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ABSTRACT

The recent prevalence of microservice-based applications that leverage the capabilities offered by cloud and
edge computing, has given rise to highly complex services which create new challenges for efficient monitoring
and orchestration. In today’s cloud environments, service monitoring is typically premised on technical Quality
of Service (QoS) performance metrics, rather than on Quality of Experience (QoE) as perceived by users. In this
paper, we posit that user feedback should also play a significant role in cloud service monitoring. However,
we explicitly set a prerequisite: the trustworthiness of user feedback should not be considered guaranteed.
Therefore, we have developed Feed4Cloud, the first system to complement QoS monitoring with exclusively
trustworthy user feedback for QoE-aware cloud service management. The novelty of our solution lies in two
key aspects: First, the establishment of an intermediate verification layer that validates user feedback before
it is injected into the orchestration engine. The second key aspect is the use of Blockchain in this layer, as a
means to record user feedback in a decentralized and secure way, aiming to achieve non-repudiation and ensure
its integrity. In this paper, we present the architectural details of the Feed4Cloud prototype, while placing a
particular focus on aspects regarding trustworthy evaluation of service performance. Furthermore, we provide
evaluation results that validate the effectiveness of the introduced verification layer and demonstrate that
QoE-based service evaluation can consistently be conducted in a trustworthy manner across a wide range of
system conditions and user behaviors.

1. Introduction

1.1. Motivation

(QoE). Typically, monitoring the performance and SLO compliance of
cloud services is based solely on objective QoS measurements (e.g. re-
sponse time, packet losses, jitter, etc.) obtained by relevant monitoring
tools [1]. Consequently, important subjective aspects related to user

In today’s highly distributed cloud and edge computing environ-
ments, there is a surge in the popularity of microservice-based applica-
tions, which however call for advanced monitoring and orchestration
solutions. In common cloud settings, services are expected to meet the
agreed-upon Quality of Service (QoS) requirements that correspond
to specific Service Level Objectives (SLOs). Those SLOs are defined
at associated Service Level Agreements (SLAs), i.e. technical services’
performance contracts between the service provider and the client that
set forth the terms of the transaction between the two parties. To
be able to meet the stipulatory requirements, service providers need
to monitor and configure their cloud services in a cost-efficient way,
which, however, allows for providing a high user Quality of Experience

experience, are neglected. Hence, the effectiveness of most monitoring
tools is subject to an inherent lack of QoE-related information since the
measured QoS does not always accurately reflect the users’ perceived
QoE. This stands in stark contrast to the ITU-T series of standards,
namely the ITU-T Recommendations (ITU-T Recs), including ITU-T
P.10 [2], which defines QOE as “the overall acceptability of an application
or service, as perceived subjectively by the end user” and, thus explicitly
differentiates it from QoS.

Therefore, considering that user QoE might be influenced by non-
technical factors (e.g. cost, personal preferences, etc.), allowing users
to communicate their QoE perception becomes essential to capture the

* Corresponding author at: ATHENA Research & Innovation Center, Xanthi, Greece.
E-mail addresses: ikapetan@athenarc.gr (I.A. Kapetanidou), asarros@ubitech.eu (C.-A. Sarros), gledakis@ubitech.eu (G. Ledakis), vtsaousi@ee.duth.gr

(V. Tsaoussidis).

https://doi.org/10.1016/j.future.2024.107532

Received 24 November 2023; Received in revised form 10 September 2024; Accepted 12 September 2024


https://www.elsevier.com/locate/fgcs
https://www.elsevier.com/locate/fgcs
mailto:ikapetan@athenarc.gr
mailto:asarros@ubitech.eu
mailto:gledakis@ubitech.eu
mailto:vtsaousi@ee.duth.gr
https://doi.org/10.1016/j.future.2024.107532

LA. Kapetanidou et al.

actual service performance better. Despite the growing importance of
incorporating QoE monitoring into cloud service monitoring — particu-
larly with the rise of advanced, often interactive applications — little
effort has been made in that direction [3]. Although certain prior
works have explored user-provided feedback as a means to raise QoE
awareness in cloud services performance monitoring, they accept user
feedback regardless of its trustworthiness (e.g. as is NORMA [4]) or
propose solutions wherein the user feedback is collected and stored in
a centralized way, thus introducing single-points-of-failure (e.g. [5,6]).
Recent studies also highlight the need for novel mechanisms to assess
the accuracy of opinion-based user feedback to ensure enhanced cloud
service delivery, since this remains an open research issue [7].

1.2. Contributions

Feed4Cloud aims to fill this gap in cloud service monitoring by
seamlessly incorporating user-generated feedback as an integral part
of the monitoring plane to improve service orchestration. For instance,
this can be achieved by using the QoE information for detecting SLA
breaches or initiating QoE-driven elasticity actions. Needless to say,
QOE insights aim to serve as an additional monitoring aspect to rein-
force service monitoring rather than replace conventional QoS.

In this light, Feed4Cloud advances beyond the state-of-the-art in
two distinct ways: First of all, by employing well-suited models to
validate the provided feedback and allow only for trustworthy rat-
ings to be embedded into the orchestration loop. To realize this, we
propose an intermediate verification layer, as illustrated in Fig. 1,
that evaluates the trustworthiness of the QoE information and filters
out any suspicious data, instead of directly feeding the orchestrator
with the raw feedback. The verification process is achieved by using
pertinent algorithms to correlate the measured QoS with the expected
QoE and compare it against the submitted QoE feedback, aiming to
identify unjustifiable conflicts. Building upon the verification result,
Feed4Cloud utilizes a reputation model to assess the credibility of
the feedback-providing users and the quality of the cloud services.
To further consolidate our system in this regard, our solution ensures
that user feedback is collected in a transparent manner while ensuring
its auditability. To this end, Feed4Cloud leverages Blockchain as a
key enabling technology to record user feedback. This is the second
innovative aspect of our approach. We claim that the benefits of
using Blockchain for the overall system are straightforward: Firstly,
it innately guarantees the immutability of the feedback history, thus
facilitating holding users accountable for their feedback since they can
neither alter their ratings to manipulate the evaluation system nor
question the ratings’ authenticity. Secondly, we ensure that the QoE
feedback is auditable since it is timestamped and traceable; this allows
the reputation management system to consider only ratings that can
be linked with verifiable QoE in the reputation evaluation. Lastly, the
recorded feedback can be used by different models to perform QoE
verification and service quality evaluation in a decentralized way, while
allowing reasoning about the models’ results. This means that it is
feasible for each evaluation service to employ a different evaluation
model but still, its output can be validated based on the shared collected
ratings. In general, storing the user feedback in a distributed ledger
ensures certain properties (integrity, non-repudiation, etc.) even if the
blockchain nodes to which the feedback is sent are operated by differ-
ent parties. Overall, Feed4Cloud seeks to bring together user feedback
trustworthiness, reputation management and Blockchain technology,
aiming at advanced QoE-aware cloud service management. To the
best of our knowledge, Feed4Cloud is the first solution to incorporate
user-generated, yet evidently trustworthy QoE feedback to complement
QoS information in cloud service monitoring. These enhanced moni-
toring capabilities can improve the management and orchestration of
distributed microservice-based applications, enhancing the orchestra-
tion engine’s feedback loop with user-provided information. This can
potentially improve the orchestrator’s deployment decisions such as
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Fig. 1. Feed4Cloud conceptual layers.

(micro-)service placement, scaling, etc. In this context, the design and
prototype Feed4Cloud implementation are thoroughly presented. In ad-
dition, a comprehensive evaluation of the reputation-based verification
layer is provided, considering both normal and degraded QoE service
performance, as well as different honest and dishonest user practices.

1.3. Paper organization

The rest of the paper is organized as follows: Section 2 provides an
overview of the state-of-the-art of user feedback-aware and blockchain-
assisted cloud monitoring. In Sections 3 and 4, we delineate the design
primitives and the Feed4Cloud main components, respectively, while in
Section 5 we delve into the implementation details. Then, in Section 6
we present our real-world deployment, along with extensive evaluation
results of the intermediate layer mechanisms. Finally, in Section 7 we
discuss Feed4Cloud’s reputation system security specifics and propose
potential real-world use cases and future extensions.

