state.

6 EMPIRICAL PERFORMANCE EVALUATION
6.1 Implementation and Experimental Setup
We implemented our protocols described in Section 5 in C++ with
IBM’s TPM Software Stack (TSS) v1.6.0 [6] and OpenSSL v1.1.1i,
compiled using the GNU GCC compiler. We considered only ellip-
tic curve (EC) keys and used SHA256 exclusively as our hashing
function H. To determine our scheme’s performance when consid-
ering nodes equipped with either a discrete (hardware) or software
TPM, we executed all of our protocols on two platforms: (P1) a
platform with a 3.6 GHz AMD Ryzen 7 3700X processor running
the IBM’s software TPM v1637 [6], and (P2) a Raspberry Pi 4 Model
B platform with a 1.5 GHz ARM Cortex-A72 processor running
the Raspbian (buster) operating system equipped with a TPM 2.0
compliant OPTIGA hardware TPM SLB9670.

6.2 Performance Benchmarks
Our performance results are summarized in Table 1, where, for each
subprotocol, we show: how long it takes to complete the protocol
(first row) and how much time it takes for the completion of each
of the TPM commands when executed against either a hardware or
software TPM (next rows). Note that the timings are produced using
C++11’s chrono library’s system clock, and each timing statistic
also includes the time spent by the TSS to perform the necessary
processing of our commands and its internal session management.
Furthermore, in the case of the hardware TPM, each timing statistic
also includes any Low Pin Count (LPC) bus delay.

Note that the orchestrator’s verification of the created Local
Attestation Key (LAK) and the created NV PCR, and the verifier’s
verification of the signed nonce are all omitted since these verifi-
cations do not necessarily require interaction with the TPM and
are near-instant operations, i.e., taking an average of ≈ 0.5 ms

Table 1: Performance of the protocols over 50 iterations. The
table shows the average time (and standard deviation, 𝝈 ) to
run each of the subprotocols at the prover when considering
a software TPM (P1) and a hardware TPM (P2).

Subprotocol Avg. ms (P1) Avg. ms (P2)

LAK creation 6.86 (𝜎 ≈ 0.39) 405.93 (𝜎 ≈ 1.74)
TPM2_Create 2.76 (𝜎 ≈ 0.43) 202.97 (𝜎 ≈ 0.81)
TPM2_Load 2.98 (𝜎 ≈ 0.42) 56.61 (𝜎 ≈ 1.79)
TPM2_CertifyCreation 1.12 (𝜎 ≈ 0.33) 146.35 (𝜎 ≈ 2.29)
Attaching a NV PCR 10.96 (𝜎 ≈ 0.49) 379.68 (𝜎 ≈ 0.84)
TPM2_NV_DefineSpace 2.52 (𝜎 ≈ 0.50) 26.67 (𝜎 ≈ 0.81)
TPM2_StartAuthSession 1.52 (𝜎 ≈ 0.52) 31.65 (𝜎 ≈ 0.63)
TPM2_PolicySigned 0.90 (𝜎 ≈ 0.30) 163.50 (𝜎 ≈ 0.82)
TPM2_NV_Extend 4.82 (𝜎 ≈ 0.65) 82.68 (𝜎 ≈ 1.21)
TPM2_NV_Certify 1.20 (𝜎 ≈ 0.40) 75.18 (𝜎 ≈ 0.61)
Measurement update 10.59 (𝜎 ≈ 0.45) 589.10 (𝜎 ≈ 0.83)
TPM2_VerifySignature 0.93 (𝜎 ≈ 0.26) 116.12 (𝜎 ≈ 0.71)
TPM2_StartAuthSession (X2) 3.04 (𝜎 ≈ 0.52) 63.30 (𝜎 ≈ 0.63)
TPM2_PolicySigned (X2) 1.80 (𝜎 ≈ 0.30) 327.00 (𝜎 ≈ 0.82)
TPM2_NV_Extend 4.82 (𝜎 ≈ 0.65) 82.68 (𝜎 ≈ 1.21)
ORA 9.35 (𝜎 ≈ 3.05) 335.00 (𝜎 ≈ 0.85)
TPM2_StartAuthSession 1.52 (𝜎 ≈ 0.52) 31.65 (𝜎 ≈ 0.63)
TPM2_PolicyTicket 1.63 (𝜎 ≈ 0.46) 43.40 (𝜎 ≈ 0.73)
TPM2_PolicyNV 0.24 (𝜎 ≈ 0.43) 61.96 (𝜎 ≈ 0.63)
TPM2_PolicyAuthorize 0.18 (𝜎 ≈ 0.38) 69.13 (𝜎 ≈ 0.58)
TPM2_Sign 5.78 (𝜎 ≈ 6.77) 129.86 (𝜎 ≈ 1.39)