2. Related work

In this section, we compare our proposed Feed4Cloud system with
related scientific works in terms of our two main novelty pillars,
i.e. the incorporation of verified user QoE feedback in the cloud mon-
itoring process and leveraging blockchain to assist trustworthy QoE
monitoring.

2.1. User QoE-related feedback in cloud monitoring

The integration of QoE-related information has been investigated in
various application domains in the Cloud-to-Edge continuum, ranging
from cloud- or edge-hosted multimedia [8,9] or gaming services [10]
to Internet of Things (IoT)-based clouds [5,11], or even in the context
of the 5G networks [12,13].

This topic is also being actively investigated by the Qualinet Work-
ing Group 1 Task Force on ‘“Managing Web and Cloud QoE” [14],
dedicated to bringing QoE closer to practical applications by providing
workable QoE models to be integrated into cross-layer network/ap-
plication management schemes, Web applications and cloud service
provisioning.

In this context, QoS-to-QoE correlation models have been developed
to accurately assess user experience based on service performance,
the most notable [15] being the exponential interdependency of QoE
and QoS [16-18], also known as IQX hypothesis, and the logarithmic
relationship [19], as recommended by ITU-T. Although QoS to QoE
mapping has been used in related works for cloud service evalua-
tion [4,8,12], only [8] specifies the mapping function being used,
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i.e. ITU-T P.1203. Still, as of now QoS to QoE mapping has been lever-
aged as a means to automatically infer user experience. In contrary,
in Feed4Cloud, we take a human-in-the-loop approach because user-
provided feedback can capture user experience more accurately and
correlate QoS to QoE aiming to confirm their reasonability. To this end,
we choose to employ the exponential IQX hypothesis because it has
been found to be superior to the logarithmic mapping [15].

However, the majority of related works does not consider map-
ping QoS to QoE. Instead, they mostly prefer using QoE input as a
completely independent criterion [5,6,9,13,20-29]. In some cases [6,9,
21,22,24,27-30] even metrics totally irrelevant from measurable QoS
are aggregated into the evaluation model. For instance, [21] assesses
user experience based on document readability, support satisfaction
and operability and combines the result with technical factors such as
CPU utilization and network latency. Similarly, [28] considers metrics
such as availability and price. Although such metrics offer further
insights, they normally are influenced by individual user requirements
and preferences [9,20,21,24,25], thus being objective and difficult to
validate. In contrast, [11] relies solely on QoS-related feedback, thus
requiring methods such as feedback similarity to ensure its reliability.
However such methods are innately prone to shilling attacks' [31,32].
Among the user feedback-based related solutions, several factor such
information into the service evaluation without even employing any
measures to assess its validity [13,20] or without considering the user
credibility throughout such process [6,13,20]. Conversely, those two
constitute essential features of Feed4Cloud as they increase the overall
evaluation reliability [5]. User feedback trustworthiness evaluation in
the cloud has been thoroughly studied by the research community.
Related works normally use mathematical models to detect fake feed-
back. The most widely used methods involve computing the similarity
between the feedback provided by a specific user with the feedback of
other users [6,11,20,25], computing weighted scores to minimize the
impact of inconsistent rating behaviors [26,27], using fuzzy logic to
incorporate user opinions into the service evaluation [21,29] or cal-
culating the distance between subjective user feedback from objective
QoS assessments to determine user feedback trustworthiness [5,33].

Therefore, although prior works have already highlighted the im-
portance of user feedback in service evaluation, none considers user
experience in such a way that it can be reliably verified, i.e. by
correlating it with objective, measurable criteria. Feed4Cloud endeav-
ors to rigorously bind it to monitored QoS through well-established
correlation models to inject subjective, yet unquestionable insights into
this operation.

Using feedback verification results to compute users’ credibility
and determine the impact of their feedback in the reputation score
evaluation accordingly, constitutes another commonly used methodol-
ogy [5,11,21,25,27,29]. Such approaches lack any measures to protect
users’ privacy though. Nonetheless, CloudArmor [28] argues that user
feedback credibility should be evaluated without breaching the users’
privacy. To achieve this, CloudArmor employs a Zero-knowledge cred-
ibility proof protocol (ZKC2P) premised on anonymized information.
In Feed4Cloud, we also embrace privacy as a requirement but rely on
blockchain-based user registration to preserve user anonymity.

Overall, to date, QoE specifics have been mainly considered as an
auxiliary criterion to assist cloud users in the service selection pro-
cess [5,6,20-22,30,33], but also to allow for policy adaptation in run-
time in cloud video streaming [8,9], as well as, gaming services [10].
From service providers’ perspective, user-generated QoE insights are
also particularly important as they enable improved cloud service
orchestration effectiveness. By closely monitoring user-perceived QoE,
service providers can detect potential quality degradations and react

1 In shilling attacks, the attacker targets the similarity-based system; it
creates fake profiles that strongly correlate with victims’ profiles in order to
manipulate their recommendations’ lists.

on time to avoid user churn, while they might also rely on QoE
measurements to achieve a resource-efficient service deployment at the
minimum operational cost [34,35]. Especially in 5G networks, QoE-
aware orchestration constitutes a recent research trend. In this regard,
NORMA [4] considers QoS measurements mapped to QoE scores that
feed a designated service and network resource orchestrator to al-
low for informed decisions. In a similar fashion, in [12] enhanced
orchestration is accomplished through a QoE-aware elasticity policy
that dynamically adapts to the traffic conditions aiming to maintain
high QoE, while in [13] dynamic resource allocation in fog settings
is improved via a QoE-based mechanism particularly designed for
Tactile Industrial IoT (IIoT) applications. Indeed, certain works propose
defining the user requirements regarding service quality, either by
explicitly specifying an agreed-upon trust level as an SLO [23] or by
incorporating user feedback directly in the SLA monitoring process [24,
36].

All in all, Feed4Cloud differentiates from the aforementioned works
in the following ways: (i) some works either do not assess feedback
trustworthiness and/or user credibility; two vital Feed4Cloud features,
(ii) Feed4Cloud is the only solution leveraging QoS to QoE mapping to
evaluate feedback trustworthiness, (iii) privacy is an aspect neglected in
previous works, except for [28], but unlike the latter, Feed4Cloud takes
a blockchain-based authentication approach to ensure user privacy, and
(iv) all those works rely on central trusted network parties or cloud
providers for QoE monitoring, as well as for collecting and storing
the provided feedback in associated locally-managed databases. This
renders them inherently susceptible to tampering and does not provide
any precautions on user accountability.

2.2. Blockchain-assisted cloud service monitoring

Unlike previous centralized approaches, a first attempt to provide
decentralized, reputation-aware SLA monitoring has been done in Peer-
to-Peer (P2P) networks [37]. Service reputation is evaluated based on
QoS performance. Each peer utilizes personalized models to evaluate
and report the QoS. Honest client behavior ensures that higher QoS
results in higher reported trust values, motivating providers to provide
high QoS to increase their revenue. The reputation system is open such
that each participant can become aware of another peer’s evaluation of
the provider’s reputation, but also identify clients reporting false evalu-
ations. Still, this solution lacks any mechanism to assess user credibility
in an automated way and consequently, take this into account in service
evaluation.

To further contribute towards SLA monitoring decentralization, [38]
introduces the notion of ‘SLA scores’ which denote the conformance
with the SLA conditions. SLA scores are computed by relying on objec-
tive network measurements, which are verified using smart contracts.
Therefore, Blockchain technology is used to automatically detect and
penalize cheating parties that provide false testimonies. Blockchain is
also used for recording network measurements and SLA scores. How-
ever, SLA scores are premised solely on monitored technical metrics,
thus neglecting user experience, let alone user feedback, the core
Feed4Cloud asset.

Along these lines, a more recent research direction suggests that SLO
violations are detected either by the involved parties directly [39,40],
or by delegated network members, that are in turn rewarded by the
Blockchain [41,42].

In [39] dedicated smart contracts are used to automatically assess
the credibility of fog IoT clients in a public Ethereum-based setting.
The reputation of the service providers is also calculated through
associated smart contracts by taking into account the credibility of the
feedback provider. To motivate clients to provide trustworthy ratings,
they are asked to transfer a deposit, returnable once they have proven
to be reliable. However, inferring the reputation scores based entirely
on the user-generated feedback, with no guarantee that the provided
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feedback is aligned with the actual QoS, makes this system vulnerable
to Collusion or Sybil Attacks [43].

To cope with this drawback, in [40], besides the service providers
and clients, a monitoring authority is registered to the blockchain.
The latter monitors the compliance of the service endpoints with the
agreed SLOs and reports any detected violations. A private blockchain
is used to create an immutable history of records to facilitate the
monitoring of SLA enforcement. In an alternative approach, a new
blockchain-registered entity is introduced, namely the “witness”, which
is responsible for detecting and reporting service violations [41]. In-
dependent witnesses are selected randomly per transaction, out of a
decentralized witness pool. To incentivize blockchain users to partic-
ipate as witnesses, a payoff function is proposed so that they gain
revenue for offering reporting services. Building upon the witness
model, [42] utilizes a permissioned blockchain formed by a federa-
tion of randomly selected oracles.> SLAs are transformed into smart
contracts fed by the oracles’ objective monitoring data, enabling dis-
tributed SLA enforcement. BlockQoS [45] leverages blockchain to
enable users to request on-demand sessions video conferencing sessions
with prespecified QoS guarantees in a traceable manner, to monitor SLA
compliance and also to automate monetization.

Recently, a tri-chain blockchain model has been proposed to facili-
tate service selection in cloud manufacturing [46]. Service providers
offer resources, service consumers submit manufacturing tasks and
solvers with the capacity to meet associated hardware requirements
execute those tasks and upload execution results in a solution pool.
The solver of the solution unanimously selected by the provider and
the consumer publishes a respective contract, the service delivery
information but also updated credibility values of all involved parties
to be securely and permanently stored in the blockchain.

In the context of multi-cloud systems, blockchain networks have
been used to store logs of SLA violations and render them visible to
potential service users [47].

As obvious, currently, blockchain-based reputation has been inves-
tigated for QoS monitoring. Therefore, Feed4Cloud is the first solution
fostering the use of blockchain for QoE-aware cloud service evaluation.

2.3. Beyond state-of-the-art

Table 1 provides an overview of the salient features of the presented
works. The ‘QoS/QoE’ column indicates whether the respective ap-
proaches use QoS-QoE correlation models (‘mapping’), combine distinct
objective and subjective metrics (‘combined’) or rely solely on QoS
information (‘QoS’).

Based on the literature review, to the best of our knowledge,
Feed4Cloud emerges as the first coherent system that supports dis-
tributed user feedback collection and recording, QoE verification via
pertinent correlation models, user credibility assessment and service
evaluation to enable enhanced cloud service management, all at the
same time.

3. Feed4Cloud design

The key objective of Feed4Cloud is to enhance cloud service mon-
itoring and orchestration by enabling additional insights related to
QOE aspects, complementing the default QoS metrics. To achieve this,
Feed4Cloud depends heavily on user-provided feedback which reflects
the service evaluation in terms of the user-perceived QoE. However,
we acknowledge that incorporating user feedback might open the door
to manipulative behaviors. For instance, rogue raters might attempt to
exploit the feedback collection system to intentionally lead to a falsely

2 In the context of blockchain, the term “oracle” refers to an entity that
feeds a smart contract with external data [44].

lower service reputation score. The latter, could, in turn, result in faulty
orchestration decisions.

Considering this, it becomes self-evident that shielding the feedback
system is vital. To this end, we set two primary design goals for our
solution: The first one is to collect user feedback in a secure and
transparent manner, whilst the second is to ensure the trustworthiness
of the obtained feedback. Feed4Cloud safeguards the feedback loop
by collecting feedback only from authenticated parties, storing it in a
tamper-proof manner and also validating feedback prior to forwarding
it to the monitoring engine. Hence, we go one step further and con-
solidate our solution by establishing procedures that guarantee service
evaluation is based on valid QoE information.

In order to achieve our design goals, we leverage Blockchain tech-
nology for securely collecting and storing the user ratings but also rely
on well-established models to validate user feedback. More specifically,
users are required to sign in using their digital wallet and authenticate
themselves in order to gain permission to submit their ratings to restrict
unauthorized access. Moreover, to allow for transparency and rating
provenance during feedback collection, we stipulate that feedback is
uploaded to a distributed ledger as soon as it is submitted. That way
the stored ratings are not locally controlled by a single entity, but are
rather fully traceable and can be easily audited ex post facto, while they
remain tamper-proof and their integrity cannot be questioned by any
system user. Furthermore, recording ratings and mapping them to the
associated rater’s on-chain also caters to the non-repudiation of raters’
actions since they cannot alter or dispute previous ratings. This is very
important as it facilitates establishing a concrete credibility mechanism
to ensure the accountability of users; an aspect considered crucial in
reputation systems. In this context, in Feed4Cloud, we provision an
oracle smart contract [48,49] that interacts with the external oracles?
(i.e. the service users) to gather QoE feedback.

Moreover, given that recorded ratings are timestamped and trace-
able, they can be verified in a decentralized manner at any time. In
other words, the oracle smart contract can be interconnected either
with other smart contracts that are delegated with the computation of
the service reputation and/or with off-chain evaluation mechanisms.
In any case, the trustworthiness of the oracles-raters is not inher-
ently guaranteed [48], necessitating additional mechanisms to evaluate
oracle-provided input [7].

In this scope, Feed4Cloud implements designated external off-chain
mechanisms that are fed by the oracle smart contract. They leverage
well-suited models and methodologies to subsequently validate submit-
ted feedback, detect and filter out fake ones. They also employ bespoke
algorithms to assess two fundamental metrics of our system, namely
the user credibility and the service reputation score. The user credibility
is calculated based on the trustworthiness of the user feedback and
indicates whether the specific rater can be trusted. The service repu-
tation score serves as an indicator of the service quality in terms of
QoE performance. The aforementioned evaluations are provided by the
RateTrust Feedback Service (RTFS).

The trustworthy user feedback, and indeed the computed service
reputation score, is being integrated into the monitoring plane aiming
to enable improved service configuration and advanced cloud-to-edge
orchestration.

The Feed4Cloud conceptual design is depicted in Fig. 2, wherein the
solid and dashed lines represent information transfers and interactions
between the involved entities, respectively.

4. Feed4Cloud architecture

The Feed4Cloud architecture depicted in the above component
diagram (Fig. 3), consists of the following components:

+ A widget for user ratings collection
+ A monitoring system for QoS data collection
+ A service orchestrator
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Table 1
Related works overview.
Reference No. QoS/QoE User-provided | Fake feedback | User credibility Monitoring/ Blockchain
feedback detection assessment Orchestration
[4] Mapping v
[51 Combined v v v
[6] Combined v v
[8] Mapping v v
[9] Combined v v v v
[11] QoS v v v
[12] Mapping v
[13] Combined v v
[20] Combined v v v v
[21] Combined v v v v
[22] Combined v v v
[23] Combined v 4
[24] Combined v v
[25] Combined v v v v
[26] Combined v v v
[27] Combined v v v
[28] Combined v v v
[29] Combined v v v
[33] Combined v
[371 QoS 4 v v v
[38] QoS v v v v
[39] QoS v v v v
[40] QoS v v
[41] QoS v v v
[42] QoS v v
[45] QoS v v
[46] QoS v v v
[47] QoS v v
Feed4Cloud Mapping 4 v v v v
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Fig. 2. Feed4Cloud concept.

+ A blockchain-hosted smart contract
* A QoS-to-QoE mapper

+ A Feedback Verification module

» A Service Reputation model

+ A User Credibility mechanism

The last four components comprise the RTFS.

The overall architectural components interact with each other in the
following way: First of all, we assume that a service has been deployed
using the service orchestrator and the user has previously utilized the
service. This user provides some feedback for the service, based on
its Quality of Experience. The feedback will be provided using the
Feed4Cloud rating collection widget. The front-end widget communi-
cates with the oracle smart contract to send the raw user ratings to be

Get QoS metrics | Reconfigure

Service

Get Service QoE Score,

Fig. 3. Feed4Cloud architecture.

securely stored on the blockchain network. Those — immutable — ratings
will then be available in the distributed ledger for anyone participating
in the network, to verify their authenticity and integrity.