on the first platform and 2.4 ms on average on the second plat-
form, respectively. While it is clear from the empirical results that
a hardware TPM, whose focus is solely on security, is a bottleneck
for efficiency, note that it can provide security guarantees against
stronger adversaries than a software TPM.

Regarding our protocols, note that the first two protocols, i.e., the
protocols for creating a LAK and the protocol for creating an NV
PCR, need only be executed once for each node due to the flexibility
of their authorization policies; thus, their performance is negligible.
After that, the most time-consuming protocol is the configuration
update protocol executed between a domain orchestrator and a
node. However, note that the reported timings include the time for
(i) verifying the orchestrator’s newly approved policy, (ii) extending
the node’s measurements into the TEE’s NV PCR, and (iii) using a
lease from the orchestrator to get a ticket to satisfy the first part of
the newly approved policy as shown in Fig. 4. If we only consider
the time to get a new ticket for a new lease, which only requires one
𝑆𝑡𝑎𝑟𝑡𝐴𝑢𝑡ℎ𝑆𝑒𝑠𝑠𝑖𝑜𝑛 command and one 𝑃𝑜𝑙𝑖𝑐𝑦𝑆𝑖𝑔𝑛𝑒𝑑 command, then
the time is only ≈ 2.42 ms using the software TPM and ≈ 195.15
ms using the hardware TPM. Finally, the ORA protocol, which
nodes execute among themselves, takes a prover < 0.4 seconds to
complete on a hardware TPM and ≈ 10 ms with a software TPM.

7 SECURITY PROPERTIES
Unforgeable Configuration Integrity. Our scheme guarantees,
under the assumptions outlined in Section 4.1, that any unautho-
rized modifications of a node’s configuration files that are con-
sidered as part of its Trusted Computing Base (TCB) are detected
immediately once the latest issued lease has expired. Specifically,
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TPM Prover 𝑰𝑫 Verifier
𝐿𝐴𝐾 ℌ𝐿𝐴𝐾 ,

{
Sig′, 𝑐𝑒𝑟𝑡 ′

𝐿𝐴𝐾

}
, opk, opk

𝑎𝑃𝑜𝑙, 𝑡𝑘𝑡, 𝑡𝑘𝑡 ′,𝐶𝐼𝐷,𝑚𝑃𝐶𝑅

𝑛 ←$ {0, 1}𝜆
𝑛start policy session for satisfying the

approved policy 𝑎𝑃𝑜𝑙 to use the LAKPOLICY
TPM2_StartAuthSession

fresh POLICY session 𝑝𝑠 ℌ𝑝𝑠

show ticket for part (A) of 𝑎𝑃𝑜𝑙ℌ𝑝𝑠 , opk, 𝑡𝑘𝑡 ′,𝐶𝐼𝐷

TPM2_PolicyTicket
check 𝑡𝑘𝑡 ′

𝑝𝑠.𝑝𝑜𝑙 ← H(H(𝑝𝑠.𝑝𝑜𝑙 ∥𝐶𝐶𝑃𝑜𝑙𝑖𝑐𝑦𝑆𝑖𝑔𝑛𝑒𝑑 ∥ opk) ∥𝐶𝐼𝐷)
assert that 𝑖𝑑𝑥 has the expected
value to satisfy part (B) of 𝑎𝑃𝑜𝑙ℌ𝑝𝑠 , 𝑖𝑑𝑥,𝑚𝑃𝐶𝑅