On the backend, the Feedback Verification module also interacts
with the oracle smart contract to retrieve the user ratings from the
blockchain. It also retrieves the QoS measurements for the deployed
service from the monitoring data collection module. The two inputs
(QoE and QoS) are then compared using a correlation model and
ratings will be characterized as either trustworthy or potentially ma-
licious. Based on that information, the credibility mechanism infers
the user credibility scores. A reputation model also assigns the service
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reputation. The potency of a particular user’s feedback in the service
reputation score is determined by the user credibility, while only
trustworthy QoE feedback will be considered in the service evaluation.
The resulting service reputation score (calculated based on the filtered
QOE) is eventually fed into the service orchestrator.

The service orchestrator receives the filtered QoE information and
uses it to supplement the information retrieved from its QoS moni-
toring plane. Based on both information sources, it monitors service
performance and can (re-)configure services to ensure SLO compliance.

5. Implementation

In this Section, we lay out the implementation details of the indi-
vidual Feed4Cloud components and their integration.

5.1. Feedback collection widget

Our Feedback Collection Widget serves as the Feed4Cloud front-end
for the services’ users. After a user’s interaction with the web service
has been completed, the service user can use the widget to provide
feedback on its perceived QoE.

This component is implemented as a browser-based widget, using
vue.js [50]. The service provider integrates the rating widget in the
front-end code of its application, using the provided instructions and
code artifacts. In our prototype implementation, the rating widget has
been integrated with the service using Node.js v16.13.1. The user
feedback is provided using a GUI, in the form of 1- to 5-star ratings.

The widget has also been integrated with MetaMask [51], which
acts as a user’s blockchain wallet and provides authentication services
before a rating can be submitted. This way, we provide a first layer
of defense that protects our reputation system from large-scale attacks
by unauthorized users who submit fake ratings. After a user logs in
and submits a rating for the service, the widget submits the rating as a
transaction in the blockchain using the web3.js [52] library.

5.2. Monitoring system

This system is responsible for gathering monitoring information
about the deployed services. It is implemented using Netdata 1.38 [53],
Prometheus 2.43.0 [54] and OpenTelemetry [55] (opentelemetry-
exporter-prometheus V0.38.0).

The Netdata agent is used to collect QoS information from services;
it is installed on the nodes running the services to obtain the relevant
metrics. OpenTelemetry is used to collect the verified QoE feedback;
it instruments RTFS and exports the custom ‘service QoE score’ metric
(i.e. the score calculated based on the filtered QoE) to Prometheus.
Prometheus acts as the monitoring back-end; it collects the QoS and
QoE metrics from the aforementioned components and stores them
as time-series data that can be processed and aggregated. It then
makes those metrics available to the service orchestrator, allowing for
enhanced observability of cloud services’ behavior.

5.3. Service Orchestrator

Feed4Cloud’s Service Orchestrator is based on MAESTRO [56], a
software solution provided by UBITECH. MAESTRO can deploy and
manage the lifecycle of a cloud service’s distributed components, using
either VM- or container-based virtualization. Besides the service mon-
itoring system, described in the previous subsection, the component
includes a visual graph editor and a service elasticity management
framework based on graphically-designed rules and policies.

In Feed4Cloud we have extended its monitoring plane by enabling
the collection of trustworthy user feedback. This way, we have created
the first (to the best of our knowledge) cloud service orchestrator that
incorporates a human-in-the-loop approach and utilizes QoE metrics in
its orchestration process.

:Service
Provider

Set Policies

Sand Real-Time
- QoS Measurenents---

Masstro

‘Prometheus

‘Netdata agent |

...... > Monitor Gos
sl ER

.. 5end Reak-Time
oos

Measure @S

Send Real-Ti

008 Measurements’

Send Real-Time
003 Measurements’”
- Send GoE insights-—- -

Re-configure

- Send Qo insights.
? ! |based on policies
i |& ooE insights

-

Re-configure
service deployment

Fig. 4. Feed4Cloud service deployment & monitoring sequence diagram.

The following sequence diagram illustrates the order in which all
necessary interactions between the involved components take place to
deploy and monitor the QoS performance of the Feed4Cloud service,
and indicate any need for re-configurations (see Fig. 4).

5.4. Smart contract

As already discussed, to enable distributed and immutable user
feedback, in Feed4Cloud we have developed an oracle smart contract
that interacts with the external oracles? (i.e. the service users/raters)
to gather and securely record QoE ratings.

The implemented smart contract was developed using Solidity
v0.8.18 [57]. In our smart contract, each user rating is represented by
a struct, like so:

Listing 1: User Ratings
struct Rating {
uint serviceld;
address userld;
uint rating;
uint timestamp;

}

wherein the serviceld represents a 6-digit id of the deployed service
instance, the userld corresponds to the user’s digital wallet hex address,
the rating is the submitted rating and the timestamp denotes the date of
the rating submission in a Unix timestamp format.

It is noteworthy that by utilizing the user’s digital wallet hex address
as the identifier, our approach can be considered pseudonymous as it
conceals the individual’s identity, thus safeguarding user privacy.

The smart contract currently supports the following seven functions:

1. setRating(uint serviceld, uint rating): Called on the front-end
side to submit a rating

2. getRatings(): Returns all the recorded ratings

3. getUserRatings(address userld): Returns the ratings assigned by
a specific user, if any

4. getLatestUserRating(address userld): Returns the latest rating
submitted by a specific user that has been recorded, if any

5. getAverageUserRating(address userld, uint serviceld): Returns
the average value of the ratings assigned by a specific user to
a specific service, if any

6. getServiceRatings(uint serviceld): Returns the ratings assigned to
a specific service, if any

7. getLatestServiceRating(uint serviceld): Returns the latest rating
for a specific service that has been recorded, if any



LA. Kapetanidou et al.

:Smart contract :Prometheus RTFS

Send Stored f-'ee:maek'

___ Send Real-Time
QoS Measursments

.
H | Venify Feedback
HPE

—— Update
4 User Cradibility

Update
— Service
H Reputation
Score
: Send Refined
Service OoE Score I

Fig. 5. RTFS inter-communication sequence diagram.

The smart contract has been tested locally on a Ganache net-
work [58] using the Truffle suite [59]. Moreover, it has been deployed
in a real-world setting; particularly on a Hyperledger Besu client node
on the ALASTRIA Red B Network [60]. This is a public-permissioned
Blockchain network consisting explicitly of accepted nodes. For this
deployment, a personal API key was provided to us to make calls to
the node’s RPC API, allowing us to submit transactions and interact
with the smart contract in a controlled environment.

5.5. RateTrust Feedback Service (RTFS)

RateTrust Feedback Service (RTFS) is a suite of interrelated Python
scripts (developed using Python 3.9.16), each one corresponding to an
RTFS sub-component, namely the:

* QoS-to-QoE mapper

» Feedback Verification module
* User Credibility mechanism

» Service Reputation model

Those components are designed to support the feedback trustwor-
thiness verification, service evaluation and user credibility assessment.
To this end, in the back end, RTFS executes a set of actions as presented
in the below sequence diagram (see Fig. 6):

As depicted in Fig. 5, the series of actions taking place is the
following:

1. First of all, RTFS obtains the QoS and QoE information.

(a) RTFS fetches the real-time QoS measurements as captured
by Prometheus.

(b) RTFS maps the QoS metrics with user QoE and thus, infers
the expected QoE.

(c) At the same time, RTFS retrieves the QoE feedback
recorded in the blockchain ledger.

2. Based on the information from the previous step, RTFS proceeds
to feedback verification.

3. The filtered QoE (denoted as RefinedQoE in the diagram) is sent
back to Prometheus.

4. The last two steps, i.e. the update of the user credibility value
and the update of the service reputation score, correspond to the
evaluation of the service users and the services, respectively.

A distinct RTFS sub-component is called to execute the internal
RTFS operational steps, as shown in the following sequence diagram.

The implementation of the RTFS sub-components is described in
detail below.

RTESmain RTFS OoS-to- R'II'FSE‘F«:?back RT'FJSI:‘I.I“ur R:I:FS: Sm:vl:i
: ¥
QoE mapper Module mechanism model
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Fig. 6. Intra-RTFS sequence diagram.

5.5.1. QoS-to-QoE mapper

The QoS-to-QoE mapper is responsible for correlating the objective
QoS measurements with a subjective QoE value.

To achieve so, the QoS-to-QoE mapper takes as input the monitored
QoS metrics and thereafter, employs the IQX hypothesis [16-18]. The
IQX hypothesis is a fundamental QoS-to-QoE mapping function based
on the exponential interdependency of QoE and QoS:

Q0E = a - e P08 (€D)

In the above formula, «a is set to 4 to reflect the 5-point rating
scale [16] and f is a sensitivity parameter that has to be tuned for each
particular QoS metric to accurately translate the actual QoS to a Mean
Opinion Score (MOS) value, denoting user QoE. In our implementation,
we have considered six QoS metrics, namely the: (i) network throughput,
(ii) packet drops, (iii) packet errors, (iv) idle jitter, (v) system uptime, and
(vi) CPU usage. These metrics are measured by the Netdata agent of the
monitoring system.

By relying on the IQX model, QoS-to-QoE mapper infers the expected
user-perceived QoE [61] for each QoS metric.

5.5.2. Feedback verification module

Feedback verification, a key functionality of RTFS, is performed in
this module. The Feedback Verification module is fed by the expected
QoE per QoS metric as computed by the QoS-to-QoE mapper and also
the actual user rating as recorded in the Blockchain. Thereafter, it
compares this rating against each and every expected QoE value and
counts the number of mismatches. In our case, we consider that a rating
is not valid if there are more than three mismatches (i.e. half the QoS
metrics). The rationale behind this is the following: The users provide
only a single rating denoting their overall experience. The user rating
is expected to be in accordance with most of the actual QoS. Therefore,
the rating is not taken into account if it is not aligned with the majority
of the QoS measurements.

To identify any mismatches, this module will calculate either the
numerical difference between two ratings or the euclidean distance
between two triangular fuzzy numbers, depending on the reputation
model being used (see Section 5.5.4 below for more details). In any
case, the result reflects the deviation between the expected and the
actual user rating.
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The respective deviation is used to determine whether the submitted
rating is reasonable (and thus, the user feedback is successfully verified)
or if there is an unjustifiable deviation (and thus, the user feedback
is considered an indication of potential user misbehavior). That way,
the Feedback Verification module detects unreliable users that provide
fake feedback and factors their feedback out of the service reputation
calculation.

5.5.3. User Credibility mechanism

The User Credibility mechanism evaluates the credibility of users
based on the trustworthiness of their provided feedback, as assessed
by the Feedback Verification module. The mechanism firstly computes
a Credibility,g,, — score which expresses the latest credibility score
of the user and then uses this score internally to calculate the final
user credibility based on both the current and historical user credibility
assessments.

In the Credibility,,,  calculation, aiming to provide counter-
incentives for users providing fake feedback, we choose to rate each
evaluator based on the “linear increase, exponential decrease” princi-
ple, like so:

o S, if feedback is verified
Credzbtlttyuse,mu = {_Hea-(lNaFakeRatings)’ otherwise (2)
where 6 is a penalty factor representing the strength of the punishment
and « is an adjustment factor. This principle originates from congestion
control [62], but has also been applied to reputation models [63,64].

Based on this approach, the credibility increases gradually as long as
a user provides truthful feedback, but it will be significantly decreased
on fake feedback submissions. Adopting such a credibility model, al-
lows us to control the impact that reporting fake feedback has on the
overall credibility score and consequently, the effort that misbehaving
users will need to recover from a penalty and converge back to regular
ratings. Additionally, it provides protection against malicious users who
occasionally submit verifiable feedback in an attempt to slip through
the credibility mechanism.

Subsequently, to infer the credibility score of each user, both the
current credibility Credibility,,,  assigned to the particular user and
the user’s previous credibility score are considered, using an Exponen-
tial Weight Moving Average (EWMA), as follows:

Credibility,,, = w * Credibilityuwold+
(1 —w) * Credibilityusermw 3

where w denotes a weight factor. Provided that more recent user
credibility scores capture more accurately the current user behavior,
a higher weight® is given to the current credibility.

5.5.4. Service reputation model

Feed4Cloud is premised on a service reputation model assigning
scores to each service based on its performance to, ultimately, improve
cloud monitoring and orchestration. To rely on sound information for
this purpose, only trustworthy feedback is considered in the service
evaluation. Feed4Cloud currently supports two distinct well-known
reputation models: a Bayesian and a Fuzzy one. Needless to say, other
reputation models might be utilized as well to better fit the needs of
respective implementation scenarios.

Bayesian model. For starters, we implemented a Bayesian reputation
model. This is a widely adopted reputation calculation method that
has been adopted by several popular rating systems, including the
Trustpilot [65] online rating platform. To be precise, the Trustpilot
computes a trust score for each stakeholder by accumulating user
feedback and factoring it into the calculation formula based on three

3 For the experiments presented in this paper, it is set to 0.75.

factors: time span (so that most fresh reviews hold a higher weight
in the calculation), frequency (to ensure that the higher the feedback
collection rate, the more stable the trust score), and Bayesian average
(to treat fairly new evaluatees) [65]. Although the actual weights used
in Trustpilot’s trust formula are not publicly disclosed, we relied on the
available information to implement a Bayesian reputation model that
is aligned with Trustpilot’s trust model.

To this end, similar to [65], we automatically include seven ratings
and assume an initial reputation score equal to 3.5, upon initialization.
Thereafter, the current rating (Reputationy,,, ) is computed using
the Bayesian formula:

C = prior + Y, ratings
new C + #ratings

Reputation C)]

service,

Wherein prior is the average rating we expect given a number of
observations, C. We replace prior with the last calculated reputation
score and C with the number of ratings (#ratings), recorded so far.

The resulting Reputationg,,,, . is factored into an EWMA to infer
the updated reputation score, like so:

Reputationg,,,i., = |z —0.8] * Reputationserviceold+

|z —0.2] * Reputationg,;.. 5)

new

Aiming to minimize the impact of feedback provided by users who
have been dishonest, we set the weight z equal to rater’s credibility ¢,
determine its impact on service evaluation. That way, our solution
requires that the less trustworthy a rater is, the less its feedback
influences the service’s reputation score.

Moreover, it is important to note that by fine-tuning 0 in formula (2)
and w in (3), slanders are quickly detected and punished, hence leaving
no prospect for attackers to re-join as newcomers to increase their
impact on service evaluation and eventually, mitigating the cold-start
problem.

Fuzzy model. Aiming to provide a user-centric design, RTFS also em-
ploys fuzzy logic. Fuzzy logic is a widely used method, adopted in a
variety of applications [66], and especially in cloud computing rep-
utation models [27,29,67-70]. Considering that users might provide
their feedback using a numeric rating scale (e.g. on a 5-point Absolute
Category Rating (ACR) scale) but might also express their opinion in a
fuzzy fashion (e.g. evaluating fuzzy QoE metrics, such as pricing, over-
all satisfaction, etc, using terms like Poor/Good/Excellent), adopting
a fuzzy logic-driven model becomes essential. Therefore, although our
current feedback collection widget implementation is based on an ACR
scale, the QoE verification and overall service evaluation should also
be able to be handled by a fuzzy model that can support potentially
heterogeneous input data.

To accommodate the fuzzy QoE input, we follow the modified Fuzzy
Analytical Hierarchical Process (FAHP) as proposed in [21]. In this
work, the authors construct a Relative Attribute Comparison Matrix
(RACM), similar to the decision matrix constructed in the defacto
FAHP, to compare the actual user rating (4,,,,) with an ideal rating
(A,40q) of a virtual user. We embrace their model but we only consider
A,ser if it is verified and we also use the expected QoE (as obtained by
the Qos-to-QoE mapper 5.5.1) (A,ypecreq) Tating instead of the ideal one:

A

RA C M = AEXPQL’XPd AEXI)IEEred (6)
A

1

user

Thereafter, we employ the defacto FAHP to infer the latest ser-
vice score Reputationge,.,, » SO that Reputationg,.,.., € [0,1]. This
Reputationg,,.,..,  expresses the degree of its importance in the service
evaluation. To normalize it, we then multiply it with the submitted
rating (A,,,.,), extending its range from O to 5.