TPM2_PolicyNV
Vf (𝑁𝑉𝑖𝑑𝑥 =𝑚𝑃𝐶𝑅)

𝑝𝑠.𝑝𝑜𝑙 ← H(𝑝𝑠.𝑝𝑜𝑙 ∥𝐶𝐶𝑃𝑜𝑙𝑖𝑐𝑦𝑁𝑉 ∥H(𝑚𝑃𝐶𝑅) ∥ 𝑖𝑑𝑥)
attempt to get LAK’s 𝑎𝑢𝑡ℎ𝑃𝑜𝑙ℌ𝑝𝑠 , 𝑎𝑃𝑜𝑙, 𝐼𝐷, opk, 𝑡𝑘𝑡

TPM2_PolicyAuthorize
check 𝑡𝑘𝑡

Vf (𝑝𝑠.𝑝𝑜𝑙 = 𝑎𝑃𝑜𝑙)
𝑝𝑠.𝑝𝑜𝑙 ← H(H(𝐶𝐶𝑃𝑜𝑙𝑖𝑐𝑦𝐴𝑢𝑡ℎ𝑜𝑟𝑖𝑧𝑒 ∥ opk) ∥ 𝐼𝐷)

attempt to sign nonce 𝑛 with LAKℌ𝑝𝑠 ,ℌ𝐿𝐴𝐾 , 𝑛

TPM2_Sign
Vf (𝑝𝑠.𝑝𝑜𝑙 = 𝐿𝐴𝐾.𝑎𝑢𝑡ℎ𝑃𝑜𝑙)

Sig← Sign(𝐿𝐴𝐾𝑝𝑟𝑖𝑣, 𝑛) Sig Sig,
{
Sig′, 𝑐𝑒𝑟𝑡 ′

𝐿𝐴𝐾

}
Vf (Sig′, 𝑐𝑒𝑟𝑡 ′

𝐿𝐴𝐾
, opk)

Vf (Sig, 𝑛, 𝐿𝐴𝐾𝑝𝑢𝑏)

Figure 5: The Oblivious Remote Attestation protocol, where a verifier makes initial contact to a prover and challenges it to
prove its configuration integrity by signing a nonce using a LAK certified by the prover’s orchestrator.

since the TPMwill revoke the signed authorization upon expiration,
the node must request a new lease to use its LAK, and that lease
will require the node’s current configuration to be correct.
Secure Enrollment. Our scheme ensures controlled LAK enroll-
ment, where a prover node’s LAK is guaranteed to reside in the
same, authentic TPM as the certified Initial Attestation Key (IAK).
Measurement Authenticity. Our scheme ensures that all config-
uration measurements recorded in a TEE’s NV PCR are authentic.
Implicit Revocation. Our scheme ensures that any node has its
ability to use its LAK implicitly revoked immediately after its latest
lease expires unless its orchestrator decides to keep it alive.
Verification is zero-knowledge. Most importantly, our scheme
ensures that a verifier, who trusts a prover node’s orchestrator, can
determine that node’s correctness without any knowledge about
the node’s configuration, and our oblivious attestation protocol
guarantees that absolutely no information can be inferred from the
attestation process about the prover node’s configuration.

8 CONCLUSIONS
We presented ZEKRO, a novel, scalable, efficient, and effective or-
chestration scheme that utilizes state-of-the-art trusted computing
technologies to facilitate the secure orchestration of a multitude of
nodes over multi-domain networks while allowing nodes to partake
in privacy-preserving remote attestation activities to determine the
configuration correctness of each other.
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