Finally, the service evaluation process is again concluded using
Eq. (5) to ensure that the impact of a user’s feedback on the overall
reputation score is determined by its credibility.
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5.6. End-to-end information flow

The end-to-end information dissemination within the system
pipeline is depicted in Fig. 7. In more detail, the RTFS sub-system is
triggered periodically by a scheduler. RTFS then communicates with
the Hyperledger Besu client to find out whether there are any new
ratings to be verified. In turn, RTFS periodically sends the service
reputation score to the orchestrator, regardless of whether it has been
changed.

To support the end-to-end information flow, the interfaces inter-
connecting the Feed4Cloud components have been developed using
suitable communication protocols (Fig. 8).

The Feedback Collection Widget submits the user ratings as trans-
actions to the blockchain, communicating with the dedicated smart
contract running on the Hyperledger Besu client. This is achieved using
the web3.js library, which uses JSON-RPC calls to invoke the functions
exposed by the smart contract’s Application Binary Interface (ABI). The
connection to the blockchain is mediated by MetaMask, which acts as
a gateway to the network in which the smart contract is deployed.

Focusing on the back end, RTFS retrieves the most recent user rat-
ings from the blockchain using the web3py library [71] to communicate
with the Hyperledger Besu client. The RTFS also communicates with the
Prometheus service to get the QoS measurements in real-time. This is
accomplished by sending HTTP requests to the Prometheus REST APIL.

After successfully processing the QoE feedback, the verified QoE
is fed to the Prometheus monitoring system using OpenTelemetry.
Eventually, the MAESTRO service orchestrator retrieves the ‘service QoE
score’ metric from Prometheus using its REST APIL.

6. System prototype and evaluation
We have successfully deployed Feed4Cloud locally on our premises.

The non-proprietary Feed4Cloud system components have been re-
leased as open-source and can be accessed at [72].

We hereafter briefly present the real-world deployment particulars,
followed by a thorough evaluation of the RTFS layer.

6.1. Setup details

For demonstration purposes, we have set up a mock video streaming
service hosted on a local server. In particular, we created a container-
ized application consisting of three modules: a Kafka producer, a Kafka
consumer, and the rating widget. The Kafka producer captures frames
from the given video file (i.e. ‘countdown.avi’). Meanwhile, the Kafka
consumer runs a Flask application that reads data from the respective
Kafka topic, provided via a URL parameter. The consumer decodes the
JSON payload, enabling users to view the video content directly from
their web browsers.

Service users can access the widget through their browsers at ‘http:
//SERVICE_IP_ADDRESS/KAFKA_TOPIC’. To interact with the widget,
users are required to sign in to their MetaMask wallet. That way, the
submitted user ratings are automatically sent to the specified Hyper-
ledger Besu node address of the Alastria Red B network where our smart
contract has been deployed.

The rest of the components included in our prototype (excluding
the smart contract) were deployed in UBITECH’s premises. For this
deployment we used 3 VMs, each one of which had 2 vCPUs, 4 GB
RAM and 40 GB disk space. On the first VM, we deployed the video
service components, accompanied by the rating widget and the Netdata
agent. On the second VM, we deployed the Prometheus and MAESTRO
services. The third VM hosted the RTFS service.

Finally, the RTFS credibility and reputation models — used for
incorporating the QoS measurements in the scoring functions — were
configured like so: In the expected QoE formula (1) the « constant is
set to 4, whereas the f sensitivity parameter depends on the metric: for
Network Throughput and Idle Jitter, it is 0.00025; for Packet Drops
and Packet Errors, it is 0.025; for CPU usage, it is 0.01; and for
Uptime, it is 10~°. In the Credibility,,  formula, § penalty and «
adjustment factors are set to 0.5 and 1, respectively, while the weight
w in Credibility,,, formula is 0.75. Lastly, the initial service reputation
score is configured to be 3.5. To better motivate our choices for the
initial credibility and reputation scores in the evaluation setting we
investigated their impact indicatively for the Bayesian model in the
full-on, sudden case.

Fig. 9 shows the actual rating submitted by the user in this case
and the average expected QoE, while Fig. 10 depicts the inferred user
credibility and service QoE score. For this evaluation, we experiment
with different combinations of the lowest, median, and highest feasible
values (i.e., 1, 3.5 and 5, respectively) for service reputation and
user credibility, while adjusting the 7 automatically included ratings
accordingly. Additionally, we assume the attack occurs 10 min after
the newcomer joins the Feed4Cloud system.

As demonstrated in Fig. 10, the slander’s credibility gets immedi-
ately minimized upon attack launching, irrespective of its prior value,
as imposed by the penalty factor and the high w weight which results
in the increased potency of the current behavior over the historical one.
This measure ensures that logging from different accounts as a new
user could not be exploited as a workaround for attackers as they get
easily detected. In what concerns the impact on the service reputation,
we show that the higher the initial credibility, the higher the value
the reputation reaches before the attack, according to Eq. (5). Overall,
since the user rating’s impact on the service reputation is minimized
during the attack, the only actual change is that the service QoE score
is delayed in increasing. These observations corroborate that the cold
start problem is indeed mitigated.

6.2. Real-world demonstration
The indicative screenshots shown in Fig. 11 give a glimpse of

Feed4Cloud’s real-world deployment. A video demonstration showcas-
ing the Feed4Cloud functionalities is found at [73].
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Our web service features a designated online rating widget for
service users to submit feedback on their perceived service’s QoE
performance (sub- Fig. 11(a)). This widget has been integrated with
MetaMask to securely record the submitted ratings on the blockchain
ledger in real-time (sub- Fig. 11(b)). Once the service evaluation has
been completed, OpenTelemetry is used to collect the service reputation
score, which is constantly monitored by Prometheus (sub- Fig. 11(c)).
Based on the QoE feedback, service providers can adjust their service

deployment, using SLO policies combining QoE and QoS values, and
thus, ultimately QoE-aware service management is enabled.

6.3. RTFS evaluation

This section concerns the evaluation of RTFS, focusing on the be-
havior of its fundamental models, particularly the service reputation
and the user credibility modules.

6.3.1. Experimental methodology

We designed a set of experiments to evaluate how the reputation
and credibility modules react to different system conditions and attack
tactics. In particular, we vary the following aspects:

* Verification layer: Our goal is to highlight the contribution
of the verification layer. Thus, we evaluate how the service’s
reputation score is affected when relying solely on verified user
ratings against lacking a feedback filtering mechanism.

Low feedback: We consider two situations in which low feedback
is provided: the first one involves a slander sending invalid feed-
back, while the second corresponds to an honest user reporting a
genuine experience with degraded QoE.

Attack behavior: We experiment with two different attack mod-
els, a full-on and a probabilistic one. On top of that, we consider
two different ways of launching these attacks. In the first one,
the attacker strikes abruptly, while in the second, we emulate a
sneaky slander that exploits an ongoing system’s QoS degradation
to justify its negative feedback.

6.3.2. Experimental setup

In our experiments, we utilized a JavaScript test script to automate
the submission of user feedback. Our script simulates a user that sends
a new rating to the blockchain-hosted smart contract every minute.
The user was set to act honestly for a random period of time and
then transition to an attacking mode for another random period. The
attacking period was set to last approximately half the honest period.*
Each experiment lasted for 10 h, collecting a total of 600 user ratings.

The test script sends ratings to the Alastria Red B node, where
our smart contract is deployed, through web3.js. The sent ratings
must originate from a specific blockchain wallet address. Thus, we
assume that ratings are being sent by a single user, associated with the
MetaMask wallet address that was used to log in on the client browser.
That way, keeping track of the user credibility score fluctuations is
facilitated, and the identification of the impact of the user behavior
on the overall service reputation score is straightforward.

To assess the consistency of the RTFS’s models under different
system conditions and user behaviors, we conducted three rounds of
experiments following the devised methodology 6.3.1:

» Experiment 1: Evaluating RTFS’s effectiveness against sudden full-
on and probabilistic attacks.

+ Experiment 2: Evaluating RTFS in case of degraded QoS service
performance. To simulate this scenario, we used the Apache
JMeter tool [74] to fabricate an increased traffic load. Multiple
service user access requests were manually generated at random
intervals to overload the Feed4Cloud service host server and thus,
artificially induce QoS impairments.

Experiment 3: Combining the previous two experiments, this ex-
periment aimed at evaluating RTFS against more sophisticated at-
tacks. It involves sneaky full-on and probabilistic attacks that are
launched during degraded service QoS performance to circumvent
the reputation model.

4 In fact, the attacking period ranged from 2.5 to 3.5 h, while the honest
period ranged from 5.5 to 6.5 h.
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Fig. 12. Experiment 1: Fuzzy Reputation Model Results in Sudden Attack.

6.3.3. Results

The evaluation results for both the Fuzzy and the Bayesian repu-
tation model are presented in Figs. 12-16. Figs. 12 and 13 show the
results of Experiment 1 for the two reputation models being used.
Fig. 14 illustrates the results of Experiment 2. Lastly, Figs. 15 and
16 correspond to the results of the last Experiment. In all cases, the
first-row sub-figures illustrate the ‘Average Expected QoE’ (orange lines)
and the ‘Actual User Rating’ (blue lines), while the second-row sub-
figures show the ‘User Credibility’ and the ‘Service QoE Score’ metrics,
represented by purple and green lines, respectively.

It is very important to clarify that the ‘Average Expected QoE’ is only
used for visualization purposes to facilitate the results’ comprehensibil-
ity. This metric is computed as the average value of the six expected
QoE values inferred as described in Section 5.5.1. However, it is neither
calculated nor used by the RTFS functional pipeline.
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Fig. 13. Experiment 1: Bayesian Reputation Model Results in Sudden Attack.

Our main objective was to demonstrate the benefits of the RTFS
verification layer. To this end, we present the results for two distinct
cases: with and without a filtering mechanism; hereafter, denoted as
‘Filtering on’ and ‘Filtering off’, respectively, and corresponding to a
different column in the figures.

Experiment 1: We annotate Figs. 12 and 13 to show better the attack
period (starting when the ‘Actual Rating’ drops and ending when it
recovers), the minimum ‘User Credibility’ and ‘Service QoE scores’ per
case and any extraordinary temporary drops. The same trends apply in
the following figures.

The results show that when every user rating is taken into account,
regardless of its trustworthiness (i.e., ‘Filtering off’), the service rep-
utation score is more prone to fluctuations. However, with a proper
filtering mechanism in place, it becomes harder for any deliberate
attempts to undermine the service’s reputation, to succeed. This is
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Fig. 16. Experiment 3: Bayesian Reputation Model Results in Sneaky Attack.

especially true in cases of full-on attacks, wherein the attacker’s mis-
behaving is easily identifiable. For example, for the fuzzy reputation
model without a filtering phase, when subjected to a sudden full-on
attack (launched at around 100 s and ending at 300 s as depicted
in circles in ‘Filtering off’ in 12(a)), the service reputation score was
significantly decreased (green oval). In contrast, when the same attack
occurs, but the filtering mechanism intervenes (taking place from a bit
after 200 s to a bit after 300 s in ‘Filtering on’ of 12(a)), the service
reputation score is not affected at all (green oval). In this case, there is
only a temporary drop (bicolor circle) in the service QoE score (a bit
after 300 s, at the end of the attacking period). That is because the user
begins to behave honestly, sending high ratings close to the expected
QoE, which results in increasing its credibility and thus, showing a
higher impact of both its current and past ratings on the final service
score (according to Eq. (5)). The Bayesian model responds to the attack
in a similar fashion, with the respective service score being almost zero
when there is no filtering (green oval in ‘Filtering off’ sub-figures of
13(a)), but remaining unaffected when fraudulent feedback has been
discarded (green oval ‘Filtering on’ sub-figures of 13(a)). These results
demonstrate that fairness in service evaluation is completely secured
against sudden full-on attacks by the RTFS filtering functionality as
opposed to when the latter is absent.

It should be noted that a probabilistic attack might still manipulate
the service’s reputation, to some degree, as the attacker mixes legit-
imate with roguish behavior. As a consequence, the user credibility
is increased at times and gains a higher impact on the calculation of
the service QoE score (see Eq. (5)). In both the fuzzy and the Bayesian
models, the service QoE score reaches lower values in cases 12(b) and
13(b) as compared to the respective full-on attack cases, wherein it
is not affected at all (as seen when comparing the green ovals). For
instance, in 13(b), service reputation drops even at around 1.5 in ¢t =
300 s. That is because the user credibility was quite high a few moments
ago (being almost 4 in-between 200 s — 300 s), thus allowing for influ-
encing the service reputation as Reputation,,,,,  prevails in Eq. (5)
(depicted with purple and green circles and corresponding arrows).
Still, in the case of Bayesian, this metric incorporates previous ratings as
well(Eq. (4)). On the contrary, the fuzzy calculation relies completely
on the latest ratings(Eq. (6)), thus maintaining higher service scores,
as illustrated in sub- Fig. 12(b). However, compared to ‘Filtering off’
figures, the results prove the value added by the verification layer.

Experiment 2: As depicted in Fig. 14, the QoS degradation is hap-
pening at around 300 s when the expected QoE drops, and lasts about
100 s for both reputation models. Based on the sub-figures of the first
row, we observe that the actual user rating is aligned with the average
expected QoE as the blue line follows the inclination of the orange
one. Both models successfully recognize that the negative feedback
stems from the actual degraded QoE experience. As a consequence,
the calculated service QoE score is fairly lowered, whereas the user’s
credibility remains unchanged (depicted by the green and purple lines,
respectively). Therefore, both the credibility and the reputation models
behave in a rational manner.

Experiment 3: A furtive attack could outwit the reputation system
for a while before being detected. Zooming into the ‘Filtering on’ case,
there is still improvement when compared to the ‘Filtering off’ case.
Indeed, the results revealed interesting information about the effective-
ness of the two employed reputation models when tested against sneaky
attackers. While both models can detect and exclude false ratings in
straightforward attacks, the fuzzy model is more vulnerable to sneaky
attackers. This was demonstrated through a temporary system QoS
degradation, at around 450 s; that caused an increase in the attacker’s
credibility as its negative ratings passed the verification, which in turn
increased its impact on service evaluation and allowed the attacker
to harm the service’s reputation (Fig. 15(a)). On the other hand, the
Bayesian model managed to defend against this occurrence (Fig. 16(a),
at t~250s). The reason behind this is the difference of the two models
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when inferring Reputation,,.,,.,,, - Unlike the fuzzy approach which as-
sesses the current behavior only based on the latest rating, the Bayesian
reputation formula (Eq. (4)) considers the historical reputation infor-
mation, thus limiting the impact of the latest ratings. As a result, even
though this time the service QoE score is lower, this is because of
the preceding QoS degradation, when the low ratings are trustworthy
and hence verified and counted in. Therefore, the contribution of the
verification layer lies in the stability of the reputation score when
invalid ratings come into play, rather than the value of this score per
se.

Even in the case of sneaky probabilistic attacks (Figs. 15(b) and
16(b)), the inclusion of a verification layer can still alleviate unjustified
low reputation scores, at least to some extent. However, among the
considered attack tactics, this is the hardest to detect and deal with;
advanced detection mechanisms might be better suited to accurately
identify sneaky probabilistic attacks. We discuss how this aspect can
be addressed in Section 7.2.2.

Overall, the results confirmed the usefulness of the verification
layer. RTFS quickly identifies false negative feedback and filters it off
from the service evaluation process. As a result, it effectively combats
any malevolent attempts to defame the service. Moreover, the evalu-
ation validated that the employed reputation and credibility models
exhibit a desired behavior since they treat users and evaluate services
fairly. Dishonest users are penalized and trustworthy user feedback is
prioritized.

6.3.4. Identified limitations

Although the aforementioned evaluation allows for achieving our
objectives to demonstrate the benefits of introducing the verification
intermediate layer and determine whether the reputation and credi-
bility models behave as expected, we acknowledge that it entails the
following limitations:

* Due to the requirement of alignment of the user rating with most
expected QoE values, (see Section 5.5.2), the verification process
might exclude honest low ratings when for example, one or two,
QoS metrics are impaired. Still, we have found that when a real
QoS degradation occurs, the expected QoE accurately reflects it.
Thus, it is less likely that only a few QoS measurements are
affected.

Our current models underperform against sneaky probabilistic
attacks, highlighting the need for more advanced detection ap-
proaches to deal with such sophisticated attack strategies.

When the attacker reverts to being honest its prior negative
ratings temporarily lower the reputation score. To mitigate this
effect, fine-tuning the weights in Eq. (5) is necessary.

If malicious users outnumber honest ones and launch probabilistic
attacks simultaneously, the reputation model may fail to be as
resilient. Still, this is unlikely to happen in a real rating system.
Moreover, requiring users to sign in using a Metamask wallet
address already makes it harder for attackers to create many fake
identities to launch such an attack.

7. Discussion
7.1. Resilience to attacks on the reputation system

Provided that reputation systems can be plagued by several se-
curity issues, many security considerations might arise concerning
Feed4Cloud’s attack resilience. Considering that Feed4Cloud is strongly
dependent on user-provided feedback, we focused on providing a sys-
tem resilient primarily against ‘slandering’ attacks [75], in which mali-
cious users might collude to provide fake negative feedback. However,
we argue that the proposed Feed4Cloud framework, thanks to its
native features, is inherently resilient against other well-known types
of attacks on reputation systems, such as Sybil and Man in the Mid-
dle (MITM) attacks as well. Feed4Cloud’s ability to cope with the

aforementioned misbehaviors is attributed mainly to the following
aspects:

» User authentication mechanisms in place: Feed4Cloud requires
users to be registered and authenticated (via signing in to their
Metamask wallet) before they are permitted to submit ratings.
Such a requirement makes it very difficult for Sybil attackers to
create multiple fake identities and overall, allows for restricting
access for unauthorized and potentially malicious users, thus
providing additional security assurances.

Feedback verification and high penalty in user credibility for-
mula: Besides filtering out any fake ratings, the high penalty
imposed by the ‘linear increase, exponential decrease’ principle
decreases significantly user credibility in case of fake feedback
detection, let alone in case of multiple fake feedback submissions.
Hence, not only fake feedback of either distinctly malicious users
or even camouflaged ones (e.g. Sybils or MITM attackers) will
be excluded, but also their credibility scores will be quickly
minimized. Even attackers using sophisticated tactics, such as on—
off malicious actors who mix honest with fake feedback to slip
undetected through the reputation system, will fail as they will
be strongly punished when misbehaving while recovering will be
arduous.

Credibility-aware and weighted service reputation score evalua-
tion: Since the reputation model considers the user credibility but
also the past reputation scores in the reputation formula, even if
particular fake ratings are falsely accepted, their impact on the
service evaluation will be minor if they are generated from a user
with low credibility. Therefore, eventually, inconsiderable or no
harm at all, will be caused.

Blockchain-ensured feedback integrity: Feed4Cloud provides an
extra layer of security by using Blockchain for recording user
feedback. That way, it becomes impossible to modify the feedback
to manipulate the evaluation result.

7.2. Future directions

7.2.1. Applicability areas

Feed4Cloud provides a solution mainly focused on supporting QoE-
aware cloud service management and orchestration, which goes beyond
today’s QoS-based approaches [76]. By taking into account user ex-
perience, our approach aims to enable sophisticated approaches for
resource allocation [77]. For instance, a DevOps user can design elas-
ticity policies and actions that incorporate QoE feedback in the form of
custom metrics.

Moreover, such an approach can be particularly important in multi-
cloud, geo-distributed setups by allowing service providers to collect
fine-grained feedback about different deployed instances of the same
service. Since those instances can be located in different regions and
present heterogeneous performance characteristics, the experience may
vary significantly between different users, based on their location and
providers. Our approach can quantify this difference in experience and
allows its use by the orchestration system to enhance service delivery.

In a similar vein, Feed4Cloud can be leveraged to assist in decen-
tralized SLA management. More specifically, QoE performance targets
could be defined (e.g. using the OpenSLO specification) and then, the
trustworthy service QoE scores exposed by Feed4Cloud can be used
to monitor SLO compliance and trigger QoE-based alert policies. This
can be further consolidated by relying on blockchain. This is feasible
via specialized smart contracts, which will, for example, automatically
increase the service’s reputation score when the measured QoS metrics
adhere to the predetermined SLA conditions or impose penalties in
case of SLO violations. That way, Feed4Cloud can contribute towards
facilitating trust establishment between mutually untrusted contracting
parties in cloud settings.
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We argue that by integrating user feedback into real-world cloud
services, Feed4Cloud opens up the potential for other use cases, as
well. One case could be the collection of user-generated feedback on
different versions of the same service. This feedback can be used by
service providers to assess the reception of new service features by users
and significantly improve software engineering operations such as A/B
testing [78], canary releases, progressive rollouts, and overall CI/CD
pipelines [79]. We plan to further explore this in the future.

7.2.2. Potential extensions

Building upon its fundamental blocks, Feed4Cloud can be further
extended to provide even more advanced functionalities. For instance,
regarding feedback verification, we are currently using a one-on-one
approach, i.e. comparing a particular rating with the corresponding
QoS at a specific time point. One potential enhancement is the usage
of machine learning-based change point detection (CPD) models that
would inspect the QoS and user QoE time series in a wider time
frame, to detect asynchronous changes and thus, identify invalid QoE
input [25,80]. This can be particularly useful in cases of complex attack
tactics, such as sneaky probabilistic attacks.

Another issue concerns user identities. In our current implementa-
tion, we rely on the default digital wallet addresses and do not include
any further personally identifiable information. Such an approach hides
the identity of the individual unless they are linked to additional
identifiers and can therefore be generally considered pseudonymous.
That way, we ensure user privacy. To reinforce this measure, we en-
vision incorporating advanced identity verification mechanisms, such
as Self-sovereign identities (SSI), and we are specifically considering
ALASTRIA Decentralized Identifier Model [81]. Such an extension will
allow for managing credentials in a decentralized and secure way since
they are stored on a distributed ledger and only accessed when re-
quired. In addition, this will provide an extra layer of security as it will
make it even more difficult to create fake identities or to compromise
the credentials of legitimate ones. As of the time of writing, although
SSI constitutes an emerging technology, its effective integration with
user feedback collection is still an open issue to be explored [82].

Last but not least, since trustworthy user feedback is vital for
Feed4Cloud, another interesting direction is to introduce an incentive
mechanism to encourage the participation of users in the evalua-
tion with honest feedback. In this regard, the Feed4Cloud credibility
scheme can be extended to support a reputation-based incentive mech-
anism [83-85]. More specifically, incentive-based user behavior control
can be achieved by associating the user credibility values with cer-
tain privileges. For example, potential incentives that can be given
to motivate trustworthy behavior include gaining revenues for offer-
ing trustworthy QoE feedback [42,86], accessing more services as
credibility increases [37] and/or prioritizing trustworthy users during
resource orchestration to guarantee meeting the corresponding SLA
requirements [87].

8. Conclusions

In this paper, we introduced Feed4Cloud: a modular system that
considers user QoE as an integral feature of the cloud monitoring plane,
while allowing only for trustworthy user feedback to be considered in
cloud-to-edge orchestration. Our solution encompasses well-established
QoS-to-QoE correlation models to support QoE verification effectively,
as well as appropriate service evaluation models to assist QoE-based
service management. The presented evaluation results substantiated the
added value of the introduced verification layer. Feed4Cloud ensures
user feedback is collected and stored in a transparent and secure way
through the use of Blockchain. For our prototype implementation, we
provided a custom oracle smart contract deployed on Alastria Red B
network. In addition, we interconnected our system with MAESTRO,
a real-world orchestrator to enable feedback-aware service monitoring
and configuration.
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